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ABSTRACT10

Quantification of Positron Emission Tomography (PET) data is performed using pharmacokinetic models.
There exist many models for describing this data, each of which may describe the data better or worse
depending on the specific application, and there are both theoretical, practical and empirical reasons to
select any one model over another. As such, effective PET modelling requires a high degree of flexibility,
while effective communication of all steps taken through scientific publications is not always feasible.
Reproducible research practices address these concerns, in that researchers share analysis code, and
data if possible, such that all steps are recorded, allowing an independent researcher to reproduce the
results and assess their veracity. In this article, I present kinfitr : a software package for performing kinetic
modelling using the open-source R language, in a reproducible manner. The R community has a strong
culture of reproducible research, and the language consists of numerous tools which allow both effective
and easy sharing and communication of analysis code. The package is written in such a way as to allow
the analyst the freedom to use and rapidly exchange between approaches, and to assess goodness of
fit, with 14 different kinetic models currently implemented using a consistent syntax, as well as tools for
working with the data. By providing open-source tools for kinetic modelling, including documentation and
examples, it is hoped that this will extend access to methodology for research groups lacking software
engineering expertise, as well as simplify and thereby encourage transparent and reproducible reporting.
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INTRODUCTION27

Positron emission tomography (PET) is an in vivo neuroimaging method with high biochemical sensitivity28

and specificity: it is an essential tool for the study of the neurochemical pathophysiology of mental29

and neurological disease as well as for evaluating pharmacological treatments. This method allows for30

accurate quantification of picomolar concentrations, thereby allowing insights which are not possible31

using any other in vivo imaging modality. PET is, however, prohibitively expensive, often costing in32

excess of USD 10 000 per measurement, and additionally involves exposure of participants to harmful33

radioactivity. For this reason, accurate quantification is imperative in order to maximise the scientific34

value of each measurement, as well as to minimise the number of participants who must be exposed to35

radiation in order to answer the scientific question at hand.36

Receptor PET quantification involves measuring the radioactivity in the tissue of interest following37

the injection of a radiolabelleled ligand into the blood. For fully quantitative PET imaging, radioactivity38

concentrations are measured over time, giving rise to a time activity curve (TAC). By examining the39

dynamics of radioactivity concentrations as the ligand enters and exits the tissue, the researcher is able to40

fit a model with which she can obtain information about the pharmacokinetics and binding of the ligand,41

and thereby assess the concentration of the relevant protein. The most common use of PET modelling42

involves the quantification of a static quantity of interest, which is estimated using a model fitted to the43

entire dynamic time-course of measurements in any given region. This is in contrast with fMRI, for which44

each 3D image within the time series represents the quantity of interest. The model used to perform45

PET quantification is therefore of tremendous importance for the later statistical comparison using the46
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Figure 1. Compartmental models are the basis of PET kinetic modelling. For both panels, C represents
the radioactivity concentrations within each compartment. The red cylinder on the left of each panel
represents the arterial blood, containing plasma (P). Within the plasma, the radiotracer is either free (FP),
or bound to plasma proteins (PP). The black boxes represent the compartments. TCM refers to Tissue
Compartment Model. A. The three tissue compartment model is the basis for the two- and one-tissue
compartment models: transfer between certain compartments are assumed to be sufficiently rapid that
they can be considered as single compartments for the two- and one-tissue compartment models
(coloured boxes). The compartments include FT free tracer, NS non-specifically bound, S specifically
bound, T total, and ND non-displaceable. B. Reference region models consider the total concentration of
radiotracer in the target T and in the reference region R, and assume that the non-displaceable
concentration is equal in both regions, and that the specific binding in the reference region is equal to 0.

estimated quantity of interest.47

There exist numerous different kinetic models for performing this quantification, which differ in a48

variety of important ways. Firstly, they differ in their specificity for the target binding, e.g. quantifying49

only the specific binding itself, as compared to quantifying the total binding, including non-specific50

binding (Innis et al. 2007). Secondly, they differ in their level of detail in their output, e.g. estimating51

only the estimate of the binding, compared to estimating all of the rate constants underlying that estimate.52

