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Abstract 9 

In wheat, the timing and dynamics of stem elongation are tightly linked to temperature. It is 10 

yet unclear if and how these processes are genetically controlled. We aimed to identify 11 

quantitative trait loci (QTL) controlling temperature-response during stem elongation and to 12 

evaluate their relationship to phenology and height. Canopy height of the GABI wheat panel 13 

was measured between 2015 and 2017 in bi-weekly intervals in the field phenotyping platform 14 

(FIP) using a LIDAR. Temperature-response was modelled using a linear regression between 15 

stem elongation and the mean interval temperature. 16 

The temperature-response was highly heritable (H2 = 0.81) and positively related to a later 17 

start and end of stem elongation as well as an increased final height (FH). Genome-wide 18 

association mapping revealed three temperature-responsive and four temperature-19 

irresponsive QTL. Furthermore, putative candidate genes for temperature-response QTL were 20 

frequently related to the flowering pathway in A. thaliana while temperature–irresponsive 21 

QTLs corresponded with growth and reduced height genes. These loci, together with the loci 22 

for start and end of stem elongation accounted for 49% of the variability in height.  23 

This demonstrates how high throughput field phenotyping in combination with environmental 24 

covariates can contribute to a smarter selection of climate-resilient crops. 25 
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Introduction 29 

Temperature is a major abiotic factor affecting plant growth and development. As a 30 

consequence of Global warming, wheat production could decrease by 6% per °C global 31 

temperature increase (Asseng et al., 2015). While heat stress during critical stages can 32 

drastically reduce yield (Gibson and Paulsen, 1999; Farooq et al., 2011), warm temperatures 33 

can decrease yield by accelerating development and thereby shortening critical periods for 34 

yield formation (Fischer, 1985; Slafer and Rawson, 1994). However little is known about how 35 

temperature affects development and growth, and how this is genetically controlled.  36 

The critical phase for yield formation in wheat is stem elongation (SE); happening between 37 

the phenological stages of terminal spikelet initiation and anthesis (Slafer et al., 2015). The 38 
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start of SE coincides with the transition from vegetative to reproductive development, when 39 

the apex meristem differentiates from producing leaf primordia to producing spikelet 40 

primordia (Trevaskis et al., 2007; Kamran et al., 2014). During SE, florets are initiated at the 41 

spikelets until booting (Kirby, 1988; Slafer et al., 2015). An increased duration of stem 42 

elongation increases the number of fertile florets due to longer spike growth and higher dry 43 

matter partitioning to the spike (González et al., 2003). This in turn increases the number of 44 

grains per spike and therefore yield (Fischer, 1985). Modifying the timing of the critical 45 

phenological stages (transition to early reproductive phase and flowering) and SE duration has 46 

been proposed as way to increase wheat yield or at least mitigate adverse climate change 47 

effects on yield (Slafer et al., 1996; Miralles and Slafer, 2007; Whitechurch et al., 2007). The 48 

recent warming trend causes a faster advancement in phenology. For example over the past 49 

decade flowering time occurred earlier in Germany, which is attributable to both, increased 50 

temperature and selection for early flowering (Rezaei et al., 2018).  51 

Final height is also an important yield determinant. During the “green revolution” wheat yields 52 

increased by the introduction of reduced height genes (Rht). The resulting dwarf and semi 53 

dwarf varieties benefit from improved resource allocation from the stem to the spike and 54 

reduced lodging, allowing more intensive nitrogen application (Hedden, 2003). Gibberellin 55 

insensitive Rht genes (Rht-A1, Rht-B1, and Rht-D1) were shown limit cell wall extensibility 56 

which decreases growth rates (Keyes et al., 1989) without affecting development (Youssefian 57 

et al., 1992). Whilst the allele Rht-B1c (Wu et al., 2011) and the GA sensitive Rht12 dwarfing 58 

gene (Chen et al., 2013) delay heading. 59 

The main abiotic factors affecting the timing of floral initiation and flowering are temperature 60 

and photoperiod; with temperature affecting both vernalisation and general rate of 61 

development (Slafer et al., 2015). These developmental transitions are controlled by major 62 

genes involved in the flowering pathway, namely; vernalisation (VRN), photoperiod (PPD) and 63 

earliness per se (EPS) genes (Slafer et al., 2015). The PPD and VRN genes define photoperiod 64 

and vernalisation requirements which jointly enable the transition to generative development 65 

and define time to flowering. Whereas EPS genes fine tune the timing of floral transition and 66 

flowering, after vernalisation and photoperiod requirements are fulfilled (Zikhali and Griffiths, 67 

2015). While vernalisation and photoperiod response are well known, the role of temperature 68 

per se remains less clear. Temperature affects all developmental phases and warmer ambient 69 

temperatures generally accelerate growth and development in crops (Slafer and Rawson, 70 

1994, 1995a,c; Atkinson and Porter, 1996; Fischer, 2011; Slafer et al., 2015). But it is unclear, 71 

if temperature-response governs growth rate and development independently. If so, the 72 

question remains whether there is enough genetic variability in temperature-response to be 73 

used in a breeding context (Parent and Tardieu, 2012). 74 

Genotypic variation for growth response to temperature was reported for wheat leaf 75 

elongation rate (Nagelmüller et al., 2016), as well as for canopy cover growth (Grieder et al., 76 

2015). Kiss et al. (2017) reported significant genotype by temperature interactions in the 77 

timing of stem elongation as well as temperature dependent differences in the expression of 78 

VRN and PPD genes under controlled conditions. Under field conditions, the response of stem 79 

elongation to temperature has not yet been investigated in high temporal resolution.  80 
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In recent years, new high throughput phenotyping technologies have enabled monitoring 81 

plant height with high accuracy and frequency in the field (Bendig et al., 2013; Friedli et al., 82 

2016; Holman et al., 2016; Aasen and Bareth, 2018; Hund et al., 2019). We have previously 83 

demonstrated that the ETH field phenotyping platform (FIP, Kirchgessner et al., 2016) can be 84 

used to accurately track the development of canopy height in a large set of wheat genotypes 85 

using terrestrial laser scanning (Kronenberg et al., 2017). Considerable genotypic variation was 86 

detected for the start and end of SE which correlated positively with final canopy height 87 

(Kronenberg et al., 2017).  88 

While many temperature-independent factors affecting plant height are known, the 89 

influences of temperature-dependent elongation and timing of the elongation phase is less 90 

clear. To address this, we aimed to dissect final height into the following components: i) 91 

temperature-independent elongation, ii) temperature-dependent elongation and iii) the 92 

duration of the elongation phase determining by the start and end of the process. To achieve 93 

this we present a method to assess and measure these three processes under field conditions 94 

by means of high-frequency, high-throughput phenotyping of canopy height development. 95 

