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Abstract

An infant’s risk of developing neuromotor impairment is primarily assessed through
visual examination by specialized clinicians. Therefore, many infants at risk for im-
pairment go undetected, particularly in under-resourced environments. There is thus a
need to develop automated, clinical assessments based on quantitative measures from
widely-available sources, such as video cameras. Here, we automatically extract body
poses and movement kinematics from the videos of at-risk infants (N=19). For each
infant, we calculate how much they deviate from a group of healthy infants (N=85 on-
line videos) using Naïve Gaussian Bayesian Surprise. After pre-registering our Bayesian
Surprise calculations, we find that infants that are at higher risk for impairments deviate
considerably from the healthy group. Our simple method, provided as an open source
toolkit, thus shows promise as the basis for an automated and low-cost assessment of
risk based on video recordings.
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1 Introduction

Developmental disorders, including those caused by neuromotor disease, are the most com-
mon source of childhood disability, affecting 5-10% of children and 3.7 to 7.4 million Amer-
ican children (Rydz, Shevell, Majnemer, & Oskoui, 2005) and are often the cause of lifelong
disability. Early intervention may improve outcomes in neuromotor disease, but requires
accurate early identification of infants at risk for physical disability (Herskind, Greisen,
& Nielsen, 2015; Novak et al., 2017). For effective widespread early identification, easily-
deployed automated risk assessment tools are needed to quantify infant movement in the
first few months of life during the development of motor control.

There are many factors that describe a ‘good’ diagnostic test. A test’s predictive ability
is key. Beyond that, it is desirable that tests are based on quantitative measurements and
a series of well-defined steps to reach its conclusion, i.e., an algorithm. This motivates the
development of quantitative tests to supplement clinical judgment. Second, it is important
to evaluate the availability of a test, or how easy it is to deploy. Clinical assessments often in-
volve expert judgment and expensive equipment, which are only available in highly-resourced
environments. This makes assessment inaccessible for families of limited means and in low-
resource countries, where the burden of disability is higher (World Health Organization,
2011). Eighty percent of the global prevalence of neuromotor impairment is in low-resource
countries, due to larger populations and potentially higher incidence rates (Gladstone, 2010;
World Health Organization, 2011). Even in highly-resourced environments, a test that is
easy to deploy can enable continuous monitoring of the probability of developing a disorder.
Therefore, it is important to assess diagnostic tests not only by their accuracy, but also by
how quantitative and cost effective they may be.

Many clinical tests have been developed to assess neuromotor risk. The General Move-
ments Assessment and the Hammersmith Infant Neurological Examination have high sensi-
tivity and specificity. These tests are effective at detecting disorder early, at less than four
months corrected age (Novak et al., 2017). The Test of Infant Motor Performance has been
shown to detect the changes in the movement patterns pre- and post- treatment for infants
later diagnosed with cerebral palsy (Spittle, Doyle, & Boyd, 2008). Despite their high ac-
curacy, these clinical tests have shortcomings. First, they require expert administration and
specialized training of licensed clinicians (Bosanquet, Copeland, Ware, & Boyd, 2013; Noble
& Boyd, 2012). Therefore, these tests are expensive and only available in well-resourced en-
vironments. An automated assessment that objectively quantifies movement characteristics
would improve access and reduce costs considerably.
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The past two decades have seen the development of sensor-based measurements of infant
movement that quantify movement features. Wearable sensors and 3-D motion capture
have been used to measure infant movement in laboratory settings (Berg, 2008; Heinze,
Hesels, Breitbach-Faller, Schmitz-Rode, & Disselhorst-Klug, 2010; Kanemaru et al., 2014,
2013; Karch et al., 2012; Marcroft, Khan, Embleton, Trenell, & Plötz, 2015; Meinecke et al.,
2006; Philippi et al., 2014). Sensor-based measurements are objective and quantitative, and
algorithms can generate risk assessments. However, these measurements have been restricted
to laboratory and clinical settings, thus hindering the ability to evaluate infants in their
natural environments. Moreover, sensor-based methods can be costly and time-intensive to
develop and implement, limiting access in resource-poor environments. Thus, sensor-based
approaches to diagnostics can provide objective assessment, but have limitations in access
and applicability to all infant environments.

In the last decade, scientists have developed systems for video-based assessments using
optical flow which hold promise to be widely accessible as they can be implemented on mobile
devices (Adde, Helbostad, Jensenius, Langaas, & Støen, 2013; Stahl et al., 2012; Støen et
al., 2017). Such methods typically use frame differencing of a video to estimate movements
by tracking the centroid of motion. This technique can be extended for the measurement of
movement of each limb (Stahl et al., 2012). Using this approach, the amount of movement
and the frequency of movement have corresponded to clinical evaluations (Adde et al., 2013,
2010). However, frame difference metrics from optic flow rely on centroid estimates that only
measure gross movements as opposed to measuring the kinematic variables for individual
joint or limb segment movements. The extraction of limb movement from optic flow also
requires careful parameter selection and manual adjustment of the tracking algorithm. As
an alternative, marker-less tracking methods have been developed for the tracking of infant
movement (Hesse et al., 2018; Olsen, Herskind, Nielsen, & Paulsen, 2014). However, these
methods require depth images, are computationally intensive, and the models are likely to
be overfit to the relatively small datasets on which they are trained. In sum, video-based
diagnostics have the potential to be widely available, but to be successfully applied, they
must depend on easily obtained 2-D videos, extract movement features based on individual
body-part movements, and require minimal manual tuning.