Thirdly, they differ in their relative degree of bias and variance, and hence their sensitivity to noise, i.e. how53

much they over- or under-fit the data). Fourthly, they differ in their assumptions about the behaviour of54

the radiotracer in the tissue, e.g. irreversible vs reversible binding, or the compartmental structure of the55

binding (Figure 1). These assumptions are usually only partially met in any given application, and care56

must be taken to ensure that the degree to which assumptions are not met does not bias the estimates57

in important ways (Salinas, Searle, and Gunn 2014). These differences are further complicated by the58

fact that the performance of different models may vary based on the properties of each specific tracer: a59

certain model may be more effective for certain cases than others, all else being equal.60

For the modeller, there is no silver bullet. Rather, the model used to estimate the quantity of interest61

should be selected based on the radiotracer, as well as the research question and properties of the data62

set itself. This is further complicated by the myriad other analytical decisions which must be made prior63

to modelling, such as statistical weighting schemes, the application of partial volume effect correction,64

or the use of numerous ways that the blood data can be modelled too (the blood, blood-to-plasma ratio65

and parent fraction curves can all be modelled to derive improved estimates of the arterial input function66

curve, which can itself also be modelled). As such, effective PET modelling requires a high degree of67

flexibility, and the ability to rapidly exchange between different models. Effective communication of all68

steps taken through scientific publications, however, is not always feasible due to the large number of69

small decisions and results which are sometimes required to reach a decision about how best the data70

should be modelled. This complicates replication efforts and thereby retards scientific progress. This71

problem is by no means restricted to PET modelling, and is a property of the increasing complexity of72

computational analysis of scientific data more generally.73

This general issue has led to calls among the broader scientific community for computational re-74

producibility, or more broadly reproducible research (RR), as a minimum standard for assessment of75
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scientific claims, i.e. that researchers share analysis code and, if possible, data. This ensures not only that76

all steps are recorded, but this also allows an independent researcher to reproduce the results and assess77

their veracity, as well as their sensitivity to various decisions taken during analysis. RR practices further78

accelerate scientific progress, as novel methods can be readily validated, applied and extended by other79

researchers using the shared code.80

In this paper, I present kinfitr: a software package for performing PET kinetic modelling of TACs81

using the R language. This tool both provides flexibility for effective modelling, while at the same time82

being written in such a way as to promote transparency of this process. Further, by using the R language,83

all code is open-source, and reproducible reporting is made easy by the extensive ecosystem of tools for84

this purpose for the R language.85

DESCRIPTION86

The kinfitr package contains a host of tools for processing and modelling of PET TAC data, i.e. after the87

raw image data has been transformed into vectors of radioactivity concentrations. The code is available at88

https://github.com/mathesong/kinfitr.89

Model Functions90

There currently exist 14 models for TAC modelling (Gunn, Gunn, and Cunningham 2001; Rizzo et al.91

2014; Logan et al. 1990, 1996; Ichise et al. 2002, 2003; Turkheimer et al. 2003; Patlak, Blasberg, and92

Fenstermacher 1983; Patlak and Blasberg 1985; Todd Ogden, Zanderigo, and Parsey 2015; Lammertsma93

and Hume 1996; Tomasi et al. 2008), including models which quantify binding relative to arterial plasma94

input, reference regions, or semi-quantitative methods by which binding is quantified relative to the95

injected dose of radioactivity and the mass of the participant. The models included and their descriptions96

are included in Table 1. All models have associated plotting routines, which include representation of97

weights, and the corresponding reference curve. Most models also produce standard errors of estimates,98

estimated using the delta method when the parameters are not directly fitted.99
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Table 1. Kinetic models included in the package for modelling of time activity curves

