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Abstract 

Introduction: Tuberculosis (TB) is a serious disease with varying rates of mortality and morbidity among 

infected individuals which estimates for approximately two million deaths/year. The number of deaths could 

increase by 60% if left untreated. It mainly affects immune-compromised individuals and people of third world, 

due to poverty, low health standards, and inadequate medical care.  It has varying range of manifestations that is 

affected by the host immune system response, the strain causing the infection, its virulence, and transmissibility. 

Materials and methods: A total of 1750 Mycobacterium Tuberculosis PPE65 family protein strains were 

retrieved from National Center for Biotechnology Information (NCBI) database on March 2019 and several 

tools were used for the analysis of the T- and B-cell peptides and homology modelling. 

Results and conclusion: Four strong epitope candidates had been predicted in this study for having good 

binding affinity to HLA alleles, good global population coverage percentages. These peptides are 

YAGPGSGPM, AELDASVAM, GRAFNNFAAPRYGFK and a single B-cell peptide YAGP. 

This study uses immunoinformatics approach for the design of peptide based vaccines for M. tuberculosis. 

Peptide based vaccines are safer, more stable and less hazardous/allergenic when compared to conventional 

vaccines. In addition, peptide vaccines are less labouring, time consuming and cost efficient. The only weakness 

is the need to introduce an adjuvant to increase immunogenic stimulation of the vaccine recipient. 
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INTRODUCTION 

 

Tuberculosis (TB) is a serious disease with varying rates of mortality and morbidity among infected individuals 

which estimates for approximately two million deaths/year. The number of deaths could increase by 60% if left 

untreated. [1][2][3] It mainly affects immune-compromised individuals and people of third world, due to 

poverty, low health standards, and inadequate medical care.  [4][5][6] It has varying range of manifestations 

that‘s affected by the host immune system response, the strain causing the infection, its virulence, and 

transmissibility. [7][8] These manifestations include but are not limited to: Constitutional symptoms for all 

forms of TB include fever, night sweats, and failure to thrive (children) or weight loss (adults). [9] Milliary 

tuberculosis, skeletal deformities, central nervous system involvement (tuberculosis meningitis TBM) and other 

organs involvement i.e., cervical lymphadenitis. [10][11][12][13]The main site of infection which follows the 

inhalation of aerosols or droplets containing Mycobacterium Tuberculosis is the alveoli in lungs where they 

enter mononuclear cells and interact with them following phagocytosis, causing damage, notably necrosis, 

cavitation, and coughing of blood. [5][14][15][16][17] 

Mycobacterium Tuberculosis is a distinctive Acid fast bacilli that is obligate pathogens. [18]They differ from 

other bacteria in that a very large portion of its coding region is devoted to the production of lipogenesis and 

lipolysis enzymes, and to two new families of glycine-rich proteins with a repetitive structure that may represent 

a source of antigenic variation. [19]M. tuberculosis contains around 4,000 genes, one of which is the Proline 

Proline Glutamatic acid PPE gene, which comes from PE/PPE/PE-PGRS gene family which is present 
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exclusively in genus Mycobacterium, accounts for approximately 10% of the M. tuberculosis genome and 

plays a role in the makeup of cell surface markers thus, helping in genetic variations, adhesion and invasion of 

host defense cells. [20][21][22][23][24]Studies suggest that variations in these genes may underlie the basis of 

virulence attenuation. [24][25] 

One of the M. tuberculosis PPE proteins, the PPE65 (Rv3621c) harbored in the Region of Difference (RD8) is 

suggested to be potential virulence determinant.[24] It‘s found to be overexpressed in macrophages infected 

with various clinical isolates of M. tuberculosis and it‘s  particularly, a good B-cell antigen with a 

higher antibody response.[23][26][27][28] PPE65 is thought to be a suppressor of pro-inflammatory cytokines 

such as TNF-α and IL-6 while it also induces high expression of anti-inflammatory IL-10 co-operated by PE32 

protein causing inhibition of T-helper 1 cells. [29] 