Here, we provide a first step toward making video-based neuromotor assessment widely
available (Figure 1). We produce a ‘normative’ reference database of infant movements
using 85 videos found online. We calculate the movements of the body parts using an
existing pose-estimation algorithm, OpenPose (Cao, Simon, Wei, & Sheikh, 2017), which we
augmented using domain adaptation with our own labelled dataset of infant pose consisting
of 9039 infant images. Using this normative database we can calculate how much each
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Figure 1. Flowchart of the pipeline for computer vision-based neuromotor risk
assessment. We made a normative database infant movement using videos found online (85
infants) and recorded infants at risk of neuromotor disease in a clinical setting (19 infants).
Using video frames labelled with body-part landmarks from a subset of our video dataset, we
adapted a pose estimator (OpenPose) to extract the pose of infants which we improved using
domain adaptation. Using the adapted system, we then extracted pose from all videos. Next,
from the pose data, we quantified kinematic features for each infant. Finally, our neuromotor
risk prediction used Naïve Gaussian Bayesian Surprise that estimated the probability that
each infant belonged to the reference population.

infant deviates from the typical movements of healthy infants using a single score, the Naïve
Gaussian Bayesian Surprise (Lonini et al., 2016). When we then tested this system on a
clinical population (N=19) where the level of neuromotor risk was assessed by a clinician
(low, moderate, and high), we found that Bayesian Surprise varied across participant groups.
Thus, we have developed an open-source framework that calculates the Bayesian Surprise of
movement features given a reference database of ‘normative’ infants.

2 Method

2.1 YouTube Data

In order to develop a framework that predicts the neuromotor risk level of infant movement,
it is helpful to have an estimate of what is expected or normal. By creating such a ‘normative’
database, we can then estimate the likelihood that the movements of a new infant are from
the normative distribution, thereby assessing the likelihood that the infant is healthy. In
previous work we have shown that online video databases are a useful source of human
movement data (Chambers, Kong, Wei, & Kording, 2019). In the present study, we built
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a normative database of infant movements based on video data of infants from YouTube,
assuming that found videos represented healthy infant movement. We used search terms
such as ‘one-month old’, ‘two-month old’, etc. Search terms that resulted in suitable videos
for inclusion in our normative database or for domain adaptation of our pose-estimation
system are provided as supplemental data.

In our initial search, we identified 420 video segments featuring infants, where infants were
non-occluded, where infants moved independently, and where most of the body was present
in the frame throughout the segment. In our analysis, we included 95 of the 420 videos found
that were over 5 seconds in duration, and where pose estimates were of sufficient quality for
the extraction of basic kinematic variables, as evaluated by visual inspection (mean recording
duration per infant = 39s (SD = 33)). Two physical therapists estimated the ages of infants
(mean rated age in weeks (SD) = 9.67 (6.26), There was reasonable agreement between
raters (inter-rater reliability: r = 0.76, p < 0.0001, n = 85). The age rating averaged across
raters was used to classify infants as being more or less than 10 weeks of age (see Data
analysis). As supplemental information, we provide URLs and timing information from the
YouTube videos in the normative database. When there was more than one video per infant,
we included in the dataset the video with the longest duration. This database, containing
video recordings of 85 different infants, provided a reasonably large ‘normative’ database of
infant movements against which to compare the kinematic features extracted from infant
video data collected at the lab.

2.2 Clinical Data

Infants tested in person were recruited through The Children’s Hospital of Philadelphia
(CHOP), University of Pennsylvania (Penn), and the local community. A subset of the
infant data reported here were used in a previous study, which focused on the development
of a method to track infant movement using a multiple view stereoscopic 3-D vision system
(Shivakumar et al., 2017). Infants were screened to determine eligibility. Inclusion criteria for
full-term infants (born at a gestational age of >37 weeks) were the absence of any significant
cardiac, orthopedic, or neurological condition. Infants born preterm (gestational age <36
weeks) were recruited from the Newborn/Infant Intensive Care Unit (N/IICU) at CHOP. All
infants were between the ages of 3 and 11 months. Infants who could walk were excluded.
Parents of eligible participants provided written informed consent. The human subject ethics
committee at Penn served as the IRB of record for this study (UPENN IRB # 822487). Data
were collected from infants at CHOP, a local child care facility, and at the Penn Rehabilitation
Robotics Lab.
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Before testing, an experienced pediatric physical therapist evaluated the infants’ level of
risk using the Bayley Infant Neurodevelopmental Screener (BINS). This screener includes
specific tasks that experts administer to observationally score infants based on the Bayley
Scales of Infant Development (Aylward, 1995; Aylward & Verhulst, 2000; Gücüyener et al.,
2006). The experts did not have access to the Bayesian Surprise outputs of the algorithm
we developed here. We assessed risk of neuromotor dysfunction as classified by the BINS
test (low, moderate, high) computed at corrected age for preterm infants and chronological
age for full-term infants.

