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Abstract 

Introduction: Pseudomonas aeruginosa is an opportunistic pathogen with an extraordinary 

metabolic adaptability and a large repertoire of virulence factors that allow it to cause acute and 

chronic infections. Treatment of P. aeruginosa infections often fail due to its antibiotic resistance 

mechanisms, thus novel strategies aim at targeting virulence factors instead of growth-related 

features. However, there is currently not a clear understanding of the dynamic nature inherent to 

the wiring of its virulence networks.  

Results: In this study, we manually reconstructed the signalling and transcriptional regulatory 

networks of 12 acute (incl. pyocin and elastase) and 8 chronic virulence factors (incl. biofilm), and 

the 4 quorum sensing (QS) systems of P. aeruginosa. Using Boolean modelling (BM), we unveiled the 

important roles that stochasticity and node connectivity play in the networks’ inherent dynamicity 

and robustness. We showed that both the static interactions, as well as the time when the 

interactions take place, are important features in the QS network. In addition, we found that the 

virulence factors of the acute networks are under strict repression, or under an activation that is 

non-strict or oscillatory, while the chronic networks favour the repression of the virulence factor, 

with only moderate activation under certain conditions.  

Conclusion: In conclusion, our in silico-modelling framework provided us with a system-level view of 

the P. aeruginosa virulence and QS networks to gain new insights into the various mechanisms that 

support its pathogenicity and response to stressors targeting these networks. Thus, we suggest that 

BM provides an invaluable tool to guide the design of new treatments against P. aeruginosa. 

Introduction 

Pseudomonas aeruginosa is an ubiquitous Gram-negative bacterium, well known for its enormous 

adaptability and resistance to environmental stressors (including antimicrobials) [1]. With several 

pathogenic strains, P. aeruginosa can cause wound infections and catheter associate urinary tract 

infections [2] and is a major health concern to immunocompromised and cystic fibrosis patients [3]. 

Its ability to colonize a host is largely due to the production of various virulence factors. For example, 

production of elastase, which is a protease that degrades a major lung structural component called 

elastin, is related to the severity of acute infections, while the formation of adhesive communities on 

surfaces (i.e. biofilms) contributes to chronic infections [4]. One of the main mechanisms in which P. 
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aeruginosa controls its gene expression to respond and adapt to the environment is quorum sensing 

(QS) [5]–[7]. The four QS systems in P. aeruginosa are Las, Rhl, Pseudomonas quinolone signal (PQS), 

and the integrated QS (IQS). They entail an intricate and highly interconnected regulatory network 

with a hierarchical architecture that controls the bacterial virulence as a function of its population 

density by detecting the amount of autoinducer (AI) molecules in the environment [5]. The QS 

network in P. aeruginosa is governed by the Las system, which produces and senses the AI N-3-oxo-

dodecanoyl-L-Homoserine lactone [8] and activates the expression of multiple virulence genes such 

as those producing elastase [9]. The Las system also activates the Rhl system, which produces and 

senses the AI N-butyryl-L-Homoserine lactone [10]. In addition, the quinolone dependent system 

known as PQS is positively regulated by Las and negatively by Rhl [11], and it activates the Rhl 

system to regulate itself. Recently, the IQS system was found to sense 2-(2-hydroxyphenyl)-thiazole-

4-carbaldehyde to also integrate stress cues with the QS network [12]. 

The rise of antibiotic resistance in P. aeruginosa and the slow entry of new drugs to market pose a 

serious risk to human health. As an alternative drug development strategy, instead of targeting 

growth-related features (e.g. membrane, DNA and protein synthesis), it has been proposed to target 

the virulence factors and the QS network [13]. Compared to a traditional antimicrobial therapy, this 

approach might be advantageous, as there is no selection pressure on the bacteria and the 

infectious capacity is diminished, allowing the host’s immune system to clear the infection. Different 

computational approaches, particularly genome-scale metabolic modelling [14], [15] and topological 

analyses [16], have been proven useful for identifying key elements that can be targeted to disrupt 

the network’s connectivity [17]. However, these approaches offer little insights into the dynamic 

responses of the regulatory and signalling networks, so that other modelling techniques need to be 

explored, such as Boolean modelling (BM).  

In a Boolean model, the nodes represent the proteins, genes, or signalling metabolites that are part 

of the network, and the edges represent the activation or repression interactions between them. 

Each node can be in an ON (1, meaning active, expressed, or present) or OFF (0, meaning inactive, 

not expressed, or absent) state. At the beginning of the simulation, only the nodes defined as initial 

conditions are ON. The state of each node at a given time step (t(n)) in a simulation depends on their 

updating rule, which is defined by the basic logical operators AND, OR, and NOT. The more advanced 

operators THR and MOD can also be used. THR defines a lagging time for a node to have been active 

before executing its effect on another node, and MOD determines for how many time steps (t) the 

effect of one node upon another is executed. There are two modes in which the state of the nodes 

can be updated in each time step, called synchronous and asynchronous. In the synchronous mode, 

all the nodes are updated at the same time and the state of each node at t(n) depends on the states 

of their regulator nodes at t(n-1). This means that the network will always reach the same state for a 

given t(n) and a set of initial conditions. In the asynchronous mode, the updating order of the nodes 

is selected randomly during each iteration and they update according to the last update of their 

regulator nodes [18]. This mode induces complexity and variability into the system, so that the same 

initial conditions can result in different final states for a given t(n).  