The resulting data were combined with genetic markers to identify quantitative trait loci 96 

controlling the aforementioned processes. 97 

Material and Methods 98 

Experimental setup, phenotyping procedures and extracted traits 99 

Field experiments were conducted in the field phenotyping platform FIP at the ETH research 100 

station in Lindau-Eschikon, Switzerland (47.449°N, 8.682°E, 520 m a.s.l.; soil type: eutric 101 

cambisol). We used a set of approximately 330 winter wheat genotypes (335 – 352 depending 102 

on the experiment) comprising current European elite cultivars (GABI Wheat; Kollers et al., 103 

2013), supplemented with thirty Swiss varieties. These were monitored over three growing 104 

seasons in 2015, 2016 and 2017. Details about the experimental setup for the growing seasons 105 

2015 and 2016 are described in Kronenberg et al. (2017). Briefly, the field experiments were 106 

conducted in an augmented design with two replications per genotype using micro plots with 107 

a size of 1.4 by 1.1 m. In the growing season 2017, the experiment was repeated again, with 108 

minor changes in genotypic composition. This resulted in 328 genotypes present across all 109 

three experiments.  110 

Canopy height was measured twice weekly from the beginning of shooting (BBCH 31) until 111 

final height using a light detection and ranging (LIDAR) scanner (FARO R Focus3D S 120; Faro 112 

Technologies Inc., Lake Mary USA) mounted on the FIP (Kirchgessner et al., 2016). Canopy 113 

height data was extracted from the LIDAR data as described in Kronenberg et al. (2017). Spatial 114 

heterogeneity at each measuring date was corrected by applying two-dimensional P-splines 115 

to the raw canopy height data within each year using the R-package SpATS (Rodríguez-Álvarez 116 

et al., 2018). The start, end, and duration of stem elongation with final canopy height (FH) 117 

were extracted from the height data as described by Kronenberg et al. (2017): Normalized 118 

canopy height was calculated as percent of final height at each day of measurement for every 119 

plot and then linearly interpolated between measurement points. Growing degree-days until 120 

15% final height (GDD15) and 95% final height (GDD95) were used as proxy traits for start and 121 

end of stem elongation, respectively. SE duration was recorded in thermal time (GDDSE) as 122 
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well as in calendar days (timeSE), as the difference between GDD95 and GDD15 (Kronenberg et 123 

al., 2017).  124 

In order to investigate short-term growth response to temperature, average daily stem 125 

elongation rates (SER) were calculated for each plot as the difference (∆) in canopy height (CH) 126 

between consecutive timepoints (t): 127 

𝑆𝐸𝑅 =
∆𝐶𝐻

∆𝑡
 eq. 1  128 

Extracting growth response to temperature 129 

Temperature response was modelled by regressing average daily stem elongation rates (SER) 130 

against average temperature of the respective interval for each plot within the respective year 131 

following 132 

𝑆𝐸𝑅 = (𝑎 × 𝑇) + 𝑏𝑇𝑐𝑟𝑖𝑡
+  𝜀  eq. 2 133 

where T is the ambient temperature, a is the coefficient of the linear regression (i.e. growth 134 

response to ambient temperature; slpSER~T) and ε denotes the residual error. bTcrit is the model 135 

intercept, estimated at the temperature, at which the correlation between intercept and slope 136 

is zero (intSER~T). Tcrit was determined empirically for each year by sequentially estimating the 137 

intercept between 1°C and 22°C Fig. 1A). Per definition, the intercept would be estimated at 138 

T = 0 °C, i.e. far outside the range of observed temperatures. In the observed data, an intercept 139 

at T = 0°C correlated strongly negative with the slope (Fig. 1A) and, thus, did not add much 140 

additional information concerning the performance of the evaluated genotypes. Grieder et al. 141 

(2015) performed a similar analysis for the canopy cover development during winter and 142 

found a similar, strongly negative correlation between temperature-response (slope) and 143 

growth at 0°C (intercept). Likewise an intercept at 20°C at the upper range of the observed 144 

data was correlated strongly positive with the slope. Hence, Tcrit is the turning point from 145 

negative to positive correlation as the position of the intercept increases, which is the point 146 

where intercept and slope are independent. Therefore, two genotypes can show the same 147 

growth at Tcrit but differ markedly in temperature-response (Fig. 1B), have the same 148 

temperature-response but differ in growth at Tcrit (Fig. 1C), or differ for both, intercept and 149 

slope (Fig. 1D). Following this, intSER~T would be interpreted as intrinsic, temperature-150 

independent growth, hereinafter referred to as “vigour”. 151 

Statistical Analysis 152 

All statistical analysis were performed in the R environment (R Core Team, 2018). Best linear 153 

unbiased estimations (BLUEs), predictors (BLUPs) and broad sense heritabilities (H2) were 154 

determined for all traits using the R-package asreml (Butler, 2009). In a first step, BLUEs were 155 

calculated within each year using: 156 

𝑌 =  𝜇 + 𝑔 +  𝜀 eq. 3 157 

Where Y is the respective trait (FH, GDD15, GDD95, GDDSE, intSER~T or slpSER~T), μ is the overall 158 

mean, g the fixed genotype effect and 𝜀 is the residual error. 159 

In a second step, 3-year BLUPs were calculated using 160 
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𝑌 = 𝜇 + 𝑔 + 𝑦 + 𝜀 eq. 4 161 

where Y are the single-year BLUEs for the respective traits derived from eq. 3, μ is the overall 162 

mean, g is the genotype effect, y is the year effect and 𝜀 is the residual error. Broad sense 163 

heritabilities were calculated following Falconer and Mackay (1996) as 164 

𝐻2 =  
𝜎𝐺

2

𝜎𝐺
2+

𝜎𝜀
2

3

 eq. 5 165 

where 𝜎𝐺
2 and 𝜎𝜀

2 are genotypic and residual variance, respectively, from eq. 4. 166 

The 3-year BLUPs of GDD15, GDD95, GDDSE, FH, intSER~T, and slpSER~T were used for correlations 167 

and genome wide association study (GWAS).  168 

Association study 169 

The genetic basis of temperature-response was investigated by GWAS. GWAS was performed 170 

on the different traits to compare the phenotypic correlations with the underlying genetic 171 

architecture of the traits. As a positive control final height data made in Germany and France 172 

by Zanke et al. (2014b) was also compared and analysed. 173 

Genotyping data was made previously by the GABI wheat consortium represented by the 174 