To assess neurodevelopmental risk, the BINS addresses several areas of ability: basic neu-
rological functions/intactness (posture, muscle tone, movement, asymmetries, abnormal indi-
cators); expressive functions (gross motor, fine motor, oral motor/verbal); receptive functions
(visual, auditory, verbal); and cognitive processes (object permanence, goal-directedness,
problem solving). The BINS consists of six item sets, each containing 11 to 13 items. Each
item in the BINS is scored ‘optimal performance’ or ‘non-optimal performance’ using pre-
defined rules. The number of optimal responses for a given item set are summed to give
a raw score. For each item set, two previously established raw cut scores identify a given
infant’s level of risk for neurological impairment, resulting in three risk groupings: low risk,
moderate risk, and high risk.

The Play And Neuro-Development Assessment (PANDA) Gym uses toys with sensors,
cameras, and a mat structure which measures the center of pressure of the infant (Figure 2).
The video data collected by the gym are pairs of color images extracted from high resolution
(1920 x 1080) Go Pro Hero 4 Session videos. Four cameras were mounted on two 3-D printed
stereo frames and the videos were captured at 30 frames per second, with one setup placed
directly above the baby and the other positioned on the baby’s right side, mounted on the
side frame of the gym’s platform. In the current work, we used data from one GoPro camera
for each infant. The platform structure is lightweight, made with colored PVC tubing and
a sensorized mat (4 x 4 ft), which is developed using a DragonPlate carbon fiber foam core
board with four force sensors on each corner. Vinyl and foam padding cover the dragon
board to make it comfortable for the infant. Before each infant trial, both systems undergo
calibration. A GUI allowed data collection from all sensors and real time tracking of an
infant’s center of pressure.

The original purpose of the experiment was to examine the infants’ interactions with
sensorized toys, while their movements were recorded using the sensorized mat and GoPro
cameras. Sensorized toys contained inertial measurement units (MPU-9150, InvenSense, San
Jose, CA) to measure infants’ toy interactions. The experiment included three toy conditions
where different toys were hung above the infant (elephant, orangutan, lion, Figure 2) and
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Figure 2. Infant testing at CHOP in the PANDA gym. The infant was placed at
the center of a sensorized mat and was recorded using GoPro cameras.

a fourth baseline condition without the hanging toys (No-toy condition). Since the toys
occluded the view of the infant, this caused the pose estimation to fail. Therefore, here,
we restricted our analysis to the No-toy condition, where the infant was non-occluded and
moved spontaneously. The PANDA gym experiment provided video recordings that allowed
us to examine infants’ spontaneous movements.

In each trial, the infant was laid in a supine position inside the PANDA gym and video
data were collected using the GoPro cameras. Preterm infants were 2 females and 8 males
(mean corrected age (SD) = 14.39 weeks (6.92), mean chronological age (SD) = 24.84 weeks
(4.77)). Full-term infants were 17 females and 4 males (mean chronological age (SD) = 26.28
weeks (9.88)). The data of four preterm infants and three full-term infants were excluded
due to missing BINS score data. The data of two full-term infants were excluded because
infants were sitting during the video, which prevented successful pose estimation. The data
of a further three full term infants were excluded due to missing video data.

This left us with a final sample containing 19 infants (Table 1). Preterm infants were
1 female and 5 males (mean corrected age (SD) = 17.64 weeks (4.82), mean chronological
age (SD) = 26.74 weeks (4.54)). Full-term infants were 10 females and 3 males (mean
chronological age (SD) = 24.65 weeks (9.44)) with 5 infants at low-risk, 9 infants at moderate
risk, and 5 infants at high risk, as evaluated by the BINS score. There was a mean (SD)
total recording duration of 287.57 s (161.02) per infant.
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Table 1. Information on infants recorded in PANDA gym included in our anal-
yses. Table includes Infant Id, sex, chronological age, BINS score for chronological age,
chronological risk category, corrected age, corrected BINS score, and corrected risk.

Infant
Sex

(M,F)

Chron.
age

(Months)

Chron.
BINS
score

Risk
(Chron.)

Corr. age
(Months)

Corr.
BINS
score

Risk
(Corrected)

6 F 4.00 10 Moderate
7 F 6.75 9 Moderate
8 F 4.57 10 Moderate
9 F 5.32 10 Moderate
11 M 4.00 10 Low
15 M 5.78 5 High 2.50 8 Moderate
16 M 8.14 0 High 5.50 0 High
17 M 5.28 8 High 3.75 10 Low
18 M 4.14 11 Low
19 F 6.50 7 High
20 M 4.50 8 High
23 F 11.50 7 Moderate
24 F 4.28 8 Moderate
25 F 7.75 12 Low
26 F 9.50 11 Moderate
27 F 7.25 11 Low
30 M 7.90 3 High 5.21 8 Moderate
31 F 6.50 3 High 4.00 9 Low
34 M 6.50 1 High 5.50 1 Moderate