BM can study the activation dynamics between elements in interconnected biological networks [19], 

[20] and has been successfully applied to understand pathogenesis. However, it has mainly been 

used on the human immune system [21], with few studies focused on understanding the bacterial 

pathogenic networks. For example, a BM study on the Las, Rhl, and PQS systems found that the 

regulatory wiring of the QS network plays a dominant role in its robustness, suggesting that 

targeting the elements involved in QS is a promising strategy for drug development [22]. Although 

several efforts have been placed in targeting the QS [23], [24], the effect of the abundance of the AI 
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in the environment and the effect of the lag time between the regulation of the nodes, have not 

been deeply examined with computational approaches. Most importantly, QS can elicit network 

connectivity rewiring to readjust the bacterial metabolism [25] and it has been noted that it has the 

capacity for compensatory mutations [26], [27]. All of these aspects should be considered for 

targeted drug design. 

Although BM provides a mathematical description of the dynamic capacities of the virulence 

signalling and regulatory networks of bacterial pathogens, studies implementing such methodologies 

are scarce. Prompted by the necessity of understanding the adaptability inherent to the wiring of the 

P. aeruginosa virulence networks, we developed Boolean models of the 4 QS systems, and of the 

main transcriptional regulatory and signalling interactions involved in 12 acute and 8 chronic 

virulence factors. Using BM techniques on these models, we characterized the effect of stochasticity 

and network perturbations upon the activation of the virulence factor. Also, we could classify the 

networks according to their mechanisms for controlling the activation of their virulence factor as i) 

strictly or non-strictly repressing, and ii) not strictly or oscillating activating. Taken together, our 

results provide a novel picture of the complexity and dynamicity of the pathogenicity networks of P. 

aeruginosa. 

Methods 

Construction of Boolean models  

We performed an extensive literature review to define the nodes and updating rules of the networks 

representing acute and chronic virulence factors and the QS systems (Fig 1A). The QS network 

encompassed the Las, Rhl, PQS, and IQS systems [5], [28]. The acute virulence factors we studied 

were: the high-affinity iron-chelating compounds pyoverdine and pyochelin, pyocyanin (a compound 

that generates reactive toxic oxygen species), the antibiotic protein pyocin, exotoxin A (which 

inhibits protein synthesis), elastase, the secretion systems T1SS, T2SS, and T3SS, the motility related 

factors flagella and type IV pilli (TFP), and the Lysyl endopeptidase PrpL. The chronic virulence 

factors we studied were: the exopolysaccharide alginate (which protects the bacteria from 

environmental insults and enhances adhesion to solid surfaces), resistance to the antibiotics β-

lactam and fluoroquinolone, the secretion systems T6SS-HIS-I/II/III, and biofilm formation (Suppl File 

1).  

The R package SPIDDOR [20] was used for the network implementation and Boolean analyses, 

together with the package snowfall [29] for the parallelization of the computations. The networks 

were exported to the SBML format and deposited on the Cell Collective Repository [30] (see Suppl 

File 2 for the list of IDs). 

Boolean analyses 

For all networks, we first used the dynamic_evolution function (20 time steps, 100 repetitions) to 

track the evolution of the state of each node over time to identify the activation pattern of the 

network, with particular attention on the nodes representing the virulence factor (Fig 1B). Then, we 

also identified the set of stable states (i.e. the attractors) that each network reaches from a given set 

of initial conditions, using the get_attractor function (20 time steps, 100 repetitions). To identify 

which nodes are key for the network functionality, we studied the network activation patterns after 

node perturbations (node deletions and lowering of node activity) with the function KO_matrix. This 

function defines a perturbation index of a node as the ratio of the activation of the node in the 

network after one of the nodes is eliminated from the network to the activation of the node when 

all the nodes are present. Thus, the result is a square matrix in which the number of rows and 
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columns equals the number of nodes in the network and the values are the perturbation indexes. 

We made heat map plots for visualizing the perturbation results with the create_heatmap function, 

which transforms the matrix resulting from the perturbation analyses into ranked values prior to 

plotting. 

As the synchronous mode sheds light on the complex behaviours that result purely due to the 

connectivity of the nodes in the system, while the asynchronous mode sheds light on the complexity 

that can arise due to the network dynamicity, we performed our analyses under both updating 

modes. For the asynchronous mode, we recorded the average times that each node was ON over all 

the simulation repetitions. To examine the effect of time lags on the regulation of specific nodes, we 

set different THR values to the specific nodes of interest. For example, a THR = 3 t means that the 

node must have been ON in the previous three iterations in order to affect its regulated node. 