Model (Ir)reversible Fit Method t* Input Fit
Parameters

Reference

One Tissue Compartment
Model

Either NLS AIF 2-4

Two Tissue Compartment
Model

Either NLS AIF 4-6

Two Tissue Compartment
Model with Irreversible
Trapping

Either NLS AIF 5-7 Rizzo et al., 2014

Logan Plot Reversible OLS Required AIF 1 Logan et al., (1990)
Ichise Multilinear Analysis 1 Reversible OLS Required AIF 1 Ichise et al., (2002)
Ichise Multilinear Analysis 2 Reversible OLS Required AIF 1 Ichise et al., (2002)
Multilinear Logan Plot Reversible OLS Required AIF 1 Turkheimer et al., (2003)
Patlak Plot Irreversible OLS Required AIF 1 Patlak et al., (1983)
Simultaneous Estimation of
Non-Displaceable Binding

Reversible NLS +
GridSearch

AIF 1 Ogden et al., (2015)

Simplified Reference Tissue
Model

Reversible NLS Reference
Tissue

3 Lammertsma & Hume, (1996)

Simplified Reference Tissue
Model with Blood Volumes

Reversible NLS Reference
Tissue

4-5 Tomasi et al., (2008)

Non-Invasive Logan Plot Reversible OLS Required Reference
Tissue

1 Logan et al., (1996)

Ichise’s Multilinear Reference
Tissue Model

Reversible OLS Optional Reference
Tissue

2 Ichise et al., (2003)

Ichise’s Multilinear Reference
Tissue Model 2

Reversible OLS Optional Reference
Tissue

1 Ichise et al., (2003)

Non-Invasive Multilinear
Logan Plot

Reversible OLS Required Reference
Tissue

1 Turkheimer et al., (2003)

Patlak Reference Tissue
Model

Irreversible OLS Reqired Reference
Tissue

1 Patlak et al., (1985)
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Model Fitting100

In addition to the standard implementations of all models (ordinary least squares for linear models, and101

Levenberg-Marquardt algorithm for nonlinear models), all those which are fitted using nonlinear least102

squares (NLS) have an additional option to be fit multiple times using different starting parameters: this is103

useful when there are local minima within parameter space. Using the nls.multstart package (Padfield and104

Matheson 2018), starting parameters can either be sampled either from a uniform distribution, or from a105

grid, across parameter space to ensure that the best-fitting parameters are identified.106

For most linear models, there is a t* value which must be supplied. This value represents the point107

at which linearity is reached. For all models for which a t* value can be provided, there are included108

functions for selecting which t* value is most appropriate. As an intentional design decision, the selection109

of the t* is not automated: rather, the user is presented with R2 values, percentage variance and changes110

in binding estimates for each potential t* value such that an appropriate value can be selected from111

examining plots for several individuals to determine a t* value for a sample.112

Blood preprocessing113

The kinfitr package contains a set of tools for preprocessing of blood data. Blood data can be read into114

kinfitr directly and automatically from PET BIDS JSON files as blooddata objects. This contains the115

raw data for the arterial blood, arterial plasma, blood-to-plasma ratio, parent fraction, and arterial input116

function, as well as the models used to interpolate this data. These objects also contain the model which117

will be used to interpolate this data. By default, the interpolation method is defined as piecewise linear118

interpolation, but all curves can also be interpolated using nonlinear models. All of the data points,119

interpolated curves and their combination to produce the final arterial input function can be visualised120

using a plot command.121

There are numerous nonlinear models available for the modelling blood curves, and a selection of122

these models are included in the kinfitr package. For modelling of the parent fraction, the Hill, power,123

exponential and cumulative inverse gamma functions models are included (Tonietto et al. 2016), as well124

as the modification of the Hill function by Guo et al. (Guo et al. 2013). For modelling of blood or arterial125

input function curves, the tri-exponential model (linear increase, followed by a tri-exponential decay),126

as well as a spline model are available. Due to the large number, and ad hoc nature of many models for127

modelling of blood curves, it is also possible to create new models which can be incorportated into the128

blooddata object, or even to use the predictions from another external model (e.g. from another piece of129

software).130

Once the user is satisfied with the fits to the blood data, an input object can be created: this consists131

of an interpolation of the curves into a common time series which can be used for kinetic modelling.132