3 Pose Extraction

In order to extract pose information from videos, we used OpenPose, a recently developed
pose-estimation algorithm (Cao et al., 2017). OpenPose consists of convolutional neural
networks that have been trained using labelled image data to identify 2-D joint and limb
positions from images. OpenPose extracts positions of nose, neck, ears, eyes, shoulders,
elbows, wrists, hips, knees, and ankles from 2-D videos. On a system with multiple graphical
processing units, OpenPose can run in real time (∼ 30 frames/second). With this processing
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speed, OpenPose provides a viable method for performing motion capture from 2-D videos.
Due to differences between adults and infants in their appearance and pose, pose tracking

using OpenPose was initially limited in performance. We therefore adapted OpenPose for
infants. We created a dataset of infant images with labels of joint positions. We required that
infants be non-occluded, and that their full body be in the frame. We included the first 10s of
103 video segments collected from YouTube and the first 30s of 17 out of the total 19 videos
from the clinical dataset. The URLs and timing information of the YouTube video data used
for domain adaptation is provided as supplemental data. Videos were selected in order to
have a representative set of images for domain adaptation that describe infant pose, in terms
of infant appearance, clothing, pose, video background, and image scale. We labelled the
video frames with body landmarks using Vatic, a video annotation tool (Vondrick, Patterson,
& Ramanan, 2013). Videos were labelled to match the format of the Common Objects in
Context dataset (Lin et al., 2014), with labels for left and right eyes, ears, shoulders, elbows,
wrists, hips, knees, ankles, and nose, and a bounding box around all points. We included
all frames in the labelled dataset, resulting in a total of 36,030 images with labelled pose
(32,417 in the training set, 3,613 in the test set). We initialized domain adaptation with
pretrained weights from previous work (Cao et al., 2017) and updated weights by gradient
descent for 50 iterations. This resulted in a pose estimator that could extract an infant’s
pose from 2-D video.

4 Data analysis

Using the pose-estimation system adapted for infants, we extracted pose estimates from
video recordings of 85 infants in the YouTube cohort and the 19 infants from the clinical
sample. From this pose data, we then extracted kinematic features for each infant, then
predicted their neuromotor risk using a Naïve Bayes classifier.

When evaluating the pose-estimation model, we used three performance metrics. We
computed the root-mean-squared error (RMSE) between ground-truth data and pose esti-
mates, normalized by bounding-box dimensions, for landmarks that were in both datasets.
To obtain the RMSE, we computed the distance between each key point detected by the
algorithm and label from the ground-truth data, in x coordinates and y coordinates. To
account for differences in scale, we normalized x and y distances by the width and height
of the ground-truth bounding box around the infant. Finally, we computed the root-mean
square of these individual errors from all labelled images, leading to one error score for the
entire test dataset. We also evaluated precision, that is, the proportion of total pose esti-
mates that were present in the ground-truth dataset, and the recall, that is, the proportion
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of ground-truth labels that were found by the pose estimator. These three metrics allowed
us to evaluate the pose-estimation model before and after domain adaptation.

Pose-estimation data contained missing data, outliers in the form of false positive detec-
tions and additional noise around body landmarks. To obtain clean signals, we preprocessed
time series data from each body landmark (Figure 3). We first removed missing data by ap-
plying linear interpolation to the raw time series for each body landmark. We then removed
outliers by using a rolling-median filter with a smoothing window of 1 second. In order
to obtain smooth signals, we then performed smoothing using a rolling-mean filter with a
smoothing window of 1 second. Outlier removal and smoothing provided a cleaner signal for
the extraction of kinematic variables.

Raw pose data Filter pose data Rotate skeleton Normalize Compute kinematics

y=(y	-	yref)/l

l

y

Velocity

Acceleration

y

Time

Raw

Interpolated

Median filtered

Mean filtered
Time

Figure 3. Preprocessing of pose data. We took raw pose data for whole videos as input
(frame coordinates of body landmarks). To filter the pose data, we interpolated the raw signal
to replace missing data, then applied a rolling-median filter to remove outliers and finally,
used a rolling-mean filter. This provided a smooth signal from which to compute derivatives.
To ensure that we could compare infants recorded under different conditions (camera angles,
video resolution, etc.), we then rotated and normalized body landmark coordinates in each
frame. We rotated the upper-body landmarks with respect to the center of the shoulders
and we rotated the lower-body landmarks with respect to the center of the hips. Next, we
normalized the landmark coordinates within each frame, by subtracting a reference landmark
(the neck) and dividing by a reference distance (the trunk length). Finally, based on pre-
processed signals, we computed kinematic variables from selected body landmark coordinates
and joint angles (position or angle (y), velocity, acceleration).

To compute infant kinematics from YouTube data, we needed to compensate for camera
properties. For example, a moving camera with respect to a non-moving infant would produce
a movement signal. Also, a short distance between the camera and infant would produce
greater movement signals than when further away. To compensate for these differences, we

9

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2019. ; https://doi.org/10.1101/756262doi: bioRxiv preprint 

https://doi.org/10.1101/756262
http://creativecommons.org/licenses/by/4.0/


first extracted 2-D joint angles from video frames, which are invariant to the size of the
infant in the frame, and the infant’s orientation in the frame (i.e. landscape, portrait).
Second, we also computed landmark positions, rotated so that all infants from all frames
were aligned (Figure 3). We rotated the upper-body landmarks relative to the angle of the
left and right shoulders with respect to the midpoint between the shoulders. We rotated
the lower-body landmarks relative to the angle of the left and right hip joints with respect
to the midpoint between the hip joints. We then normalized landmark coordinates within
each frame (Figure 3). We computed distance from a reference landmark (the neck) and
by dividing by a reference distance on the body (trunk length). Measuring movement in
body-centered coordinates allowed us to compensate for the effects of camera movement in
YouTube videos.