Morbidity and mortality rates of TB steadily dropped due to, improved public health practices and widespread 

use of the Bacille Calmette–Guérin (BCG) vaccine, as well as the development of antibiotics. [7] Then numbers 

of new cases started increasing. Hence, homelessness and poverty increased and the AIDS emerged, with its 

destruction of the cell-mediated immune response in co-infected persons. [12][30][31][32]This global crisis was 

followed by the emergence of multidrug resistance and extensively drug resistant strains in countries like the 

former Soviet Union, South Africa, and India, where some antibiotics are available in lower quality or are not 

used for a sufficient time to control the disease according to recommended 

regimens [5][33][34][35][36][37][38][39][40]In addition, BCG, the widely administered live attenuated vaccine 

against TB, is inconsistently effective in adults.[10][38][41][42]Therefore, development of new specific vaccine 

preventive against M. tuberculosis, is becoming a major priority of M. tuberculosis investigators. 

This study aims to suggest new possible peptides for a peptide- based vaccine for M. tuberculosis, targeting 

PPE65 protein as an immunogen using an immunoinformatics approach. Reverse vaccinology (peptide based 

vaccines) is becoming more favoured over conventional vaccine methodologies. This is owes to the fact that 

reverse vaccine techniques are much less costing, more time and labour saving and makes patients less prone to 

hazards.[43][44][45] peptide vaccines are based on the chemical approach to synthesize the computationally 

predicted suitable B-cell and T-cell epitopes that are immunodominant and can induce specific immune 

responses.[43]this study differs from other studies for being the first study to use PPE65 protein as an 

immunogenic target for a reverse vaccine-design based study. 

 

MATERIALS AND METHODS 

Protein Sequence Retrieval 

A total of 1750 Mycobacterium Tuberculosis PPE65 family protein strains were retrieved from National Center 

for Biotechnology Information (NCBI) database on March 2019 in FASTA format. These strains were 

submitted from different parts of the world and we collected them for immunoinformatics analysis. The 

retrieved protein strains had length of 284 base pairs with name ―PPE65 family protein‖ 

Determination of conserved regions 

The retrieved sequences of Mycobacterium Tuberculosis PPE65 family protein were subjected to multiple 

sequence alignment (MSA) using ClustalW tool of BioEdit Sequence Alignment Editor Software version 

7.2.5to determine the conserved regions. Molecular weight and amino acid composition of the protein were also 

obtained using this tool.[46][47] 

Sequenced-Based Method 

The reference sequence (WP_096833455.1) of Mycobacterium Tuberculosis PPE65 family protein was 

submitted to different prediction tools at the Immune Epitope Database (IEDB) analysis resource 

(http://www.iedb.org/) to predict various B and T cell epitopes. Conserved epitopes would be considered as 

candidate epitopes for B and T cells and were subjected for further analysis.[48] 
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B- Cell Epitope Prediction  

B cell epitopes is the portion of the vaccine that interacts with B lymphocytes. Candidate epitopes were analysed 

using several B cell prediction methods from IEDB (http://tools.iedb.org/bcell/), to identify the surface 

accessibility, antigenicity and hydrophilicity with the aid of random forest algorithm, a form of unsupervised 

learning. The Bepipred Linear Epitope Prediction 2was used to predict linear B cell epitope with default 

threshold value 0.533 (http://tools.iedb.org/bcell/result/). The Emini Surface Accessibility Prediction tool was 

used to detect the surface accessibility with default threshold value 1.000 (http://tools.iedb.org/bcell/result/). The 

Kolaskar and Tongaonker Antigenicity method was used to identify the antigenicity sites of candidate epitope 

with default threshold value 1.032 (http://tools.iedb.org/bcell/result/). The Parker Hydrophilicity Prediction tool 

was used to identify the hydrophilic, accessible, or mobile regions with default threshold value 1.695.[49-53] 