Additionally, if the user only has access to blood data which is already preprocessed, they can also bypass133

the blooddata object, and directly interpolate the data into an input object.134

Included Data and Vignettes135

The kinfitr package contains two data sets in order to allow for the inclusion of examples with most136

functions for demonstrating their uses. The first dataset, called pbr28, consists of TACs and blood data137

from several individuals measured using [11C]PBR28 from Matheson et al. (2017). This data includes 10138

individuals, each measured twice in a test-retest study protocol, and includes TACs from six regions as139

well as blood data. Blood data is provided both in processed form, as was used in Matheson et al. (2017),140

but also in raw BIDS format. The second dataset, called simref, consists of a simulated dataset of 20141

individuals which can be modelled using a reference region approach.142

The package will also contain several vignettes which are currently under development, demonstrating143

how the functions of the package can be used. This allows new users to quickly learn how to use the144

package, and to allow them to get started by recycling, and reverse-engineering already-written code,145

rather than beginning from scratch. The included vignettes will be as follows:146

1. Reference Tissue Models147

2. Arterial Input Models148

3. Choosing a Suitable t* in Linear Models149

4. Pre-processing and Modelling of Blood Data150

5/10

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 16, 2019. ; https://doi.org/10.1101/755751doi: bioRxiv preprint 

https://doi.org/10.1101/755751
http://creativecommons.org/licenses/by/4.0/


Other Fuctions151

The package also contains a number of helper functions which can be used for the kinds of calculations152

and processesing steps which must often be performed to accompany TAC modelling. The package153

includes a unit conversion function, for translating between any standard units of radioactivity to any154

other, as well as for applying, and reversing, decay correction. For blood data collected using automated155

blood sampling systems, the package offers dispersion correction. The package additionally methods for156

estimating weights of TACs.157

For models involving arterial input, the TAC data and arterial input data must be matched in time. All158

of the “tissue compartment models” allow for additional fitting of the time delay between these curves, as159

well as the blood volume fraction as additional parameters.160

Inputs and Syntax161

All tools within the kinfitr package have been designed to function with numeric vectors to as great an162

extent as possible, as opposed to highly structured lists. This is an intentional design decision in order163

to allow most functions within the package not to be reliant on having created specific data structures164

in previous steps. Instead, users should be able to make use of functions from the package at whichever165

stage of a given processing pipeline. Notable exceptions are those of blooddata and input objects, which166

are created to make it easier to deal with blood data arising from a multitude of different sources, with167

different time sequences.168

Modelling functions have been written in such a way as to be as consistent with one another as169

possible. Input arguments are the same between functions, and can be copied between the different170

models. This allows users to quickly switch between different models with mostly, if not completely, the171

same input arguments, thereby allowing a high degree of flexibility.172

Output173

Fit objects are created in order to be as extensive as possible. The specific model fits themselves are174

included in the fit object, allowing them to be probed using methods such as AIC (Akaike Information175

Criterion), BIC (Bayesian Information Criterion), vcov (return the variance-covariance matrix), afforded176

by the stats package within the base R language. Additionally, input, weights and TAC data are included177

after their time shifting to correspond with one another, as well as predicted values including which points178

are to be considered before and after the t* point for those models which contain a t*. While this is179

memory-intensive, this step allows users to rapidly identify the causes of a poor fit.180

The R Programming Language and Reproducibility181

One of the primary benefits of kinfitr is its being situated within the R programming language. R is an182

open-source programming (R Core Team 2019) language designed by and for statisticians, and one of183

the dominant languages used in Data Science. As such, it is excellent for performing data cleaning and184

rearrangement before modelling, as well as for later statistical analysis and data visualisation. Further, it185

makes it especially easy to implement additional methods which might be required to supplement the186

tools available within kinfitr as a result of CRAN (the Comprehensive R Archive Network): the central187

package repository for the R language, containing nearly 15 000 additional open-source packages.188