Our predictions of infant risk depended on kinematic variables. From each time series
of body-landmark positions, we computed the velocity and acceleration at each time inter-
val. Time-series data extracted from pose estimates provided data for computing kinematic
features.

We selected a simple set of features based on movement of the arms and legs computed
from knee angles, elbow angles, ankle positions, and wrist positions. Our normalization of
pose estimates prevented us from examining movement of the shoulders and hips, so we did
not include these as kinematic variables. In future this could be solved by using a fixed
camera for all recordings, which would allow us to attribute all recorded movement to the
infant and remove the need for normalization. Where possible we computed the median and
interquartile range (IQR), to avoid the effects of outliers. We chose features that represented
postural information (absolute position and angle), variability of posture (variability of po-
sition and angle), velocity of movement (median absolute velocity), variability of movement
(variability of velocity and acceleration), complexity (positional and angular entropy), and
left-right symmetry of movement (left-right cross correlation of position and angle). As fea-
tures of each extremity (left and right wrists and ankles), we included the median position
in x and y coordinates (units of trunk length, l), IQR of position in x and y coordinates
(l), median absolute velocity in x and y coordinates (l/second), IQR of velocity in x and
y coordinates (l/second), IQR of acceleration in x and y coordinates (l/second2), left-right
cross-correlation of position, and positional entropy. As features of each joint angle (left and
right elbows, wrists, knees and ankles), we included the angular mean (degrees), angular
standard deviation (degrees), median angular velocity (degrees/second), IQR angular veloc-
ity (degrees/second), IQR angular acceleration (degrees/second2), angular cross-correlation,
and angular entropy. To reduce the number of features, we averaged feature values across
the left and right sides of the body, where applicable. Having established a basic set of
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features, we pre-registered our feature set and the algorithm to calculate Bayesian surprise
(https://osf.io/hv7tm/). Our preregistered set of kinematic features provided basic descrip-
tors of infant movement on which to make predictions.

Existing assessments rely on clinicians visually identifying at-risk infants whose move-
ments differ from the normal population. We aimed to replicate this form of assessment
using quantification of multiple kinematic features from videos and a normative database
which tells us what healthy infant movement looks like. In this approach, infants who de-
viate from the healthy reference population are identified as being at-risk. We estimated
the probability of each infant belonging to the healthy reference population, represented by
the YouTube cohort in this case, who are presumed to be healthy. We adopted the Naïve
Bayes approach, previously used for clinical assessments of walking performance (Lonini et
al., 2016). Under the assumption of normally-distributed features and feature independence,
the joint probability of features over the reference population is:

p(x1, ..., xn|µi,H , σ
2
i,H) =

n∏
i=1

p(xi|µi,H , σ
2
i,H) =

n∏
i=1

1√
2πσ2

i,H

e

−(xi−µi,H )2

σ2
i,H (1)

where xi indicates the i-th feature value for a subject, and µi,H and σ2
i,H are, respectively,

the mean and variance of that feature across the reference subjects.
The negative natural logarithm gives the Naïve Gaussian Bayesian Surprise:

Ψ =
n∑

i=1

(
1

2
log(2πσ2

i,H) +
(xi − µi,H)2

2σ2
i,H

) (2)

This metric can be interpreted as being related to the log probability of a subject being
part of the reference population. The Naïve Bayesian Surprise was normalized with respect
to the reference population. Infants were compared within age brackets computed based on
corrected age (less than 10 weeks, 10 weeks or older). We chose 10 weeks as a threshold
so that there was sufficient data within each age bracket to serve as a normative group for
comparison (47 infants less than 10 weeks, 38 infants older than 10 weeks). This provided
a standard score: subjects who were more than two standard deviations from the mean
would be classed as at risk. Our approach to risk assessment classified infants based on how
different their movement was to that of the reference population.

To further explore how combinations of movement features relate to clinically-assessed
risk, we applied matrix decomposition to our set of 38 movement features from 104 infants.
Matrix decomposition provides a way of describing infants’ movement in terms of a lower
number of features which are aggregates of the original set of 38 movement features. This
method also allows us to summarize relationships between movement features. Singular
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value decomposition (SVD) is a matrix-decomposition method that finds ‘latent variables’
which describe important sources of variance in the data. Each latent variable is a linear
combination of the original set of movement features, with a singular value that tells us
how much of the variance it explains. For example, one latent variable could have a high
weight for velocity and acceleration, and a low weight for symmetry and entropy; a second
latent variable could have a high weight for symmetry and entropy, and a low weight for
the remaining features, and so on. These groupings of features into one latent variable tell
us that they vary together. Each infant has one score for each of the latent variables. For
example, an infant with high velocity and acceleration, and moderate symmetry and entropy
would have a high score for the first latent variable and a moderate score for the second latent
variable. Thus, matrix decomposition allows description of infants’ movement in terms of a
lower number of features.