One of the QS-targeting approaches involves the use of molecules designed to outcompete the AIs 

for receptors [31], [32]. Thus, we also evaluated the number of time steps needed for the AI nodes 

of each QS system for the system to reach sustained activation. To this end, different MOD values 

were tested. For example, the initial condition representing the PQS AI with a MOD = 1 t means that 

the PQS AI node will only exert the effect on its regulated node for one time step. This represents 

the case in which the available PQS (i.e. PQS AI node being ON) is very little that it only lasts one 

iteration. This simulation reflects the condition in which the AI is available in the environment at 

minimal concentrations for the bacteria to take them, deplete them from the medium, and reach 

quorum (i.e. turn the system ON and synthesize its own AI).  

All code is available through GitHub under the project name MLZM-lab/PA-BM. 
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Figure 1. Schematic representation of the network reconstruction and analysis. A) We performed extensive 

literature research to identify the most relevant nodes (genes, metabolites, proteins) involved in the 

production of a virulence factor (e.g. pyocyanin). The nodes and their interactions were implemented into a 

Boolean model with the R package SPIDDOR, which allows for analyses of these interactions represented with 

Boolean updating rules. Nodes that are part of the set of initial conditions are defined as ON based on their 

own presence, for example, the Fur node, which is defined as Fur = Fur. B) The evolution of the state of each 

node over time (i.e. the activation pattern of the network) can be analysed under the synchronous or the 

asynchronous updating modes. Since the synchronous mode is deterministic, only one simulation for each set 

of tested initial conditions is needed to find the activation patterns of the network nodes and a node can only 

have 1 or 0 activation values. On the other hand, several repetitions are needed for the stochastic 

asynchronous mode. The average of the activation values of the nodes across all the repetitions is obtained in 

order to define their activation patterns. In the plots showing the nodes activation patterns, the x-axis marks 

the t(n) along the simulation. For example, 10 marks the state of the node in middle of our 20-time steps 

simulation, and 20 marks the final state of the node in the simulation. The y-axis is the level of activation, for 

example, a value of 1 means that the node is ON in all the repetitions of the simulation, and 0.5 means that 

the node was ON in 50% of the repetitions of the simulation.  

Results 

QS network 

As the Las system is at the top of the hierarchical structure of the QS network (Suppl File 1), we first 

analysed how much Las AI is needed for the Las system to activate and influence the rest of the QS 

network. To this end, we tested different MOD values on the Las AI initial condition node and 

identified the activation pattern of the QS network. We saw that under the synchronous mode the 

Las system showed sustained activation with Las AI MOD > 5 t, represented by the node LasREG being 

ON (Suppl Fig 1). Under the asynchronous mode, it only needed Las AI MOD > 2 t to reach ~40% 

sustained activation (i.e. sustained activation in ~40% of the simulations), and Las MOD = 4 t to get 

77% of sustained activation (Suppl Fig 1). Next, we evaluated the interplay between the activation of 

the rsaL node, which represses the Las system. As expected, when only the initial condition that 

activates rsaL was given, nothing except the rsaL module was ON. To investigate how the signals 

compete to regulate the Las system, we set both the Las AI with different MOD values and the rsaL 

activator as initial conditions. Under the synchronous mode with Las AI MOD > 7 t, LasREG was ON for 

a limited time, and PQSREG for only a maximum of 2 t, with RhlREG reaching a sustained activation (Fig 

2A). Notably, the asynchronous mode showed 80% of sustained activation for RhlREG with Las AI 

MOD = 6 t. When Las AI MOD > 7 t, LasREG stayed active for long enough to transiently activate 

PQSREG, before it was inactivated by the Rhl system (Fig 2A). This means that, even with RsaL being 

ON, if there is enough AI in the environment, P. aeruginosa can exert its effect by activating the Rhl 

system.  

Since the PQS system is regulated by the Las, Rhl and IQS systems, we then aimed to identify which 

of these interactions are key and which are the conditions that influence them the most. To this end, 

we first tracked the evolution of the state of each node of the QS network over time under different 

initial conditions that directly influence the PQS system. We first set as initial conditions Las AI MOD 

= 6 t and PQS AI at various amounts (Fig 2B). In the synchronous mode, we saw that PQS AI with a 

short MOD of 3 and 4 t transiently activated the PQS system at t(15, 16). When the PQS AI MOD = 5 

t, the PQSREG showed two activation peaks, at t(8) and t(12-16). PQSREG reached a constant activation 

when AI MOD > 5 t, however this activation was never sustained until the end of the simulation 

(t(20)) due to the repression by the Rhl system. This suggests that the most effective way of 

extending the activation of the PQS system is by modulating the activity of the Rhl system, not by 

modulating the PQS AI abundance. On the other hand, the asynchronous simulations showed PQSREG 
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with as much as ~50% of activation at t(8), and a maximum of ~67% at t(10) with PQS AI MOD = 3 t. 