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK; Zanke et al., 2014a) using the 175 

90K illumina SNP-chip (Cavanagh et al., 2013; Wang et al., 2014). Monomorphic SNPs were 176 

discarded. The remaining markers were mapped to the IWGSC reference genome (Consortium 177 

(IWGSC) et al., 2018) by BLASTN search using an E-value threshold < 1e-30. The genome 178 

position with the lowest E-value was assigned as the respective marker location. Markers that 179 

could not be unequivocally positioned were dropped. After filtering SNPs with a minor allele 180 

frequency and missing genotype rate < 0.05, a total of 13,450 SNP markers and 315 genotypes 181 

remained in the set. The reference genome position of RHT, PPD, VRN and putative EPS genes 182 

was determined with BLASTN search as described above using published GenBank sequences 183 

(Table S1). 184 

To mitigate against multiple testing, relatedness and population structure; three different 185 

methods were used to calculate marker trait associations (MTA) between phenotypic BLUPs 186 

and SNP markers:  187 

i) We used a mixed linear model (MLM) including principal components among marker 188 

alleles as fixed effects and kinship as random effect to account for population 189 

structure (Zhang et al., 2010). This approach was chosen to stringently prevent type I 190 

errors. The MLM GWAS was performed using the R Package GAPIT (v.2, Tang et al., 191 

2016). Kinship was estimated according to VanRaden (2008). 192 

ii) In a generalised linear model (GLM) framework implemented in PLINK (Purcell et al., 193 

2007), association analysis was performed using SNP haplotype blocks consisting of 194 

adjacent SNP triplets. Using haplotype blocks takes the surrounding region of a given 195 

SNP into account, thus increasing the power to detect rare variants (Purcell et al., 196 

2007) 197 

iii) Finally, the FarmCPU method (Liu et al., 2016) was used, which is also implemented in 198 

GAPIT. FarmCPU tests individual markers with multiple associated markers as 199 
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covariates in a fixed effect model. Associated markers are iteratively used in a random 200 

effect model to estimate kinship. Confounding between testing markers and kinship 201 

is thus removed while controlling type I error, leading to increased power (Liu et al., 202 

2016). 203 

For all methods, a Bonferroni correction was applied to the pointwise significance threshold 204 

of α = 0.05, to avoid false-positives. Hence, only markers above –log10(P-value) >= 5.43 205 

considered significant. 206 

Linkage disequilibrium (LD) among markers was estimated using the squared correlation 207 

coefficient (r2) calculated with the R package SNPrelate (Zheng et al., 2012). A threshold of r2 208 

= 0.2 (Gaut and Long, 2003) was applied to calculate the chromosome specific distance 209 

threshold of LD decay. Putative candidate genes were identified by searching the IWGSC 210 

annotation of the reference genome (Consortium (IWGSC) et al., 2018) for genes associated 211 

with growth and development within the LD distance threshold around the respective MTA.  212 

Results 213 

Phenotypic results 214 

We measured the canopy height of 710 – 756 plots per year, containing 335 – 352 wheat 215 

genotypes, for three consecutive years. In each season measurements were made between 216 

17 and 22 times during stem elongation. Thus resulting in an average of 122 canopy height 217 

measurement points per genotype. From these data we extracted growth rates and the timing 218 

of critical stages. Plot based growth rates within single years indicate a clear relation between 219 

growth and temperature for the period of stem elongation, as depicted in Fig. 2. Towards the 220 

end of the measurement period in June, there was a larger deviation, which was also reflected 221 

in the quality of plot based linear model fits of SER versus temperature (see eq. 2), summarized 222 

in Fig. S1. For the 2015 and especially the 2016 experiment, R2 values were low and except for 223 

the 2017 experiment, the parameter estimates were not statistically significant (Fig. S1A). 224 

Inspection of the best and worst model fits however shows, that failure of fitting the model 225 

for single plots was levelled out by the replications within genotypes (Fig. S1B), therefore 226 

allowing for confident estimates of genotypic means of the model parameters (see below). 227 

Analysis of variance revealed significant (P < 0.001) genotypic effects for both slpSER~T and 228 

intSER~T within single years as well as across three years. Both traits showed high heritabilities 229 

across years (H2 = 0.81 for slpSER~T and H2 = 0.77 for intSER~T) and very high heritabilities within 230 

single years (Table 1). Using the BLUPs of slpSER~T, intSER~T and temperature sum for stem 231 

elongation (GDDSE), final height could be predicted with high accuracy across different years 232 

(0.82 <= R2 <= 0.85) by training a linear model on the BLUPs of one year and predicting it on 233 

the BLUPs of another independent year. Training the model on the 3-year BLUPs resulted in a 234 

prediction accuracy of single years between R2 = 0.93 and R2= 0.95 (Fig. 3). High heritabilities 235 

within years (0.75 <= H2 <= 0.99) as well as across three years (0.54 <= H2 <= 0.98; Table 1), 236 

were also found for other traits; final height, start of SE, end of SE and SE duration. 237 

Phenology, temperature-response and final height were positively correlated 238 
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To evaluate the relationships between the traits measured, Pearson correlation coefficients 239 

were calculated for each trait pair. If not indicated otherwise, the reported correlations were 240 

highly significant (P < 0.001) 241 

Positive correlations were found among GDD15, GDD95 and FH (0.36 <= r <= 0.64, Fig. 4), 242 

indicating that taller varieties were generally later. Temperature response (slpSER~T) and vigour 243 

(intSER~T) also showed a strong, positive relationship with final height (r = 0.85 and r = 0.65, 244 

respectively). However, only temperature-response correlated with GDD15 and GDD95 (r = 0.63 245 

and r = 59, respectively), whereas vigour did not (r < 0.26, Fig. S2). 246 

As expected, stem elongation duration in thermal time (GDDSE) was negatively correlated with 247 

GDD15 (r = -0.44) and positively correlated with GDD95 (r = 0.4). But, GDDSE did not correlate 248 

with final height (r = -0.01, P = 0.878) or temperature-response (r = 0.006, P = 0.289). Although 249 

GDDSE negatively correlated with vigour (r = -0.32). In contrast, SE duration in calendar days 250 