More formally, applied to our dataset of M infants by N movement features (AM×N),
SVD approximates this matrix by the product of three matrices: A = UΣV T . The columns
of the left matrix, U , span the column space of matrix A that characterizes the infants,
later described as singular vectors. The columns of the right matrix, V , span the row space
of matrix A that characterizes the movement features, later described as singular vector
weights. Σ contains singular values that describe how important each latent variable is. We
first normalized columns of matrix A, by subtracting the mean and dividing by the standard
deviation. We then applied SVD. We examined the singular vectors of U as a function of
risk and we examined how the original movement features are weighted in latent variables by
examining singular vectors of V . SVD allows examination of infants and movement features
in terms of a set of latent variables that describe the sources of variance in the dataset.

5 Results

We developed a system to assess infants’ neuromotor risk based on kinematic variables ex-
tracted from 2-D videos. In order to estimate the pose of infants from videos, we first adapted
an existing pose-extraction algorithm for infants using data on infant pose. We compared
kinematic data extracted from infants at risk of neuromotor disorders (low, moderate, high
risk) with a normative database from videos of 85 infants. Based on pose estimates, we
quantified basic kinematic features of movement. We combined these features into a single
estimate of risk by computing Bayesian surprise for each infant in a cohort of 19 infants seen
in a clinical setting.
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We required a system that could reliably extract the pose of infants from videos. We
therefore adapted an existing deep-learning based pose-estimation algorithm, OpenPose (Cao
et al., 2017), for infants. We performed domain adaptation for infant pose extraction by
updating the network’s weights with infant images and body landmark labels as input.
Domain adaptation led to improved pose estimation in infants. We observe a lower distance
between ground-truth labels and pose estimates after domain adaptation, as shown by the
RMSE in bounding-box units. RMSE of 0.05 before domain adaptation decreases to 0.02
after domain adaptation (Figure 4 A,B). We also observe an increase in precision from 0.89
before domain adaptation to 0.92 after domain adaptation (Figure 4C,D) and an increase in
recall from 0.76 before domain adaptation to 0.94 after domain adaptation (Figure 4E,F).
Therefore, through domain adaptation with labelled images of infants, we improved the
performance of the pose-estimation model. This allowed us to extract skeletal information
on each infant and track the positions of body landmarks (Figure 4 G,H). The adapted pose
estimator allowed us to extract movement trajectories from videos of infants moving.

We compared the movement of each infant from the clinical cohort with the movement
extracted from the reference-group sample based on 38 features that described posture,
velocity, acceleration, left-right symmetry, and complexity (see methods, all pre-registered).
Inspection of kinematic features from different risk populations reveals some subtle deviations
from the reference sample based on neuromotor risk (Figure 5). While each of these features
may not be strongly indicative of an infant’s neuromotor risk when considered individually,
an estimate which pools across features is likely to provide more robust predictions of risk.

Our approach to assessing neuromotor risk allowed us to combine many features into one
estimate. We computed the Bayesian Surprise for each individual infant. When features
are combined into one estimate of risk, the normalized Bayesian Surprise increases with
clinician-assessed risk; Low Risk: mean z=-1.62, SD=1.18; Moderate Risk: mean z=-1.68,
SD=1.34; and High Risk: z=-2.94, SD=1.43 (Figure 6). The proportion of infants classed as
at risk varies with participant group (Reference: P(Risk) = 0.07, Low Risk: P(risk) = 0.40,
Moderate Risk: P(Risk) = 0.33, High Risk: P(Risk) = 0.8). A Kruskal-Wallis test showed a
significant association between participant group and the Bayesian Surprise score (X 2(3) =
29.92, p<0.0001). We found significant differences between the reference population and the
clinical risk groups using the Mann Whitney U test (Reference, Low Risk: U = 49, p<0.05;
Reference, Moderate Risk: U = 108, p<0.005; Reference, High Risk: U = 9, p<0.005,
Bonferroni-corrected p-values). Differences among clinical risk groups were non-significant
(Low Risk, Moderate Risk: U = 20, p=0.99; Moderate Risk, High Risk: U = 6, p=0.63; Low
Risk, High Risk: U = 12, p=0.54, Bonferroni-corrected p-values). These proof-of-concept
results show differences between at-risk infants and our reference population based on a set of
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Figure 4. Pose-estimation model performance and example OpenPose outputs.
(A) Scatterplot of the RMSE of the adapted pose-estimation model as a function of the RMSE
of the OpenPose model before domain adaptation. Points show the RMSE for individual
images in bounding-box units. In A, C and E, the dotted line shows the diagonal, where
performance before and after domain adaptation are equal. (B) Distribution of the difference
in model error before and after domain adaptation. For each model, a single RMSE score was
computed from errors between individual key points and labels averaged across the whole
test dataset. RMSE (Adapted) – RMSE (OpenPose) is shown by the red dotted line. Solid
black line shows a difference of 0, in B, D and F. The negative RMSE difference demonstrates
improvement after domain adaptation. (C) Scatterplot of the precision of the adapted pose-
estimation model as a function of the precision before domain adaptation. Points show the
precision for individual images. (D) Distribution of the difference in precision before and
after domain adaptation. Precision (Adapted) – Precision (OpenPose) is shown by the red
dotted line. (E) Scatterplot of the recall of the adapted pose-estimation model as a function
of the recall before domain adaptation. Points show the recall for individual images. (F)
Distribution of the difference in recall before and after domain adaptation. Recall (Adapted)
– Recall (OpenPose) is shown by the red dotted line. (G) Example of OpenPose outputs
extracted from a YouTube video of an infant using our adapted pose-estimation system. (H)
Image y-coordinates of the extremities for the same infant as in (G).
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Figure 5. Infant movement features. Kinematic features of the reference sample (gray),
low-risk infants (green), moderate-risk infants (blue), high-risk infants (red) as a function
of age in corrected weeks. Features are shown for the wrists: median absolute position (l),
IQR of position (l), median velocity (l/s), IQR of velocity (l/s), IQR of acceleration (l/s2),
left-right cross-correlation of position and entropy of position. Visualization of other features
are provided as Supporting Information.

simple kinematic features. These results suggest that it may be possible to predict clinician’s
assessments of infantile neuromotor risk through statistical comparison relative to a healthy
reference population.