As the PQS AI availability increased, PQSREG was active in a higher percentage of the repetitions, but 

restricted to the t(6-12) in a normal shaped distribution of percentages of activation (with a 1st and 

3rd quartiles of ~35%, and a maximum of ~99.8%). Thus, the asynchronous simulations represent the 

restriction in which the PQS system operates, but also the relative ease in which it can be activated 

in at least ~50% of the simulations, which can be considered to represent an activation in ~50% of 

the members in a population. 

We then examined what would be the PQS system activation pattern if in the environment there 

were only various levels of PQS AI (Suppl Fig 2). To this end, we tested different PQS AI MOD values 

and evaluated the number of time steps needed for the PQSREG node to reach sustained activation. 

With the synchronous mode, we found that a PQS AI MOD > 4 t was needed to activate PQSREG for 

only one t, and a PQS AI MOD > 5 t for a PQSREG sustained activation until it was turned OFF by the 

Rhl system that the PQS system activated for self-regulation. Notably, the asynchronous mode 

showed that the PQS system can get activated with a PQS AI MOD as short as 3 t, although the 

maximum activation was ~40.5% at t(9). These results confirm that the QS is wired in such a way 

that PQS can be easily activated but remain under strict regulation. Next, we evaluated how the 

node deletions and various amounts of AI for the different QS systems can affect the PQS system. 

We saw that the system was less affected by node deletions when there was only PQS AI than when 

there were also Las AIs present (Fig 2C). When more QS systems were included as active in the 

model, more nodes were affected by the perturbations. This was evident in the perturbation 

analyses with available AIs of the Las, Rhl, PQS, and IQS systems (Suppl Fig 3). Interestingly, although 

more nodes were affected when more systems were active, the QS network kept most of its nodes 

unaffected, with the changes restricted to the specific systems with the deleted node.  

Lastly, we examined deeper the observation that PQSREG was ON very briefly when the negative 

regulation by the Rhl system upon the PQS system had a THR = 3 t. We hypothesized that it is not 

only the hard-wired connections what shape the activation patterns of the nodes, but also the time 

in which these activations take place. To test this, we defined different THR values for the Rhl system 

regulation upon the PQS system. We delayed the repression by setting higher THR values and 

defined the Las AI at enough level for the Las system to reach a sustained activation (Las AI MOD = 6 

t). As expected, in the synchronous mode, delaying the repression of the Rhl system on the PQS 

system for one t allowed the activation of PQSREG one t longer, reaching a sustained activation when 

THR > 6 t (Suppl Table 1). Notably, in the asynchronous mode with THR > 7 t, PQSREG reached 

activation of > 90% for more than one t, however it never reached 100% activation (Suppl Table 1, 

Fig 2D). Furthermore, the >90% activation was sustained only when THR > 12 t. To further explore 

the negative effect of the Rhl system on the PQS system, we evaluated the effect of the delay in the 

activation of the Rhl system by the Las system. Under the synchronous mode, delaying the activation 

by one t kept PQSREG ON for one more t, as expected. However, it did not reach a sustained 

activation, as the Rhl system was activated by the IQS system, so that PQSREG was OFF in t(19, 20). 

This result illustrates the robustness of the QS network, where the IQS system complements the Las 

system. Notably, the asynchronous mode showed a tighter regulation, with the PQSREG having < 6% 

of activation since t(15-20), regardless of how much the activation of the Rhl system was delayed. 

These observations further suggest that both the dynamic nature of the network and the wiring of 

its nodes are key elements in the QS behaviour. 
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Figure 2. Activation patterns of the QS systems. A) Activation patterns of the Las system with the competing 

signals of Las AI and rsaL as initial conditions under the synchronous (first top row) and asynchronous updating 

modes with different Las AI MOD values (two bottom rows). B) Activation patterns of the PQS system with Las 

AI MOD = 6 t and PQS AI at various MOD values under the synchronous (left side) and asynchronous (right 

side) updating modes. C) Heat map of the rank values of the effect of node deletions on the QS network when 

in the environment there are PQS AI (left side) and PQS together with Las AIs (right side) under the 

asynchronous mode. The colour indicates if the node knockout entails a lower (blue) or higher (orange) 

activation of a component compared to an unperturbed simulation. D) Effect on the PQS system with the 

asynchronous mode when the repression by the Rhl system is delayed (THR = 3-15 t) and there is enough Las 

AI for a sustained activation of the Las system.  

Acute virulence networks  

Similar to the analysis workflow used for the QS model, we examined our 12 acute virulence 

networks to identify their main mechanistic behaviours and adaptation strategies upon 

perturbations. In the following section, we describe only a selection of networks that clearly showed 

the main identified characteristics. See Suppl File 3 for additional information on the other identified 

relevant networks not discussed in this main text. 