T- Cell Epitope Prediction MHC Class I Binding  

T cell epitopes is the portion of the vaccine that interacts with T lymphocytes. Analysis of peptide binding to the 

MHC (Major Histocompatibility complex) class I molecule was assessed by the IEDB MHC I prediction tool 

(http://tools.iedb.org/mhci/) to predict cytotoxic T cell epitopes. The presentation of peptide complex to T 

lymphocyte undergoes several steps. Artificial Neural Network (ANN) 4.0 prediction method was used to 

predict the binding affinity. Before the prediction, all human allele lengths were selected and set to 9amino 

acids. The half-maximal inhibitory concentration (IC50) value required for all conserved epitopes to bind at 

score less than 100 were selected.[43, 54-59] 

T- Cell Epitope Prediction MHC Class II Binding 

Prediction of T cell epitopes interacting with MHC Class II was assessed by the IEDB MHC II prediction tool 

(http://tools.iedb.org/mhcii/) for helper T cells. Human allele references set were used to determine the 

interaction potentials of T cell epitopes and MHC Class II allele (HLA DR, DP and DQ). NN-align method was 

used to predict the binding affinity. IC50 values at score less than 500 were selected.[60-63] 

Population Coverage  

In IEDB, the population coverage link was selected to analyse the epitopes. This tool calculates the fraction of 

individuals predicted to respond to a given set of epitopes with known MHC restrictions 

(http://tools.iedb.org/population/iedbinput). The appropriate checkbox for calculation was checked based on 

MHC- I, MHC- II separately and combination of both.[64] 

Homology Modelling 

The 3D structure requires PDB ID which was obtained using raptorX (http://raptorx.uchicago.edu) i.e. a protein 

structure prediction server developed by Xu group, excelling at predicting 3D structures for protein sequences 

without close homologs in the Protein Data Bank (PDB). USCF chimera (version 1.13.1rc) was the program 

used for visualization and analysis of molecular structure of the promising epitopes 

(http://www.cgl.uscf.edu/chimera).[65, 66] 

 

RESULTS 

Multiple Sequence Alignment 

The conserved regions and amino acid composition for the reference sequence of Mycobacterium Tuberculosis 

PPE65 family protein are illustrated in figure 1 and 2 respectively. Glycine and alanine were the most frequent 

amino acids (Table 1). 
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Figure 1: Multiple Sequence Alignment for partial sequence of the PPE65 protein in M. tuberculosis, using BioEdit 

software. 

 
Figure 2: Aminoacid composition for Mycobacterium TuberculosisPPE65 family protein using BioEdit software. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 7, 2019. ; https://doi.org/10.1101/755983doi: bioRxiv preprint 

https://doi.org/10.1101/755983


Protein: gi|57117135|ref|YP_177998.1| PPE family protein PPE65 [Mycobacterium 

tuberculosis H37Rv] 

Length = 413 amino acids 

Molecular Weight = 40677.26 Daltons 

 

Amino Acid   Number Mol% 

Ala   103 24.94 
Cys  0 0 

Asp  12 2.91 

Glu   13 3.15 
Phe   15 3.63 

Gly   47 11.38 

His   3 0.73 
Ile   9 2.18 

Lys  9 2.18 

Leu  35 8.47 
Met  11 2.66 

Asn   11 2.66 

Pro   28 6.78 
Gln   19 4.6 

Arg   5 1.21 

Ser   29 7.02 
Thr   25 6.05 

Val   22 5.33 

Trp   9 2.18 
Tyr  8 1.94 

Table 1: Molecular weight and amino acid frequency distribution of the protein 

 

B-cell epitope prediction 

The reference sequence of M. Tuberculosis PPE65 was subjected to Bepipred linear epitope 2, Emini surface 

accessibility, Kolaskar & Tongaonkar antigenicity and Parker hydrophilicity prediction methods to test for 

various immunogenicity parameters (Table 2 and Figures 3-8). Two epitopes have successfully passed the three 

tests. Tertiary structure of the proposed B cell epitopes is illustrated (Figure 7 &8). 