(timeSE) was negatively correlated with temperature-response (r = -0.35) and GDD15 (r = -0.82), 251 

indicating a longer SE phase for earlier genotypes. Other weak correlations (r < 0.3), that are 252 

not discussed, are shown in Fig. S2. 253 

Linkage disequilibrium and population structure 254 

Prior to MTA analysis we evaluated population structure and LD. Principal component analysis 255 

of the marker genotypes revealed no distinct substructure in the investigated population. The 256 

biplot of the first two principal components showed no apparent clusters, with the first 257 

component explaining 8% and the second component explaining 3.3% of the variation in the 258 

population (Fig. S5). This is consistent with prior work using the same population (Kollers et 259 

al., 2013; Yates et al., 2018). On average across all chromosomes, LD decayed below an r2 of 260 

0.2 at a distance of 9 MB. There was however considerable variation in this threshold among 261 

the single chromosomes (Table S2). 262 

Association study 263 

Genome-wide association results differed markedly depending on the applied model. Using a 264 

MLM with kinship matrix and PCA as covariates resulted in no significant MTA for any trait 265 

(Fig. S3). In contrast, the GLM using the haplotype method yielded 2949 significant MTA for α 266 

< 0.05 and 1846 MTA for α < 0.001 respectively. However, investigation of the respective QQ-267 

plots showed large P-value inflation in the haplotype method whereas the P-values were 268 

slightly deflated when using the MLM approach (Fig. S3, Fig. S4). In contrast, with FamCPU the 269 

QQ-plots (Fig. 5) showed no P-value inflation, except for some markers. This pattern is 270 

expected, if population structure is appropriately controlled. Therefore, FarmCPU was chosen 271 

to be the most appropriate method for the given data, despite identifying less significant MTA.  272 

As a positive control we compared our final height data and associated markers with data 273 

made by Zanke et al. (2014b). Final canopy height correlated strongly between the two studies 274 

(r = 0.95), which is in accordance with the high heritability of the trait. In this study, we found 275 

11 significant MTA for final height (Table 2, Fig. 5). Zanke et al. (2014b) reported 280 significant 276 

MTA for final height across several environments. Of these, only marker 277 

RAC875_rep_c105718_585 on chromosome 4D overlapped with the MTA found in this study. 278 

However, by considering flanking markers, we found that of the remaining ten significant MTA 279 
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for final height, six were in LD with MTA found by Zanke et al. (2014b; Table S3). The significant 280 

MTA found for FH in this study are near known genes controlling FH. For example, 281 

Tdurum_contig64772_417, is 4 MB upstream of Rht-B1 and RAC875_rep_c105718_585, is 7 282 

MB downstream of Rht-D1 on their respective group 4 chromosomes.  283 

Temperature-response loci are independent of vigour loci 284 

For slpSER~T we detected one significant (LOD = 5.77) MTA on chromosome 1B 285 

(wsnp_Ex_c1597_3045682) and two almost significant (LOD = 5.39 / LOD = 5.02) MTA on 286 

chromosomes 4B (CAP7_c10839_300) and 5D (IAAV7104), respectively (Fig. 5). All associated 287 

markers for slpSER~T yielded small but significant allelic effects ranging from -0.049 mm °C-1d-1 288 

to -0.041 mm °C-1d-1 (Table 2). The GWAS for intSER~T yielded four significant MTA on 289 

chromosomes 2B, 4B, 4D and 5D respectively (Table 2, Fig. 5). Start and end of SE yielded four 290 

MTA each (Table 2, Fig. 5). 291 

Comparing the GWAS results for temperature-response, vigour, final height, GDD15 and GDD95 292 

revealed no common quantitative trait loci (QTL) between slpSER~T and any other trait. Only 293 

one marker (Excalibur_c74858_243) was significantly associated with both GDD15 as well as 294 

GDD95. The lack of overlap, of MTA, between temperature-response, vigour and timing of 295 

critical stages indicate they are genetically independent. However, there is a genetic 296 

connection between vigour and FH on the one hand and between the start and end of stem 297 

elongation on the other. 298 

To identify potential causative genes underlying the QTL, we searched the reference genome 299 

annotation around the respective QTL intervals. For temperature-response we found an 300 

increased presence of genes or gene homologues involved in the flowering pathway, i.e. 301 

EARLY FLOWERING 3, FRIGIDA and CONSTANS (Table 3). Around the QTL associated with 302 

vigour the annotation showed genes associated with growth (i.e. GRAS, CLAVATA, BSU1, 303 

Argonaute) as well as developmental progress (i.e. Tesmin/TSO1-like CXC domain, BEL1, 304 

AGAMOUS (Table 4). Importantly, we found GAI-like protein 1 6MB upstream of marker 305 

Kukri_rep_c68594_530, which we identified as RHT-D1 by blasting the RHT-D1 sequence 306 

(GeneBank ID AJ242531.1) against the annotated reference genome. 307 

Vigour, temperature-response and the timing of SE affect final height 308 

The phenotypic correlations show a strong connection between temperature-response, 309 

vigour and FH as well as weaker connections between GDD15, GDD95 and FH. In order to 310 

examine this interdependency on a genetic level, we used a linear model to predict FH with 311 

the SNP alleles of the QTL for slpSER~T, intSER~T, GDD15 and GDD95 as predictors. The model was 312 

able to predict FH with an accuracy R2 = 0.49, with significant contributions by QTL of all three 313 

traits (Fig. 6, Table 5).  314 

Discussion 315 

In this study we present a method to measure temperature response during stem elongation 316 

of wheat using high throughput phenotyping of canopy height in the field. The results show a 317 

highly heritable genotype-specific ambient temperature response of wheat which affects both 318 

growth and timing of the developmental key stages. We modelled temperature-response in a 319 
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simple linear framework with the intercept estimated at the temperature of zero correlation 320 

to the slope. This allowed for the decomposition of growth dynamics into a genotype-specific 321 

vigour component and temperature-response component. Thereby we could assess 322 

interdependence between vigour and temperature-response to plant height and the timing 323 

of developmental key stages.  324 

Linear models were used before to describe wheat growth response to temperature for leaf 325 

elongation (Nagelmüller et al., 2016), canopy cover (Grieder et al., 2015) as well as stem 326 

elongation rate (Slafer and Rawson, 1995a). Others proposed the use of a more complex, 327 

Arrhenius type of function to account for decreasing growth rates at supra optimal 328 

temperatures (Parent and Tardieu, 2012). Wheat has its temperature-optimum at around 329 

27°C (Parent and Tardieu, 2012). As temperatures in the measured growth intervals during 330 

stem elongation did not exceed 25°C and given the temporal resolution of the data, a simple 331 

linear model is justified (Parent et al., 2018). 332 

The results of the correlation analysis show a clear connection between FH and temperature-333 

response (slpSER~T) as well as between FH and vigour (intSER~T). This is consistent with part i) 334 

and ii) of our hypothesis: Final height can be described as a function of temperature-335 

independent growth processes and as a function of temperature-response during SE. 336 