• Strict repression of the virulence factor 

We first characterized the activation pattern of the nodes of every network in order to track the 

evolution of the state of each node over time, particularly the nodes representing the virulence 

factor. We found that the network for flagella formation is a robust system prone to the repression 
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of the virulence factor. Under the scenario where all the initial conditions in the network were active 

(Suppl File 1), the flagella was never active under either updating mode. Only the deletion of the BifA 

node, which is an initial condition, led to an increase in the activation of flagella (Suppl Fig 4A). When 

we examined pairwise combinations of node deletions, only the BifA-WspR and BifA-WspF led to 

flagella activation as the attractor state. Thus, although this network represents a tightly controlled 

repressive system, it can skilfully alter its attractor state for the production of the virulence factor by 

changing the initial condition of only one of its nodes.  

• Non-strict activation of the virulence factor 

We also evaluated the attractors of the network to find the set of states to which the network tends 

to evolve. We found that the attractors of the small four-node pyocin model (Suppl File 1) in both 

updating modes showed an early sustained activation for pyocin production when RecA was part of 

the active initial conditions. However, pyocin was ON only transiently when RecA was deleted or had 

reduced activity (Suppl Fig 4B), and the 50% reduction of activity or deletion of PrtN led to pyocin 

being OFF during all the simulation. Notably, activation of the pyocin node upon RecA deletion was 

recovered by deleting or reducing the activity of PrtR (Suppl Tables 2, 3, Fig 3A). Thus, although the 

attractor is for pyocin to be ON, the network can straightforwardly modulate the virulence factor by 

modifying the activation of the other nodes.   

 

Figure 3. Activation patterns of the pyocin and T2SS networks. A) Activation of the pyocin node in a network 

with different levels of activity (ranging from 10 to 100%) of the node PrtR and all the initial conditions ON 

except RecA. B) Activation pattern of the T2SS network when the nodes CbrA and Vfr of the initial conditions 

directly activating the T2SS node were deleted under the synchronous (left side) and asynchronous (right side) 

updating modes. 

• Oscillatory activation of the virulence factor 

In our examination of the activation patterns of the nodes representing the virulence factors to track 

the evolution of their state over time, we identified an oscillatory activation pattern in some of the 

networks. For example, in the elastase production network (Suppl File 1) under the synchronous 

mode (Suppl Fig 5A). Notably, the asynchronous did not show an oscillating activation but a 

sustained 50% of activation of the elastase node (Suppl Fig 5B). This behaviour was determined by 

the interplay between the nodes MexS (an initial condition) and MexT (a repressor of elastase 

production), which activate each other. In the perturbation analyses, no single or pairwise node 

deletion led to less elastase (Suppl Fig 5C). Most notably, if any of the activities of the nodes was 

reduced to 50%, the elastase node was fully ON. We observed the same behaviour regardless of the 

combination of given initial conditions.  

The T2SS network (Suppl File 1) also showed an oscillatory activation pattern when the nodes CbrA 

and Vfr of the initial conditions directly activating the T2SS were deleted (Fig 3B). Notably, although 
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both updating modes had half of their attractors for activation and half for repression, the 

synchronous had 8 attractors with equal probability, while the asynchronous had 16 attractors, not 

all of them with the same probability (Suppl Table 4). These results suggest that the randomness in 

the network allows it to explore a wider space of responses and to rapidly adapt to an active state as 

soon as needed, in spite of the factor being metabolically expensive, such as the T2SS. Furthermore, 

when we deleted pairwise combinations of the initial condition nodes, the model responded with a 

third of the attractors leading to full inactivation, a third to full activation, and a third to 50% 

activation (Suppl Table 5). This highlights the network’s readiness to adapt to whatever behaviour 

the environment would require.  

• Stochasticity effect on the network attractor space 

We observed that a network does not need to be large (i.e. have many nodes) to exhibit interesting 

behaviours. Although small, the five-node model of pyoverdine production is complex enough to 

have negative regulations with delayed effects between the nodes (Suppl File 1). The synchronous 

mode showed two attractors, one with and one without pyoverdine production. Interestingly, the 

asynchronous mode also had these two attractors, but with unequal probabilities. The attractor with 

pyoverdine ON occurred in 99.8% of the simulations, while the one with it OFF happened in only 

0.2% of the simulations. Thus, the asynchronous mode provided better insights into the network’s 

behaviour, which is more prone to pyoverdine production than to its repression. 

Another interesting network from an energetically expensive factor is that of T3SS (Suppl File 1). The 

attractors of the system had T3SS OFF. However, the asynchronous mode showed a particular 

behaviour. Out of the 15 attractors, 7 led to an ON T3SS in only 1-3 (0.01%) of the simulations. To 

further explore this, we performed less repetitions (10-100 repetitions). Each analysis showed the 

same result, where 8 of the 16 attractors found in total had T3SS ON and occurred with an average 

probability of 0.008% (Suppl Table 6). This suggests that although T3SS is a tightly repressed factor, 

the attractor space of the network allows for the possibility of the production of the factor simply by 

stochasticity. Importantly, the results of the perturbation analyses under both updating modes are 

not the same (Fig 4). In the synchronous mode, the deletion of only two nodes (PtrB and RecA) 

positively affected the T3SS and none affected it negatively, while in the asynchronous mode, three 

node deletions (PtrB, RecA, and Crc) affected it positively and 31 affected it negatively. This further 

supports the importance of the effect of stochasticity upon the network. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/756551doi: bioRxiv preprint 

https://doi.org/10.1101/756551
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 4. Activation patterns of the perturbed T3SS network. Effect of single node deletions from the T3SS 

network under the A) synchronous and B) asynchronous updating modes with all the initial conditions ON. The 

heat map colour indicates if the node knockout entails a lower (blue) or higher (orange) activation of a 

component.  