Another key advantage of kinfitr being situated within the R programming language is access to the189

extensive collection of tools for ensuring reproducibility. Rmarkdown (Xie 2017) allows for code, code190

output (including plots) and text to be written side-by-side such that a new document can be generated191

when the data changes. This is not limited to analysis reports: entire scientific articles (such as this one)192

can be written within R (Allaire et al. 2019), where the plots and tables and even the values within the193

text can be automatically updated when the document is re-compiled. While this may takes more time194

when first creating the report, the time savings in the long run can be dramatic, as all changes based on195

alterations to processing or the underlying data are automatically incorporated. Furthermore, this is an196

effective strategy to minimise errors when transferring figures between software, and, by being scripted,197

allows for rapid identification and diagnosis of errors.198

A final advantage is the fact that the R programming language and its packages are open-source.199

This means that anyone can download it and use the same tools on their data. This also implies that200

R and its packages can easily be run within virtual environments, either locally or in the cloud, with201

ease. To this end, I have created a kinfitr Docker container, which allows users to download and run a202

pre-installed version of R, Rstudio and kinfitr without needing to install or compile anything on their local203
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Figure 2. Comparison of primary outcomes between different models which can be applied to the
sample data, with regions represented by colour, and regression lines fitted to each combination. A.
Comparison of BP ND values obtained using the simref dataset. B. Comparison of V T values obtained
using the pbr28 dataset.
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machine other than Docker. It is available from the following link: https://hub.docker.com/r/204

mathesong/kinfitr_docker .205

Usage and validation206

The kinfitr package has already been used in several scientific papers (Matheson et al. 2017, 2018;207

Plavén-Sigray et al. 2018; Chen, Goldsmith, and Ogden, n.d.; Stenkrona et al. 2019), and a full validation208

is currently underway for the consistency of its outcomes compared to other software (Tjerkaski et al.,209

in prep). In order to demonstrate basic usage of the kinfitr package, as well as to provide a preliminary210

validation of its outcomes, the package was tested on the sample data included within the package. All211

of the the relevant models for each dataset were applied for three regions and their estimated binding212

outcomes are shown in Figure 2. From the figure, it is clear that the estimated parameters using each213

model are highly correlated with one another. The full reproducible report is included in Supplementary214

Code.215

DISCUSSION216

I have introduced the kinfitr package for analysis of PET TAC data using the R programming language.217

This package contains tools for processing of PET data following image processing and extraction of time218

activity curves, until the extraction of binding outcomes from the data and plotting of the model fits. By219

being situated within the R programming language, this tool can benefit from the extensive collection220

of other functions and packages within R, as well as the numerous tools for reproducibility, including221

reproducible reporting and the use of pre-installed virtual computing environments.222

The great expense and technical difficulty of PET, especially when blood data is also collected, as well223

as the fact that participants are injected with harmful radioactivity, makes it imperative that the resulting224

data is used in an optimal fashion. The kinfitr package makes it possible to make better use of PET data,225

by providing researchers with access to a wide variety of kinetic models, and allows the results of this226

modelling to be effectively, and transparently communicated in reproducible reports.227

This package additionally makes it easier for multi-centre collaborative projects to harmonise their228

data modelling procedures, as all analysis procedures and instructions are contained within the code229

which can be shared between centres. By its use of BIDS PET structure for blood data, this means that230

this complicated data originating from numerous different sources can be quickly and uniformly read and231

analysed.232

In summary, it is hoped that this package will help a researchers to perform PET modelling in a more233

reproducible fashion, and to prioritise accuracy and transparency to a greater extent in their research.234

Furthermore, by this project being open-source and hosted on GitHub, other users will also be able to add235

additional tools and models to the software through pull requests, which can be merged to improve the236

software package for everyone using it.237
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