 

Peptide Start End Length Kolaskar & 

Tongaonkar 

antigenicity score 

(TH: 1.03) 

Emini surface 

accessibility score 

(TH: 1) 

Parker 

Hydrophilicity 

predictionscore 

(TH: 1.43) 

ALLERTOP 

YAGP 17 20 4 1.041 1.24 2 Non-allergen 

QAAS 183 186 4 1.039 1.212 4.175 Non-allergen 

QAAS 333 336 4 1.039 1.212 4.175 Non-allergen 

Table 2: Conserved B cell epitopes that had successfully passed the tests. 
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Figure 3: Bepipred Linear Epitope Prediction 2; Yellow areas above threshold (red line) are proposed to linearB- cell 

epitopes while the green areas are not. 

 

 

Figure 4: EMINI surface accessibility prediction; Yellow areas above the threshold (red line) are proposed to be a part of B 

cell epitopes and the green areas are not. 
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Figure 5: Kolaskar and Tonganokar antigenicity prediction; Yellow areas above the threshold (red line) are proposed to be 

antigenic B-cell epitopes and green areas are not. 

 

 

Figure 6: Parker Hydrophilicity prediction; Yellow areas above the threshold (red line) are proposed to be hydrophilic B- 

cell epitopes and green areas are not. 

Prediction of Cytotoxic T-lymphocyte epitopes  

The reference sequence was analyzed using (IEDB) MHC-1 binding prediction tool to predict T cell epitopes 

interacting with different types of MHC Class I alleles. 61 peptides were predicted to interact with different 

MHC-I alleles. The most promising epitopes with their corresponding MHC-1 alleles and IC50 scores are 

shown in (Table 3) followed by the tertiary structure of the candidate T cell epitope (Figure 7). 

Peptide MHC 1 alleles IC50 

AELDASVAM* HLA-B*40:01, HLA-B*44:02, HLA-B*40:02, HLA-B*44:03, HLA-B*18:01 7.85 
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FAAPRYGFK HLA-A*68:01, HLA-C*03:03 12.86 

GGLKVPAVW HLA-B*58:01, HLA-B*57:01 21.45 
HAFGGMPLM HLA-B*35:01, HLA-C*03:03, HLA-C*12:03, HLA-A*26:01 16.48 

NRALLMALL HLA-B*39:01, HLA-B*27:05 87.63 

SVAMDTFGK HLA-A*11:01, HLA-A*68:01 20.16 
VAMDTFGKW HLA-B*58:01, HLA-B*53:01 15.18 

VLGDFVQGV HLA-A*02:01, HLA-A*02:06 10.64 

WVSPARLMV HLA-A*68:02, HLA-A*02:06 20.77 

YAGPGSGPM* HLA-C*03:03, HLA-C*12:03, HLA-B*35:01, HLA-C*14:02, HLA-B*15:01 1.99 

Table 3: The most promising T cell epitopes and their corresponding MHC-1 alleles. 

Prediction of the Helper T-lymphocyte epitopes  

Reference sequence was analysed using (IEDB) MHC-II binding prediction tool there were 85predicted epitopes 

found to interact with MHC-II alleles. The most promising epitopes with their corresponding alleles and IC50 

scores are shown in (Table 4) along with the 3D structure of the proposed epitope (Figure 10). 

Peptide MHC 2 alleles IC50 

AGRAFNNFAAPRYGF HLA-DRB1*01:01, HLA-DRB1*09:01, HLA-DRB5*01:01, HLA-DRB1*07:01, HLA-
DRB1*04:01, HLA-DRB1*15:01, HLA-DQA1*05:01/DQB1*03:01, HLA-DRB1*04:04, HLA-