Importantly, among all components, the temperature-response was a major driver of final 337 

height and also had a strong influence on the timing. Temperature-response delayed the 338 

beginning of stem elongation leading to a later start and end of the whole phase. This finding 339 

might appear counter intuitive: given the assumption that plants develop faster under higher 340 

ambient temperatures a more responsive genotype should develop faster compared to a less 341 

responsive one. Slafer and Rawson (1995b) reported an accelerated development towards 342 

floral transition with increasing temperatures up to 19°C whereas higher temperatures slowed 343 

development. In that respect, a more responsive genotype would experience a stronger delay 344 

of floral transition under warm temperatures.  345 

In terms of their correlation to FH, the effects of the timing of start and end of stem elongation 346 

(part iii) of the initial hypothesis) are less distinct. Final height was more a function of faster 347 

growth than duration of growth, especially since genotypes with a strong temperature-348 

response have a shorter duration of SE. However, the timing of start and end of stem 349 

elongation was linked with temperature-response. Based on this result and the according 350 

correlations, it would appear that temperature-response influences FH directly as well as 351 

indirectly by mediating start and end of stem elongation.  352 

The question, whether these trait correlations are due to pleiotropic effects will substantially 353 

impact the breeding strategy (Chen and Lübberstedt, 2010). If these effects are pleotropic, 354 

they have a huge impact on breeding as they indicate that temperature-response, timing and 355 

height are to a large degree determined by the same set of genes. Alternative explanations 356 

are linkage and population structure. As the examined traits are major drivers of adaptation 357 

to the different regions of Europe we anticipate a very strong selection for both, temperature 358 

response as well as timing of critical stages. The GABI wheat panel is made of wheat varieties 359 

from different regions of Europe. Even if there is no apparent population structure at neutral 360 

markers, there may be a strong population structure at selected loci with strong effect on local 361 
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adaptation. However, pleiotropy between height and flowering time is known for maize and 362 

rice, supporting the hypothesis of pleiotropy here. The DWARF8 gene of maize encoding a 363 

DELLA protein is associated with height and flowering time (Lawit et al., 2010) and strongly 364 

associated with climate adaptation (Camus-Kulandaivelu et al., 2006, page). The rice GHD7 365 

locus has a strong effect on number of days to heading, number of grains per panicle, plant 366 

height and stem growth (Xue et al., 2008). To further examine the relationship among the 367 

different traits we consider the following GWAS analysis using stringent correction of 368 

population structure. 369 

The GWAS results indicate an independent genetic control of final height, temperature 370 

response and the timing of critical stages. Whereas vigour and FH as well as start and end of 371 

SE appear to be partly linked. Yet, final height could be predicted with surprising accuracy 372 

using the QTL for temperature response, vigour, start and end of SE which reflects the 373 

correlations found in the phenotypic data.  374 

Previous studies investigating the control of developmental key stages in wheat with respect 375 

to temperature generally adopted the concept, that after fulfilment of photoperiod and 376 

vernalisation, EPS genes act as fine tuning factors independent of environmental stimuli 377 

(Kamran et al., 2014; Zikhali and Griffiths, 2015). Temperature, apart from vernalisation is 378 

thought to generally quicken growth and development independent of the cultivar (Slafer and 379 

Rawson, 1995b; Porter and Gawith, 1999; Slafer et al., 2015). A genotype-specific temperature 380 

effect on the duration of different phases was not considered (Takahashi &Yasuda 1971, Slafer 381 

& Rawson 1995c). It was however reported, that photoperiod effects vary depending on 382 

temperature (Slafer and Rawson, 1995c). Under long days, Hemming et al. (2012) reported 383 

faster development and fewer fertile florets under high compared to low temperatures. 384 

Temperature-dependent effects were also found for different EPS QTL (Slafer and Rawson, 385 

1995c; Gororo et al., 2001). It has previously been suggested, that EPS effects could be 386 

associated with interaction effects between genotype and temperature fluctuations (Slafer 387 

and Rawson, 1995c; van Beem et al., 2005). 388 

The mechanisms of ambient temperature sensing and its effects on growth and development 389 

are not yet well understood (Sanchez‐Bermejo and Balasubramanian, 2016). However, 390 

important findings regarding ambient temperature effects on flowering time as well as on 391 

hypocotyl elongation have come from the model species Arabidopsis thaliana (Wigge, 2013). 392 

With respect to these two traits, Sanchez‐Bermejo and Balasubramanian (2016) reported 393 

distinct genotypic differences in temperature-sensitivity. According to their results, the 394 

flowering pathway genes FRIGIDA (FRI), FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T 395 

(FT) are major candidate genes for ambient temperature mediated differences in flowering 396 

time (Sanchez‐Bermejo and Balasubramanian, 2016). In the present study, we found FRI 397 

homologues near two of the three QTL for temperature-response. FRI and FLC acts as main 398 

vernalisation genes in A. thaliana (Johanson et al., 2000; Amasino and Michaels, 2010). In 399 

wheat, these genes are not yet well described. However, FLC orthologues were found to act 400 

as flowering repressors regulated by vernalisation in monocots (Sharma et al., 2017).  401 

Another promising candidate gene for temperature response found near the QTL on 402 

chromosome 1B is EARLY FLOWERING 3 (ELF3). In A. thaliana, ELF3 was found to be a core 403 
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part of circadian clock involved in ambient temperature response (Thines and Harmon, 2010). 404 

In Barley, ELF3 was shown to be involved in the control of temperature dependent expression 405 

of flowering time genes (Ejaz and von Korff, 2017). A mutant ELF3 accelerated floral 406 

development under high ambient temperatures while maintaining the number of seeds (Ejaz 407 

and von Korff, 2017). Furthermore, ELF3 has been reported as a candidate gene for EPS1 in 408 

Triticum monococcum (Alvarez et al., 2016).  409 

One important aspect we could not address in the current study is the interaction of genotype 410 

specific temperature response with vernalisation and photoperiod (Slafer and Rawson, 1995c; 411 

Gol et al., 2017; Kiss et al., 2017). It also remains unclear if and to which extent temperature 412 

response varies across different developmental phases and how temperature-response 413 

relates to other environmental stimuli such as vapour pressure deficit or radiation. 414 