We explored how combinations of our set of 38 movement features relates to neuromotor
risk. SVD finds linear combinations of movement features, or latent variables, that sum-
marize the movement feature data using matrix factorization. In our data, the three most
important latent variables account for 37%, 15%, and 12% of the variance respectively (Fig-
ure 7). We did not include other variables, since they accounted for small proportions of
variance (<10%). The first latent variable mainly discriminates between the reference group
and infants recorded at the lab, with at-risk infants being more extreme along this variable
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Figure 6. Normalized Bayesian Surprise as a function of subject group. The
normalized Bayesian Surprise (z) is shown for the reference infant population, and at-risk
infants recorded at the lab evaluated by clinicians using the BINS score (Low Risk, Moderate
Risk, and High Risk). More negative scores indicate a smaller probability of belonging to
the reference population, or higher risk. Points show individual data for each subject group.
Individual data is overlaid with the mean for each group (error bars = 95% confidence
intervals (CI)).

(Figure 7A). Well-represented movement features include median and variability of velocity,
and variability of acceleration (Figure 7B). The second latent variable discriminates between
reference, low-medium risk infants and high-risk infants, with high-risk infants having more
extreme values along this variable (Figure 7C). Variability of position, positional entropy,
symmetry (cross-correlation), and postural variables from the lower body (mean knee angle,
median ankle position) are well-represented (Figure 7D). Therefore, in our data, high-risk
infants are atypical for this combination of features. The third latent variable does not show
a clear pattern relative to the infant group (Figure 7E), but may relate to movement of
the upper body relative to the lower body, as most positive weights describe lower body
movement and most negative weights describe upper body movement (Figure 7F). Thus,
our exploratory analysis suggests that at-risk infants may move more slowly, and have less
variable velocity and acceleration, and that high-risk infants in particular may have more
extreme posture, variability of posture, and symmetry. These results show that at-risk in-
fants in our sample have different movement patterns to the normal population, which can
be described in terms of combinations of individual movement features. This analysis allows
us to describe important sources of variance in the movement feature data and to explore
the importance of combinations of movement features in determining risk assessments.
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Figure 7. SVD analysis of movement feature data in terms of the three most
important latent variables. (A), (C), and (E) show values from singular vectors, which
describe the infants in terms of latent variables. (B), (D), and (F) show the weighting of
movement features in each latent variable. (A) Left: Mean eccentricity (error bars=95% CI)
along the first singular vector (SV1 squared), as a function of participant group. Center,
Right: Scatterplots displaying values of the first singular vector as a function of the second
and third singular vectors (SV2, SV3) for individual infants. (B) Weighting of movement
features in SV1 ranked in descending order. (C) Left, Right: SV2 as a function of the SV1
and SV3 for individual infants, with participant shown by color. Center: Mean SV2 squared
(error bars=95% CI) as a function of neuromotor risk. (D) The weighting of movement
features in SV2 ranked in descending order. (E) Left, Center: SV3 values as a function of
the SV1 and SV2 for individual infants. Right: Mean SV3 squared (error bars=95% CI)
as a function of neuromotor risk. (F) Weighting of movement features in SV3 ranked in
descending order.
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6 Discussion

We have developed a framework to identify infants at risk of neuromotor disorder based on
video data. Our approach was to compare infants assessed in the laboratory at different levels
of neuromotor risk with a normative dataset of infant movement extracted from online videos.
We successfully adapted an existing pose-estimation system to perform motion capture on
2-D videos. Using pose estimation, we extracted features from videos that reflected posture,
kinematic variables (velocity, acceleration and their variability), complexity (entropy), and
symmetry (left-right cross correlation). We found that the Bayesian Surprise measure of risk
which pooled across features varies across participant groups. We examined the main latent
variables that describe the data, with the finding that velocity and acceleration distinguish
infants from the reference population with at-risk infants, and that high-risk infants differ
from normal in their posture, postural variability, and symmetry. Combinations of movement
features are predictive of neuromotor risk.

Previous work has addressed kinematic markers of disordered infantile movement, with
the finding that features of velocity and acceleration including skewness of velocity, maximum
acceleration, and minimum speed predict infantile movement disorders (Heinze et al., 2010;
Meinecke et al., 2006). Other work has shown that infants with disordered movement show
greater stereotypy (Karch et al., 2012; Philippi et al., 2014). Our SVD analysis showed that
at-risk infants may have lower velocity (median and IQR) and variability of acceleration
relative to a reference sample of healthy infants, and that high-risk infants in particular show
different patterns of posture, postural variability, symmetry of movement, and complexity.
Our findings on the features that predict risk assessments show some similarity with previous
observations with roles for velocity and acceleration, as well as complexity and symmetry.
In order to confirm our findings, it will be important to examine the kinematic markers of
disordered movement using large clinical datasets.