DRB1*04:05, HLA-DRB1*11:01, HLA-DQA1*01:02/DQB1*06:02 

16.4 
 

DTFGKWVSPARLMVT HLA-DRB1*07:01, HLA-DRB1*09:01, HLA-DRB1*01:01, HLA-DQA1*05:01/DQB1*03:01, 

HLA-DQA1*01:02/DQB1*06:02, HLA-DRB1*04:04, HLA-DRB1*11:01, HLA-DRB1*15:01, 

HLA-DRB5*01:01, HLA-DRB1*13:02, HLA-DPA1*02:01/DPB1*01:01 

16 

 

GRAFNNFAAPRYGFK* HLA-DRB1*01:01, HLA-DRB5*01:01, HLA-DRB1*09:01, HLA-DRB1*04:01, HLA-

DPA1*01:03/DPB1*02:01, HLA-DRB1*15:01, HLA-DRB1*07:01, HLA-

DQA1*05:01/DQB1*03:01, HLA-DRB1*11:01, HLA-DRB1*04:04, HLA-
DQA1*01:02/DQB1*06:02, HLA-DRB1*04:05 

10.1 

 

RAFNNFAAPRYGFKP HLA-DRB1*01:01, HLA-DRB5*01:01, HLA-DRB1*09:01, HLA-DPA1*01:03/DPB1*02:01, 

HLA-DQA1*05:01/DQB1*03:01, HLA-DRB1*04:01, HLA-DRB1*15:01, HLA-DRB1*07:01, 
HLA-DRB1*11:01, HLA-DRB1*04:04, HLA-DQA1*01:02/DQB1*06:02 

14.1 

 

TFGKWVSPARLMVTQ HLA-DRB1*07:01, HLA-DRB1*09:01, HLA-DQA1*01:02/DQB1*06:02, HLA-DRB1*01:01, 

HLA-DQA1*05:01/DQB1*03:01, HLA-DRB1*11:01, HLA-DRB5*01:01, HLA-DRB1*15:01, 
HLA-DRB1*04:04, HLA-DRB1*13:02, HLA-DPA1*03:01/DPB1*04:02, HLA-

DPA1*02:01/DPB1*01:01 

21.2 

 

Table 4: The most promising T cell epitopes and their corresponding MHC-2 alleles. 
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Figure 7.  Three-dimensional visualisation of the most promising peptides in the study using Chimera (version 1.13.1rc)    

A. MHC-I binding T-cell peptide YAGAPGSGPM B. YAGP B-cell peptide which is a part of YAGPGSGPM and C. 

MHC-I binding T-cell peptide AELDASVAM. 

 

Population Coverage Analysis: 

All MHC I and MHC II epitopes were assessed for population coverage against the whole world using IEDB 

population coverage tool. For MHC 1, epitopes with highest population coverage were VLGDFVQGV (40.6%) 

and YAGPGSGPM (33.81) (Figure 8 and Table 5). For MHC class II, the epitopes that showed highest 

population coverage were GRAFNNFAAPRYGFK (68.15%) and AGRAFNNFAAPRYGF (68.15%) (Figure 9 

and Table 6). When combined together, the epitopes that showed highest population coverage were 

GRAFNNFAAPRYGFK (68.15) and AGRAFNNFAAPRYGF (68.15) (Figure10 and Table 7). 
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Figure 8.Population coverage for MHC class I epitopes. 

 

 

Figure 9. Population coverage for MHC class II epitopes. 
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Figure 10. Population coverage for combined MHC I and II epitopes. 

 

Epitope Coverage Class 1 (%) Total HLA hits 

 VLGDFVQGV 40.60% 2 

 YAGPGSGPM 33.81% 5 

AELDASVAM 30.31% 5 

 HAFGGMPLM 29.26% 4 

 RYGFKPTVI 21.38% 1 

 SVAMDTFGK 20.88% 2 
FAAPRYGFK 13.48% 2 

APRYGFKPT 12.78% 1 

ALFGLSGIF 8.44% 1 
 WQGSSAASM 8.44% 1 

Table 5: Population coverage of proposed peptides interaction with MHC class I 

 