Chronic virulence networks 

While the attractors of some of the acute virulence networks led to sustained activation of the 

virulence factor, none of the chronic networks showed sustained activation of the virulence factor 

when all the initial conditions were ON. Furthermore, most of the chronic networks had their 

virulence factor node under tight repression. Although we analysed all the chronic networks, in the 

following section we describe only a selection of them. See Suppl File 3 for additional information on 

other identified relevant networks not discussed in this main text. 

• Strictly repressed networks with moderate virulence factor activation 

To identify which nodes are key for the network functionality, we studied the network activation 

patterns upon node deletions and reduction of node activity. The network for the B-lactam 

resistance (Suppl File 1) was under strict repression, with only deletion of the initial condition ClpXP 

leading to higher activation of the resistance in an oscillatory pattern under both updating modes 

(Fig 5A). When we examined the effect of pairwise combinations of node deletions, we saw that only 

those involving ClpXP led to the resistance node having 50% of activation. We also found that only 

the 50% reduction of activation of ClpXP led to a change in the network activation pattern. Similarly, 

the attractors of the large biofilm formation network (Suppl File 1) were for biofilm to be OFF under 

both updating modes, with only the deletion or reduction of activity of the initial condition Fur 

leading to an increase in biofilm activation (Suppl Fig 6). 

The T6SS-HSI-I network (Suppl File 1) also tended towards a sustained inactivation of the virulence 

factor. Under both updating modes, T6SS-HIS-I was only briefly ON in t(1-3), and the 8 attractors had 

T6SS-HIS-I OFF. In our single node deletion analyses, we saw that only the deletion of MvfR led to 

higher activation of the factor in an oscillatory pattern (Fig 5B, Suppl Fig 7). These results suggest 

that a network wiring in which one key node can activate the virulence factor in an oscillatory 
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pattern is a useful strategy exploited by P. aeruginosa to activate or repress its virulence rapidly, 

because as the network is not fixed on one state, it can easily favour one state over the other.  

 

Figure 5. Activation patterns of chronic virulence networks. A) Activation pattern of the B-lactam resistance 

network with the initial condition ClpXP OFF under the synchronous (top row) and asynchronous (bottom row) 

updating modes. B) Effect of single node deletions on the T6SS-HSI-I network. The heat map colour indicates if 

the node knockout entails a lower (blue) or higher (orange) activation of a component. 

• Non-strictly repressed networks with moderate virulence factor activation 

We hypothesized that the final state to which a virulence network tends to evolve is influenced by 

stochasticity in their regulations. To examine this, we performed all the simulations in all our models 

under the deterministic synchronous and the stochastic asynchronous updating modes. We found 

some networks in which there was a difference in the activation patterns between the updating 

modes. For example, we saw that the network of the fluoroquinolone resistance (Suppl File 1) under 

the synchronous mode had two attractors, both with the resistance node ON, and that the 

resistance node had sustained activation because the oscillatory phases of MexEF-Oprn and MexT 

were unaligned (Suppl Fig 8A). On the other hand, the asynchronous mode showed that the 

fluoroquinolone resistance node had 50% sustained activation (Suppl Fig 8B) and two attractors, one 

with the resistance node ON and one with it OFF. Furthermore, in the synchronous mode, the list of 

single node deletions leading to less fluoroquinolone resistance had MexS, MexT, MexEF-OprN, and 

ClpXP (Fig 6A), while this list in the asynchronous mode did not include MexEF-OprN (Fig 6B). To 

deeper examine the difference between the updating modes, we evaluated the asynchronous mode 

with all possible combinations of active initial conditions of the network being ON. Out of the 31 

combinations, 15 led to an inactive resistance node, 7 to a ~0.3% activation, and 9 to a 50% 

activation (Suppl File 4). Thus, the synchronous mode hid the details of the overall tendency of the 

network to repress the resistance node. Taken together, these results highlight the importance of 

incorporating stochasticity into simulations of biological networks.  
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Figure 6. Effect of single node deletions from the fluoroquinolone resistance network. A) Under the 

synchronous and B) asynchronous updating modes. The heat map colour indicates if the node knockout entails 

a lower (blue) or higher (orange) activation of a component. 

