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ABSTRACT 
 
Visceral organs, such as the lungs, stomach, liver and pancreas, are derived from the fetal 
foregut through a series of inductive interactions between the definitive endoderm (DE) 
and the surrounding splanchnic mesoderm (SM). While patterning of DE lineages has been 
fairly well studied, paracrine signaling controlling SM regionalization and how this is 
coordinated with the epithelial identity during organogenesis is obscure. Here we used 
single cell transcriptomics to generate a high-resolution cell state map of the embryonic 
mouse foregut. This uncovered an unexpected diversity in the SM cells that developed in 
close register with the organ-specific epithelium. From these data, we inferred a 
spatiotemporal signaling roadmap of the combinatorial endoderm-mesoderm interactions 
that orchestrate foregut organogenesis. We validated key predictions with mouse 
genetics, showing the importance of endoderm-derived signals in mesoderm patterning. 
Finally, leveraging the signaling road map we generated different SM subtypes from 
human pluripotent stem cells (hPSCs), which previously have been elusive. The single cell 
data can be explored at: https://research.cchmc.org/ZornLab-singlecell. 
 
 
INTRODUCTION 
 
In early fetal development, between embryonic day (E) 8.5 and E9.5 in mouse, equivalent to 17-

23 days of human gestation, a series of inductive tissue interactions between the definitive 

endoderm (DE) and the surrounding splanchnic mesoderm (SM) progressively patterns the naïve 

foregut tube into different progenitor domains. These domains further develop into distinct visceral 

organs including the trachea, lung, esophagus, stomach, liver, pancreas and proximal small 

intestine1, 2. The DE gives rise to the epithelial lining and parenchyma of the respiratory and 

digestive organs, while the SM gives rise to the mesenchymal tissues such as smooth muscle, 

fibroblasts and mesentery surrounding the visceral organs 1,2. This foregut patterning defines the 

landscape of the thoracic and abdominal cavities, setting the relative position of different organs. 

Disruptions in this process can lead to life threatening congenital birth defects.  

 

A critical inductive role for the mesenchyme in gut tube organogenesis was first 

established in the 1960, when it was shown that SM transplanted from different anterior-posterior 

(A-P) regions of the embryo could instruct the adjacent epithelium to adopt the organ identity 
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consistent with the original SM position3. Since that time we have learned much about the 

mesoderm derived paracrine signals in endoderm organogenesis 1, 2.  However, most studies to 

date have focused on individual organ lineages or individual signaling pathways, and thus we still 

lack a comprehensive understanding of the temporally dynamic combinatorial signaling in the 

foregut microenvironment that orchestrates organogenesis. Moreover, several fundamental 

questions about the mesoderm have remained unanswered over the decades. How many types 

of SM are there, and does each fetal organ primordia have its own specific mesenchyme? How 

are the SM and DE lineages coordinated during organogenesis? What role if any does the 

endoderm have in regionalization of the mesoderm?  

 

Initial specification and patterning of the embryonic mesoderm and endoderm occurs 

during gastrulation, from E6.25 to E8.0 in the mouse, as these germ layers progressively emerge 

from the primitive streak. The lateral plate mesoderm emerges from the streak after the extra-

embryonic mesoderm, and is followed by the intermediate, paraxial and axial mesoderm4, 5. 

Concomitantly DE cells also delaminate from the streak and migrate along the outer surface of 

the mesoderm eventually intercalating into the overlaying visceral endoderm. By E8.0, 

morphogenetic processes begin to transform the bi-layered sheet of endoderm and mesoderm 

into a tube structure as the anterior DE folds over to form the foregut diverticulum and the adjacent 

lateral plate mesoderm containing cardiac progenitors migrates towards the ventral midline 6. The 

lateral plate mesoderm further splits into an outer somatic mesoderm layer next to the ectoderm 

which gives rise to the limbs and body wall, and an inner splanchnic mesoderm layer, which 

surrounds the epithelial gut tube 7, 8. The first molecular indication of regional identity in the SM is 

the differential expression of Hox genes along the A-P axis of the embryo9. However, in contrast 

to heart development, where cell diversification has been well studied10-12, the molecular 

mechanism governing the foregut SM regionalization are obscure, particularly during the critical 

24 hours when the foregut DE subdivide into distinct organ primordia. 