Nevertheless, the results of this study present valuable information towards a better 415 

understanding of temperature response in wheat and may be of great importance for 416 

breeding. Temperature-response could provide a breeding avenue for local adaptation as well 417 

as the control of plant height.  418 

With the recent advancements in UAV-based phenotyping techniques, the growth of canopy 419 

cover and canopy height can be measured using image segmentation and structure from 420 

motion approaches (Bareth et al., 2016; Aasen and Bareth, 2018; Roth et al., 2018). Thus, 421 

temperature-response can be investigated during the vegetative canopy cover development 422 

(Grieder et al., 2015) and during the generative height development as demonstrated here. It 423 

can also be assessed in indoor platforms (e.g. Parent and Tardieu, 2012) and the field using 424 

leaf length tracker (Nagelmüller et al., 2016) measuring short-term responses of leaf growth 425 

to diurnal changes in temperature. Combining this information may greatly improve our 426 

understanding about the genetic variation in growth response to temperature.  427 

Conclusion 428 

Modern phenotyping platforms hold great promise to map the genetic factors driving the 429 

response of developmental processes to environmental stimuli. To the best of our knowledge, 430 

this is the first experiment dissecting the stem elongation process into its underlying 431 

components: temperature-dependent elongation, temperature-independent vigour and 432 

elongation duration. The independent loci detected for these traits, suggest that it is possible 433 

to select them independently. The detected loci may be used to fine tune height and the 434 

beginning and end of stem elongation as they explain a substantial part of the overall 435 

genotypic variation. With increases in automation, growth processes may be monitored in the 436 

field on a daily basis or even multiple times per day. This will increasing the precision in 437 

assessing genotype responses to the fluctuation in meteorological conditions and quantifying 438 

the relationship of these responses to yield. Remote sensing by means of unmanned aerial 439 

vehicles in combination with photogrammetric algorithms will allow to measure these traits 440 

in breeding nurseries. We believe that this is paving the road for a more informed selection to 441 

climate adaptation within individual growing seasons. 442 

Supplementary Data 443 

Fig. S1: Summary of plot based linear model fits of stem elongation rate vs. temperature. 444 
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Fig. S2: Pearson correlation coefficients among 3-year BLUPS of all investigated traits. 445 

Fig. S3: Manhattan plots and quantile-quantile plots depicting the GWAS results using the 446 

MLM approach. 447 

Fig. S4: Manhattan plots and quantile-quantile plots depicting the GWAS results using the GLM 448 

approach. 449 

Fig. S5: Principal component analysis among marker genotypes. 450 

Table S1: Genes of interest related to floral transition and flowering. 451 

Table S2: Chromosome wise distance thresholds for LD-decay < r2 = 0.2. 452 

Table S3: Corresponding marker-trait associations for final canopy height with respect to 453 

Zanke et al. 2016. 454 

Table S4: 3-year BLUPs of the investigated traits FH, GDD15, GDD95, GDDSE, timeSE, slpSER~T, 455 

intSER~T. 456 
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Figures 
Fig. 1 

 

Fig. 1: Illustration and interpretation for the parameters of the applied temperature 

response model (eq. 2). A: Distribution of Pearson correlation coefficients between intercept 

and slope of the linear model for individual years, depending on the temperature, at which 

the intercept is estimated. Dotted vertical lines indicate the critical temperature (Tcrit) for 

individual years used to estimate the intercept. B-D: Illustration of the relation between 

intercept and slope on contrasting genotypes (dashed and dash-dotted lines). B: same vigour 

but different in temperature-response. C both have the same T-response but differ in vigour. 

D Genotypes differ in vigour as well as in T-response. Horizontal and vertical dotted lines 

indicate vigour and Tcrit respectively. The two contrasting genotypes per example (B-D) were 

selected from the 2017 data based on their vales for slope and intercept. 
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Fig.2 

 

Fig. 2: Relationship between 

stem elongation rate (SER) and 

temperature. Plot based SER raw 

data (n > 700/a) of > 330 

genotypes (black dots) as well as 

temperature (solid red line) is 

plotted against calendar time for 

the years 2015-2017. 
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Fig 3 

 

Fig. 3: Prediction of final height using BLUPs for slope and intercept of temperature response 

and the temperature sum in stem elongation. The linear model FH ~ intSER~T + slpSER~T + GDDSE 

was trained on BLUPs across 3 years and tested on the BLUPs of the year 2017. 
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Fig 4 

 

 

Fig. 4: Key correlations among investigated traits. Pearson correlation coefficients between 

respective traits are given in red and green circles, where red denotes a negative correlation 

and green denotes a positive correlation. Weak correlations (r < 0.3) are shown in the 

complete correlation matrix Fig. S2. Illustrations of GDD15, GDD95 and FH were taken from 

Schürch et al. (2018). 
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Fig 5 

 

Fig. 5: Manhattan plots and quantile-quantile plots depicting the GWAS results using 

FarmCPU for final height (FH), growing degree days until start (GDD15) and end (GDD95) of 

stem elongation; vigour-related intercept (intGR~T) and temperature-related slope (slpGR~T) 

of stem elongation in response to temperature. Horizontal lines mark the Bonferroni 

corrected significance threshold for P < 0.05 (dashed line) and P < 0.001 (solid line). Dashed 

vertical lines mark the position of Rht-B1 and Rht-D1 on chromosome 4B and 4D, respectively. 

Significant marker trait associations for slpGR~T (red dots), intGR~T (blue squares), GDD15 (green 

up-facing triangles), GDD95 (purple down-facing triangles) and FH (turquois diamonds) are 

highlighted in all Manhattan plots. 
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Fig 6 

 

Fig. 6: Prediction of final height using the SNP alleles of significantly associated QTL for 

temperature response, vigour, start and end of stem elongation as predictors with the linear 

model: 

FH = QTL slpSER~T + QTL intSER~T + QTL GDD15 + QTL GDD95. 
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Tables 
Table 1 

Table 1: Heritabilities of the investigated traits in single years and across all three years.  

 heritability 

trait BLUPS 2015 BLUPS 2016 BLUPS 2017 3Y-BLUPS 

intGR~T 0.93 0.95 0.84 0.77 

slpGR~T 0.96 0.91 0.94 0.81 

FH 0.99 0.99 0.98 0.98 

GDD15 0.93 0.94 0.9 0.82 

GDD95 0.75 0.91 0.91 0.84 

timeSE 0.85 0.84 0.85 0.59 

GDDSE 0.76 0.83 0.85 0.54 
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Table 2 

Table 2: Marker-trait associations for temperature response, vigour, GDD15, GDD95 and 

final canopy height, including p-value, allelic effect estimate and minor allele frequency.  