Discussion 

The QS and virulence networks function under a plethora of regulators at the transcriptional, 

translational, and post-translational levels. Thus, there could be several unexpected bacterial system 

responses that a therapy strategy targeting them could face [33]. Our models provide a 

computational tool to evaluate the inherent dynamicity, robustness, and stochasticity characteristics 

of the networks. These characteristics are important to identify which are the alternative states that 

P. aeruginosa networks could reach as a result of treatments targeting them. 

QS network suitability as drug target 

QS-deficient variants carrying a mutation in lasR are frequently isolated from acute and chronic 

infections [26]. These mutants represent social cheaters, which benefit from the common goods 

produced by the non-mutants. However, other mutations can arise in the lasR mutants to turn the 

cheaters back into co-operators. Such a compensatory mechanism can involve the up-regulation of 

rhlI [34][27], so that it has been suggested to target RhlR for treatment [27], [35]. In our model, 

when the Las system repressor rsaL was ON and there was the minimum Las AI to activate LasREG 

only for a limited number of steps before it was overtaken by rsaL, RhlREG was able to reach 

sustained activation (Fig 2A). As oxidative stress activates rsaL, this result suggests that even if the 

immune system or drugs exert an oxidative stress to kill P. aeruginosa, if there is enough Las AI in 

the environment, P. aeruginosa can keep responding with virulence through the RhlREG. This 

supports the idea of targeting with drugs the Rhl system instead of the Las system.  

Compensatory mutations warn about the unaccounted side effects of targeting the QS system that 

could give rise to loss of treatment sensibility. Nevertheless, P. aeruginosa strains deficient for both 

las and rhl and with no compensatory spontaneous mutations have been identified [36], 

encouraging the development of treatments where more than one element of the QS is targeted. 

When we modelled the inactivation of both LasREG and RhlREG, we found that the PQS system could 
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still be transiently activated if enough PQS AI was in the environment (Suppl Fig 2). As the PQS 

system influences the production of various virulence factors [11], [37], we investigated the effect of 

node deletions and AI availability on the PQSREG activation. We found that the presence of PQS AI 

allowed the system to withstand node deletions (Fig 2C). Taken together, the model correctly 

represents the ability of P. aeruginosa to modulate the expression of PQSREG, because PQS is an AI 

that if present in too large amounts is detrimental to the pathogen, while when present in moderate 

amounts, it is used for stress response [38]. 

A previous study on the Boolean models of three QS systems (Las, PQS and Rhl) examined at which 

step the LasREG, RhlREG, and PQSREG nodes turn ON. The study concluded that the regulation of timing 

played a secondary role in the QS system operation, with the wiring between the nodes playing the 

dominant role, so that developing drugs targeting these interconnections is a good strategy. In our 

study, we re-evaluated this hypothesis in light of the finding of the new IQS system and the 

availability of new more powerful software for BM [20]. We found that modifying the times of the 

modulations between the Las and Rhl systems led to discrepancies between the results of the 

updating modes. This highlights that the timing of the activity of the effector nodes, and not only the 

node connections, has a relevant impact on the system (Fig 2D, Suppl Table 1). Notably, for all the 

perturbations, both updating modes led to the same patterns. In principle, this would suggest that 

the wiring of the network itself is what gives the resilience to the QS in P. aeruginosa. However, 

these patterns are from the final states of the system. When examining the systems through time, 

we discovered properties unique to the asynchronous mode, such as longer activation of a system or 

a range of percentages of activation.  

We conclude that the utility of QS as a druggable target is relevant, although the network inherent 

dynamicity needs to be carefully considered [5]. More importantly, its interconnectivity with other 

virulence factors should also be evaluated. As observed, deletion of the MvfR node, part of the PQS 

system, leads to activation of the T6SS-HIS-I [39] (Fig 5B), which is in turn required for biofilm 

formation [40].  

Network inherent dynamicity and robustness 

The attractors of a network represent the long-term behaviour of the system, thus analysing them 

provides insights into the networks preference of states. For example, if a network has only one 

attractor where the relevant node is OFF (e.g. a virulence factor), it suggests that the network will be 

less prone to turn the node ON. Furthermore, the perturbation analyses and the examination of the 

effect of the time lag for the effective activity of a regulator node allow for the identification of 

regulatory interactions that are key to the dynamicity and robustness of the system.  

In terms of dynamicity due to the network’s attractor space, we uncovered that an oscillatory 

behaviour is a useful strategy to activate or repress the production of a virulence factor whenever 

required, likely as a strategy for a rapid stress response. For example, we found this oscillatory 

behaviour in the elastase network (Suppl Fig 5). Importantly, experimental validation of this in silico 

observation has been previously reported, showing that when P. aeruginosa is in a metal ion-

deficient environment there is a low level of produced elastase, but as soon as metal ions are 

supplemented, high levels of elastase are detected [41]. 