Previous work on infant movement used measurements capable of extracting fine move-
ment information, like accelerometers, motion capture using depth cameras, and optic flow
from videos (Adde et al., 2010; Heinze et al., 2010; Meinecke et al., 2006). This allowed
examination of the jerkiness of movement, previously found to be predictive of movement
disorder (Heinze et al., 2010; Meinecke et al., 2006). Pose estimation applied to low-quality
videos currently does not afford the high precision needed to compute higher derivatives
of movement trajectories. Here, because of the presence of outliers and noise in our pose-
estimate data, we applied smoothing to the data which removed its fine detail. In future
work, improvements in pose estimation and high-quality video datasets will make it possible
to extract fine movement detail from pose estimates and will allow examination of more
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subtle movement features.
One major concern about our work here is the small number of subjects in the clinical

group. Due to a range of constraints we were only able to analyze data from 19 subjects.
We do find a significant difference of those subjects to the normative population. However,
we find a big difference even when comparing the normative population to the low-risk
infants in the clinical cohort. Our SVD-based analysis (Figure 7) provides some insights
into why we are seeing these changes. Features including velocity, acceleration and their
variability discriminate between at-risk and reference infants. Future work will need to
correct for sources of variability which do not directly correspond to neuromotor risk. While
our analysis was exactly as we had planned and preregistered, we cannot avoid the confound
that other differences between the two groups gave rise to the difference we observed. As
such, our study only provides a low level of certainty and should be followed up with a
considerably larger clinical population.

In this work, we provided methods to quantify and automate infantile neuromotor risk
assessments. This system could benefit from several additions. For example, infants move
differently depending on the time of day and their emotional state (Oyerinde et al., 2018).
For an automated movement test with high enough accuracy to be used, it will be important
to take such variables into account. It is also important to take into account developmental
changes in infant movement (Law, Lee, Hülse, & Tomassetti, 2011). Development is vari-
able across infants: an infant can be delayed in their motor development without having a
neuromotor disorder (WHO Multicentre Growth Reference Study Group, 2006). Therefore,
an algorithm that jointly infers an infant’s developmental age and neuromotor risk promises
to perform better than one that infers risk alone. The incorporation of several variables will
be needed for high-accuracy predictions of neuromotor risk.

Our approach to infantile neuromotor risk assessments has made novel contributions. For
our normative database, we collected movement data from close to 100 infants using marker-
less tracking applied to videos. Use of a normative database for comparison increases the
robustness of risk assessments. Secondly, we used unsupervised methods to assess risk and to
examine important movement features. The Bayesian Surprise metric compared movement
of each at-risk infant to the normative database, weighting each feature by its uncertainty.
Our SVD analysis describes the main sources of variance in the movement feature dataset.
Therefore, our analysis is unlikely to be overfit to the data.

Not only does marker-less tracking allow access to larger infant kinematic datasets, but
also allows assessments to be based on movement under conditions outside clinical settings.
This is advantageous for two reasons. First, video-based diagnostics promise improved access
to evaluations. A parent need only provide a simple smartphone video of their infant’s move-
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ment to receive an assessment. Second, as with experimental paradigms, behavior observed
in the laboratory and clinical setting may differ from the real-life setting (Bronfenbrenner,
1977; Ingram & Wolpert, 2011). Movement variables collected in natural settings would
provide a more ecologically-valid assessment, thus providing more accurate predictions.

Marker-less tracking not only has strong potential for applications, but also as a tool for
understanding infant pathology. One of the most common movement disorders is cerebral
palsy, a lifelong condition due to brain injury in infancy. Although subtypes and biomarkers
have been described, it is poorly understood in terms of its causal determinants (Sanger,
2008). Marker-less tracking may serve as a tool to provide a detailed description of move-
ment pathology across a large population, providing better quantitative descriptions of dis-
ease subtypes (Katz & Rymer, 1989; Rosenbaum et al., 2007; Sanger et al., 2006). Based on
large-scale quantitative measurements of movement in different patient groups and in typ-
ical populations, one could model how motor-control processes differ between healthy and
disordered infants (Scott & Norman, 2003). Therefore, marker-less tracking also provides a
tool for understanding infant pathology.

We have developed a method to identify infantile risk of neuromotor disorder based
on pose estimates extracted from 2-D videos. Such a method meets the requirements of
objectiveness, as movements are assessed based on quantitative variables; and availability,
since diagnoses would no longer require the opinion a trained specialist. Our approach
proposed here will improve as larger normative datasets are collected, and as pose-estimation
algorithms better suited to movement science are developed (Seethapathi, Wang, Saluja,
Blohm, & Kording, 2019), allowing predictions to be made from combinations of more subtle
movement features. We expect that, over the next decade, movement-based diagnostics
from pose estimates will become a viable alternative to established tests such as the General
Movements Assessment (Prechtl, 2001; Wei & Kording, 2018).

6.1 Supporting information

Code and data referenced in the manuscript are provided at:
https://github.com/cchamber/Infant_movement_assessment/
https://doi.org/10.6084/m9.figshare.8161430
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