Trait SNP Chr Position p-value effect maf 

slpGR~T 
wsnp_Ex_c1597_3045682 1B 688'283'256 1.68E-06 -4.90E-05 0.19 

CAP7_c10839_300 4B 533'724'424 4.12E-06 -4.10E-05 0.24 

IAAV7104 5D 553'678'522 9.63E-06 -4.87E-05 0.13 

intGR~T 

RAC875_s109189_188 2B 248'149'774 5.10E-07 0.000133 0.42 

Ku_c63300_1309 4B 21'556'672 2.72E-06 -0.00023 0.10 

Kukri_rep_c68594_530 4D 12'773'259 7.45E-09 -0.00018 0.40 

Kukri_c6477_696 5D 423'502'809 3.94E-07 -0.00016 0.21 

GDD15 

wsnp_Ex_c12447_19847242 1D 416'456'386 1.91E-06 5.680002 0.46 

Tdurum_contig47508_250 2A 754'339'235 1.30E-06 7.757529 0.21 

Kukri_c55381_67 3A 648'868'234 1.38E-06 -8.27442 0.17 

Excalibur_c74858_243 5B 13'190'663  2.50E-08 -6.49833 0.47 

GDD95 

Excalibur_c49597_579 5A 521'934'666 1.30E-06 -5.483 0.42 

Excalibur_c74858_243 5B 13'190'663 6.08E-07 -5.14378 0.47 

Tdurum_contig44115_561 5B 669'897'388 2.39E-07 -8.48015 0.13 

RAC875_c38693_319 7B 740'056'880 2.92E-06 6.287669 0.20 

FH 

Excalibur_c85499_232 1A 582'219'427 2.22E-06 0.02035 0.11 

BS00089734_51 2B 150'200'409 3.76E-07 0.018447 0.16 

Kukri_c49280_230 3A 20'134'735 3.88E-08 0.029134 0.08 

Tdurum_contig64772_417 4B 26'491'482 4.58E-09 0.034734 0.07 

RAC875_rep_c105718_585 4D 25'989'162 1.17E-11 -0.02371 0.38 

BS00036421_51 4D 32'347'318 1.06E-06 -0.01463 0.37 

RAC875_c8231_1578 5A 613'588'253 6.47E-07 0.014219 0.43 

wsnp_Ku_rep_c71232_70948744 5A 679'663'586  1.80E-09 -0.02029 0.47 

Excalibur_rep_c72561_141 5B 34'040'001  3.65E-07 -0.03066 0.05 

BS00109560_51 5B 556'182'591  1.49E-08 -0.01766 0.46 

BS00022120_51 6A 396'301'470  2.21E-10 -0.02386 0.24 
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Table 3  

Table 3: Selected putative candidate genes for the intercept of temperature response from the IWGSC reference genome annotation. 

Chr SNP [Position]  r.start   r.end  Gene description  distance  

chr1B 
wsnp_Ex_c1597_3045682 
[688'283'256] 

688'282'509  688'286'431  TraesCS1B01G480600 
winged-helix DNA-binding 
transcription factor family protein 

747  

688'352'414  688'354'696  TraesCS1B01G480700 HMG-Y-related protein A -69'158  

687'710'716  687'719'885  TraesCS1B01G480100 Argonaute 572'540  

687'128'952  687'135'442  TraesCS1B01G479200 Zinc finger protein CONSTANS 1'154'304  

687'078'233  687'084'562  TraesCS1B01G479000 Zinc finger protein CONSTANS 1'205'023  

686'928'468  686'931'886  TraesCS1B01G478700 Zinc finger protein CONSTANS 1'354'788  

686'749'516  686'755'405  TraesCS1B01G478100 WD-repeat protein, putative 1'533'740  

685'645'287  685'649'392  TraesCS1B01G477400 Early flowering 3 2'637'969  

chr4B 
CAP7_c10839_300 
[533'724'424] 

537'474'959  537'479'867  TraesCS4B01G266000 Protein FRIGIDA -3'750'535  

541'363'317  541'365'139  TraesCS4B01G267700 Protein upstream of flc -7'638'893  

542'582'729  542'583'265  TraesCS4B01G268300 MADS transcription factor -8'858'305  

chr5D 
IAAV7104 
[553'678'522] 

554'357'761  554'360'305  TraesCS5D01G544800 FRIGIDA-like protein, putative -679'239  

554'467'487  554'472'596  TraesCS5D01G545100 Transducin/WD-like repeat-protein -788'965  

556'226'523  556'234'480  TraesCS5D01G548800 Transducin/WD-like repeat-protein -2'548'001  
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Table 4 

Table 4: Selected putative candidate genes for vigour (intSER~T) of temperature response from the IWGSC reference genome annotation. 

Chr SNP [Position]  r.start   r.end  Gene description  distance  

chr2B 
RAC875_s109189_188 
[248’149’774] 

243'569'388  243'571'100  TraesCS2B01G239400 GRAS transcription factor 4'580'386  

chr4B 
Ku_c63300_1309 
[21’556’672] 

21'187'173  21'192'244  TraesCS4B01G028500 Tesmin/TSO1-like CXC domain-containing protein 369'499  

20'005'649  20'008'978  TraesCS4B01G026600 Argonaute family protein 1'551'023  

19'740'974  19'744'058  TraesCS4B01G026200 WD40 repeat-like protein 1'815'698  

23'404'428  23'408'188  TraesCS4B01G031300 BHLH family protein, putative, expressed -1'847'756  

23'818'506  23'822'972  TraesCS4B01G032000 Protein UPSTREAM OF FLC -2'261'834  

18'162'363  18'165'744  TraesCS4B01G025500 Homeobox protein BEL1 like 3'394'309  

18'091'908  18'093'975  TraesCS4B01G025400 BEL1-like homeodomain protein 3'464'764  

17'229'197  17'236'874  TraesCS4B01G024000 Argonaute protein 4'327'475  

17'017'132  17'019'148  TraesCS4B01G023300 AGAMOUS-like MADS-box transcription factor 4'539'540  

26'335'682  26'336'740  TraesCS4B01G036600 BRI1 suppressor 1 (BSU1)-like 3 -4'779'010  

26'824'399  26'827'490  TraesCS4B01G037200 WD-repeat protein, putative -5'267'727  

15'427'017  15'431'870  TraesCS4B01G021500 basic helix-loop-helix (bHLH) DNA-binding superfamily protein 6'129'655  