Opposite to networks that harbour a range of available attractors that make their responses more 

dynamic, other networks are under very strict regulation, so that they only tend to one state 

towards which only few paths lead to. An example of such a robust network is that of flagella, in 

which BifA is the key node able to modify the network’s attractor (Suppl Fig 4C), as previously 

experimentally demonstrated [42]. It is expected that flagella is under such tight control, as 
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transitions from motility to stationary lifestyle and vice versa have a strong impact in the P. 

aeruginosa metabolism. This lifestyle largely depends on whether the pathogen is in an acute 

infectious mode, where motility is needed for invasion, or a chronic infectious mode, where a 

stationary behaviour is needed for biofilm formation [43].  

The model for biofilm formation showed a very robust repressive behaviour (Suppl Fig 6). However, 

it should be considered that the large and complex biofilm biological system includes several 

environmental conditions influencing the different stages of biofilm formation, and more elements 

which are not included in our model can be implicated [44], [45]. Our reconstructed network 

captures the overall system structure without dividing it by the biofilm formation stages, which likely 

need to be modelled separately in order to provide a clearer picture. Nonetheless, the model 

correctly illustrates that the system heavily controls biofilm formation. 

Network inherent stochasticity 

Mathematical modelling of biological systems provides valuable insights into the complexity of 

biological systems, as they dynamically evolve through time and may do so non-linearly. In our 

study, the stochastic (asynchronous) mode provided deeper insights into the behaviour of some of 

the networks than the deterministic (synchronous) mode. This observation is supported by other 

studies that demonstrate that stochasticity plays a role in processes such as bacterial gene 

expression [46] and chemotaxis [47].  

Notably, the asynchronous mode on the pyoverdine production network showed that a very small 

percentage of the simulations did not produce pyoverdine. This suggest that, due to stochasticity, 

members of a P. aeruginosa population could arise as “cheaters” that benefit from the pyoverdine 

produced by the majority of the population, while relieving themselves from the metabolic burdens 

of its production. These cheaters could then have a fitness advantage if the conditions changed, 

preventing the infection to be completely eradicated. Such a pyoverdine production cheating 

behaviour has been experimentally studied in detail in P. aeruginosa, identifying that there is both 

selection for wild-type production and for cheating, with the mean fitness of the population 

determined by the difference of the benefits and the cost of pyoverdine production [48], [49].  

We also observed a stochasticity effect in the T3SS network, where although most of the attractors 

of the system had T3SS OFF, few cases arose where it was ON (Suppl Table 6, Fig 4). Although the 

T3SS formation is a complex process [50], this result suggests that at least a small portion of the P. 

aeruginosa population is able to utilize this system to initiate infection. It could be that there are 

regulatory elements or other environmental signals not accounted for in the model reconstruction 

that lead to such behaviour. For example, within populations of Yersinia pseudotuberculosis where 

the members have the same or closely similar genotypes, T3SS expression is associated with 

proximity to host cells [51]. Overall, our modelling results highlight that further research is needed to 

elucidate the complete molecular network leading to the regulation of virulence factors. 

It is interesting that even though this stochasticity component could derive from regulatory 

elements and signals not accounted for in the network reconstructions, the models are nonetheless 

able to reproduce its effect. For example, fluoroquinolone resistance in P. aeruginosa has been 

shown to be influenced by the differential expression of hundreds of genes involved in other 

disparate processes, such as bacteriophage-like pyocins and regulons controlled by the LexA-like SOS 

response [52], [53]. Notably, a stochasticity effect was observed in our model of fluoroquinolone 

resistance analysed under the asynchronous mode (Fig 6). 

Repressive nature of chronic virulence networks 
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Interestingly, while the acute virulence networks present a range of patterns that can lead to either 

activation or repression of the virulence factor, the patterns of the chronic networks can only be 

classified by their repression strategy. Our model of beta-lactam resistance correctly represents the 

experimental observation that the expression level of beta-lactamase is usually low [54] (Fig 5A). 

Notably, the molecular basis for the induced production of beta-lactamase, the enzyme that enables 

beta-lactam resistance, in Gram-negative bacteria is not fully clear [55], thus our results contribute 

to the current efforts in understanding their regulatory mechanisms [56].  

Conclusions 

The use of computational models within the microbiology research field has proven useful for the 

understanding of bacterial pathogenicity. In this study, we use BM to address the challenge of 

integrating different metabolic signals and regulators into a modelling framework that sheds light 

into new details of the adaptability mechanisms of P. aeruginosa, providing a deeper understanding 

of its pathogenicity. Importantly, the models we developed can serve as tools for future studies to 

integrate newly identified elements connected to the network [57], or to eliminate false-positive 

interactions from the literature-based network and predict new interactions [58].  

Importantly, our results suggest that prior to any drug development efforts, the effects of targeting 

the chosen element (e.g. a node from the Rhl system) should be carefully evaluated as the targeted 

system can have unexpected behaviours that lead it back to its attractor state where the virulence 

factor is active. Notably, these insights obtained through our BM had not been previously unveiled 

by other metabolic modelling techniques, highlighting the importance of using various modelling 

techniques to support and guide drug design and experimental work [59]. 
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