Epitope Coverage Class 2 (%) Total HLA hits 

 GRAFNNFAAPRYGFK 68.15% 12 

 TFGKWVSPARLMVTQ 63.61% 12 

AGRAFNNFAAPRYGF 68.15% 11 
 DTFGKWVSPARLMVT 66.41% 11 

 RAFNNFAAPRYGFKP 63.61% 11 

AFNNFAAPRYGFKPT 63.61% 10 
APRYGFKPTVIAQPP 63.56% 10 

 MDTFGKWVSPARLMV 57.83% 10 

AAPRYGFKPTVIAQP 61.74% 9 
AELDASVAMDTFGKW 61.74% 9 

Table 6: Population coverage of proposed peptides interaction with MHC class II 

 

Epitope Coverage Class 1&2 combined (%) Total HLA hits 

AELDASVAM 68.15% 12 

AFNNFAAPR 68.15% 11 
AGRAFNNFA 66.41% 11 

ALFGLSGIF 63.61% 12 

APRYGFKPT 63.61% 11 

EIAANRALL 63.61% 10 

FAAPRYGFK 63.56% 10 

FNNFAAPRY 61.74% 9 
FVQGVTGSA 61.74% 9 

 GGLKVPAVW 57.83% 10 

Table 7: Population coverage of proposed peptide interaction with MHC class I & II combined 
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Country MHC I MHC II MHC I&II combined 

World 95.34 % 81.94 % * 99.16% * 

Table 8: The population coverage of whole world for the epitope set for MHC I, MHC II and MHC I&II combined. 

 

DISCUSSION 

This study suggests four most promising peptide candidates for a reverse vaccine design of M. tuberculosis 

targeting PPE65 protein, including three T-cell peptides (YAGPGSGPM, AELDASVAM, 

GRAFNNFAAPRYGFK) and a single B-cell peptide YAGP. These peptides make the strongest candidates due 

to their relatively high global population coverage, scoring the lowest rates of IC50 with their corresponding 

HLA alleles, indicating strong interaction between the peptide and allele. 

This study also has a major focus on the analysis of T-cell peptides. Hence, tuberculosis is mainly maintained 

from dissemination by cell-mediated immunity.[67] CD4+ T cells are the principal antigen-specific cells 

responsible for containment of M. tuberculosis infection, although they can also be major contributors to disease 

during M. tuberculosis infection in several cases.[68] 

For MHC-I, the length of peptides is strictly nine amino acids thus all peptides are nine amino acid long. Peptide 

YAGPGSGPM, is the most promising peptide in this study. It binds to five MHC-I alleles, (HLA-C*03:03, 

HLA-C*12:03, HLA-B*35:01, HLA-C*14:02, and HLA-B*15:01). Besides, scoring the lowest IC50 of 1.99 

when binding to HLA-C*03:03 indicating very strong interaction. Moreover, the peptide‘s global population 

coverage was the highest among the candidate peptides and was estimated for 33.81%. Another good finding 

which strengthens the point of selection of this particular peptide is that, a part of it YAGP peptide during the 

analysis of linear B-cell peptides was predicted to elicit a good immune response according to antigenicity, 

surface accessibility, hydrophilicity and linearity tests. This indicates that YAGPGSGPM is at least partially 

located on the surface of the protein and that it‘s immunogenic stimulating both B and T-cell responses. 

Peptide AELDASVAM is also a strong possible peptide for MHC-I related immune responses. Not only does 

the peptide bind to five HLA alleles (HLA-B*40:01, HLA-B*44:02, HLA-B*40:02, HLA-B*44:03, HLA-

B*18:01), but it has a very low IC50 of 7.85 to HLA-B*40:01 allele. The peptide is predicted to cover 30.31% 

of the total global population.  

As for MHC-II alleles, the proposed alleles were longer than nine peptides to give more space for manipulation 

during invivo and in vitro analysis. GRAFNNFAAPRYGFK peptide is the most promising peptide among the 

suggested peptides. It binds to a vast number of MHC-II alleles, approximately 12 alleles. In addition, it scored 

lowest IC50 of 10.1 to HLA-DRB1*01:01and the highest population coverage with a score of 68.15%.  