15'259'656  15'263'139  TraesCS4B01G021200 basic helix-loop-helix (bHLH) DNA-binding superfamily protein 6'297'016  

15'146'117  15'150'854  TraesCS4B01G021100 Basic helix loop helix (BHLH) DNA-binding family protein 6'410'555  

14'710'395  14'711'057  TraesCS4B01G020800 Protein FAR1-RELATED SEQUENCE 5 6'846'277  

28'413'432  28'414'112  TraesCS4B01G041000 sensitive to freezing 6 -6'856'760  

29'673'211  29'674'674  TraesCS4B01G042500 Fantastic four-like protein -8'116'539  

chr4D 
Kukri_rep_c68594_530 
[12’773’259] 

12'700'119  12'703'878  TraesCS4D01G028900 BHLH family protein, putative, expressed 73'140  

13'096'296  13'096'966  TraesCS4D01G029600 CLAVATA3/ESR (CLE)-related protein 25 -323'037  

13'196'859  13'200'535  TraesCS4D01G029700 Protein UPSTREAM OF FLC -423'600  

11'364'404  11'369'466  TraesCS4D01G026100 Tesmin/TSO1-like CXC domain-containing protein 1'408'855  

10'746'363  10'750'251  TraesCS4D01G024300 Argonaute protein 2'026'896  

10'684'336  10'690'389  TraesCS4D01G024100 Argonaute family protein 2'088'923  

10'254'979  10'257'683  TraesCS4D01G023600 WD40 repeat-like protein 2'518'280  

15'768'990  15'772'059  TraesCS4D01G034500 WD-repeat protein, putative -2'995'731  

9'495'616  9'501'619  TraesCS4D01G022600 Homeobox protein BEL1 like 3'277'643  

9'443'778  9'445'575  TraesCS4D01G022500 BEL1-like homeodomain protein 1 3'329'481  

9'069'403  9'071'423  TraesCS4D01G021100 MADS-box transcription factor 3'703'856  
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16'584'271  16'584'948  TraesCS4D01G038400 sensitive to freezing 6 -3'811'012  

8'777'205  8'779'670  TraesCS4D01G020300 Growth-regulating factor 3'996'054  

8'149'046  8'151'425  TraesCS4D01G019200 basic helix-loop-helix (bHLH) DNA-binding superfamily protein 4'624'213  

8'135'666  8'137'454  TraesCS4D01G019100 basic helix-loop-helix (bHLH) DNA-binding superfamily protein 4'637'593  

8'010'719  8'012'446  TraesCS4D01G018800 basic helix-loop-helix (bHLH) DNA-binding superfamily protein 4'762'540  

7'992'104  7'995'445  TraesCS4D01G018700 basic helix-loop-helix (bHLH) DNA-binding superfamily protein 4'781'155  

17'765'786  17'767'021  TraesCS4D01G039900 Fantastic four-like protein -4'992'527  

18'781'062  18'782'933  TraesCS4D01G040400 GAI-like protein 1 (Rht-D1) -6'007'803  

6'703'246  6'703'509  TraesCS4D01G015200 SAUR-like auxin-responsive protein family 6'070'013  

6'699'039  6'699'458  TraesCS4D01G015100 SAUR-like auxin-responsive protein family 6'074'220  

6'682'318  6'682'602  TraesCS4D01G015000 SAUR-like auxin-responsive protein family 6'090'941  

6'663'820  6'664'131  TraesCS4D01G014900 SAUR-like auxin-responsive protein family 6'109'439  

6'461'624  6'462'688  TraesCS4D01G013800 BRI1 suppressor 1 (BSU1)-like 3 6'311'635  

19'169'377  19'171'147  TraesCS4D01G040600 Protein FAR1-RELATED SEQUENCE 5 -6'396'118  

6'017'847  6'023'948  TraesCS4D01G012800 Protein FAR1-RELATED SEQUENCE 5 6'755'412  

4'128'933  4'133'919  TraesCS4D01G008400 WD-repeat protein, putative 8'644'326  

21'775'252  21'776'785  TraesCS4D01G046200 CONSTANS-like zinc finger protein -9'001'993  

chr5D 
Kukri_c6477_696 
[423’502’809] 

423'858'756  423'860'766  TraesCS5D01G334100 Armadillo repeat only -355'947  

421'503'514  421'504'332  TraesCS5D01G329500 HVA22-like protein 1'999'295  

426'296'827  426'301'957  TraesCS5D01G337800 WD-repeat protein, putative -2'794'018  

429'289'426  429'292'023  TraesCS5D01G341000 CONSTANS-like zinc finger protein -5'786'617  

416'787'868  416'788'986  TraesCS5D01G325300 Protein Mei2 6'714'941  

416'625'946  416'628'639  TraesCS5D01G325200 Protein Mei2 6'876'863  

415'622'032  415'622'615  TraesCS5D01G323500 Auxin-responsive protein 7'880'777  
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Table 5 

Table 5: Type II analysis of variance of the linear model FH = QTL slpSER~T + QTL intSER~T + QTL 

GDD15 + QTL GDD95. 

QTL SNP Sum Sq Df F value Pr(>F)   

SlpSER~T1_1B wsnp_Ex_c1597_3045682 0.021 1 3.364 6.76E-02  

SlpSER~T2_4B CAP7_c10839_300 0.062 1 9.862 1.86E-03 ** 

SlpSER~T3_5D IAAV7104 0.114 1 18.055 2.87E-05 *** 

IntSER~T1_2B RAC875_s109189_188 0.018 1 2.828 9.37E-02  

IntSER~T2_4B Ku_c63300_1309 0.122 1 19.318 1.54E-05 *** 

IntSER~T3_4D Kukri_rep_c68594_530 0.428 1 67.968 5.25E-15 *** 

IntSER~T4_5D Kukri_c6477_696 0.001 1 0.157 6.92E-01  

GDD151_1D wsnp_Ex_c12447_19847242 0.052 1 8.313 4.22E-03 ** 

GDD152_2A Tdurum_contig47508_250 0.075 1 11.970 6.19E-04 *** 

GDD153_3A Kukri_c55381_67 0.002 1 0.298 5.85E-01  

GDD154_5B/GDD952_5B Excalibur_c74858_243 0.050 1 8.013 4.96E-03 ** 

GDD951_5A Excalibur_c49597_579 0.057 1 9.010 2.91E-03 ** 

GDD953_5B Tdurum_contig44115_561 0.012 1 1.985 1.60E-01  

GDD954_7B RAC875_c38693_319 0.002 1 0.326 5.68E-01  

NA Residuals 1.887 300 NA NA   
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