In this study, twenty-three peptides were shared in eliciting both MHC-I and MHC-II immune responses. 

Among these peptides were YAGPGSGPM, and AELDASVAM which proves the remarkable efficiency of the 

selected epitopes. This is advantageous when designing a peptide-based vaccine as it reduces the vast number of 

selected epitopes. 

Different peptide based vaccine approaches for TB have been reported previously. A study by Rai PK et al. 

2017 has reported that a lapidated peptide was introduced (L91) and engaged in an animal model trails to detect 

the efficiency of the peptide in activating T- helper cells. The result then confirmed that L91 peptide led to 

enhanced immune response to BCG vaccine.[69] A study by Coppola et al. 2015, suggests that a long synthetic 

peptide derived from Latency antigen Rv1733c of M. tuberculosis which is highly expressed in patients with 

dormant TB, can efficiently elicit an immune response, particularly T-cell response. The result was validated by 

using animal models for in vivo response.[70] 
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In this study, and besides being strictly computational, another limitation was found in population coverage 

analysis of MHC II; a total of twelve alleles did not give predictions. This includes ( HLA-

DQA1*05:01/DQB1*03:01, HLA-DQA1*01:02/DQB1*06:02, HLA-DPA1*01/DPB1*04:01, HLA-

DPA1*01:03/DPB1*02:01, HLA-DQA1*03:01/DQB1*03:02, HLA-DRB3*01:01, HLA-DRB4*01:01, HLA-

DRB5*01:01, HLA-DQA1*05:01/DQB1*02:01, HLA-DPA1*03:01/DPB1*04:02, HLA-

DQA1*04:01/DQB1*04:02,  and HLA-DPA1*02:01/DPB1*01:01). In addition, the tertiary structure of the 

PPE65 protein was incomplete and this resulted in failure of visualization of the promising MHC-II peptide 

GRAFNNFAAPRYGFK. We recommend future researches conducting an in vivo and in vitro analysis of the 

proposed peptides and a population coverage analysis of the HLA alleles that did not give result along with 

homology modelling for PPE65 protein. 

Peptide vaccines are an attractive alternative to conventional vaccines, as their concept relies on usage of short 

peptide fragments to induce a highly targeted immune responses, consequently avoiding allergenic and/or 

reactogenic sequences. [44]Reverse vaccine technology has proved its efficiency as many of the designed 

vaccines have made it into clinical trials. For example, a multiple peptides vaccine derived from tumor-

associated antigens (TAAs) made it to phase II clinical trial for head and neck squamous cell cancer (HNSCC). 

A phase I trial was registered with University Hospital Medical Information Network (UMIN) number 

UMIN000002022, with a fixed 2-mg dose of KIF20A and VEGFR1 peptides for patients with advanced 

unresectable pancreatic cancer targeting nineteen patients sub grouped into the HLA-A*2402-positive group and 

HLA-A*2402-negative group respectively. Results of this study showed that vaccination with KIF20A and 

VEGFR1 peptides was a safe treatment, and might also be a promising treatment as HLA-A*2402-positive 

group had an increased survival rate in comparison to the negative group.[71] 

In general, peptide based vaccines are safer, more stable with a minimal exposure to hazardous or allergenic 

substances compared to conventional vaccines. Moreover, these peptide vaccines are less labouring, time 

consuming and cost efficient. The only weakness regarding them is the need to introduce an adjuvant to increase 

immunogenic stimulation of the vaccine recipient. [44][72][73][74] 

 

CONCLUSION 

Since the need for a proper vaccine for M. tuberculosis is increasing with time, along with the reduced response 

to BCG vaccine, and growing population rates, poverty and pollution. This study suggests four peptides suitable 

for further analysis using reverse vaccinology techniques. YAGPGSGPM, AELDASVAM, and 

GRAFNNFAAPRYGFK peptides have acceptable global population coverage percentages, good binding 

affinity to MHC alleles. 
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