 

Recently, single cell transcriptomics have begun to examine organogenesis at an 

unprecedented resolution 13-16, however, studies in the developing gut have either primarily 

examined the epithelial component or later fetal organs after they have been specified  17-19. Here 

we used single cell transcriptomics of the mouse embryonic foregut to infer a comprehensive “cell 

state” ontogeny of DE and SM lineages, discovering an unexpected diversity in SM progenitor 

subtypes that develop in close register with the organ-specific epithelium. Projecting the 

transcriptional profile of paracrine signaling pathways onto these lineages, we inferred a roadmap 
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of the reciprocal endoderm-mesoderm inductive interactions that coordinate organogenesis. We 

validated key predictions with mouse genetics showing that differential hedgehog signaling from 

the epithelium patterns the SM into gut tube mesenchyme versus mesenchyme of the liver.  

Leveraging the signaling road map, we generated different subtypes of human SM from hPSCs, 

which previously have been elusive. 

 

RESULTS 
 
Single cell transcriptomes define progenitor diversity in the developing foregut. 
To comprehensively define lineage diversification during foregut organogenesis, we performed 

single cell RNA sequencing (scRNA-seq) of the mouse embryonic foregut at three time points 

that span the period of early patterning and lineage induction: E8.5 (5-10 somites, ‘s’), E9.0 (12-

15s) and E9.5 (25-30s) (Fig. 1a, b). We micro-dissected the foregut between the posterior pharynx 

and the midgut, pooling tissue from 15-20 embryos for each time point. At E9.5, we isolated 

anterior and posterior regions separately, containing lung/esophagus and liver/pancreas 

primordia, respectively. A total of 31,268 single-cell transcriptomes passed quality control 

measures with an average read depth of 3,178 transcripts/cell. Cells were clustered based on the 

expression of highly variable genes across the population and visualized using uniform manifold 

approximation projection (UMAP) and t-distributed stochastic neighbor embedding (t-SNE) (Fig. 

1c; Supplementary Fig. S1). This identified 24 cell clusters that could be grouped into 9 major cell 

lineages based on well-known marker genes: DE, SM, cardiac, other mesoderm (somatic and 

paraxial), endothelium, blood, ectoderm, neural crest and extraembryonic (Supplementary Fig. 

S1). DE clusters (4,448 cells) were characterized by co-expression of Foxa1/2, Cdh1 and/or 

Epcam, whereas SM (10,097 cells) was defined by co-expression of Foxf1 (Fig. 1d), Vim and/or 

Pdgfra as well as being negative for cardiac and other mesoderm specific transcripts. 

  

To pinpoint lineage diversification in the DE and SM, we selected these cells in silico for 

further analysis. We defined 11 major DE clusters consisting of 26 stage-specific sub-clusters 

(E9.5, 12 clusters; E9.0, 8 clusters; E8.5, 6 clusters) and 13 major SM groups comprised of 36 

stage-specific sub-clusters (E9.5, 17 clusters; E9.0, 12 clusters; E8.5, 7 clusters) (Fig. 1e, f, 

Supplementary Fig. S2 and S3, Table S1). We annotated clusters by comparing their 

distinguishing genes with published expression patterns of over 160  genes in the Mouse Genome 

Informatics (MGI) database 20.  These data provide a comprehensive single cell resolution view 
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of early foregut organogenesis and can be explored at URL:  https://research.cchmc.org/ZornLab-

singlecell. 
 

Our annotations identified all the major DE organ lineages at E9.5 including: Tbx1+ 

pharynx, two Nkx2-1/Foxa2+ respiratory clusters, two Sox2+ esophagus clusters, two 

Sox2/Osr1+ stomach clusters, two Alb/Prox1/Afp+ hepatic clusters (c1_hepatoblasts and c10_ 

early hepatocytes with higher Alb/HNF4a expression), Sox17/Pdx1+ hepatopancreatic duct, 

Pdx1/Mnx1+ pancreas and Cdx2+ duodenum (Fig. 1e). Consistent with our dissections we did 

not detect any Nkx2-1+/Hhex+ thyroid progenitors. Similar to recent scRNA-seq analysis of the 

E8.75 gut epithelium 19, we also annotated half a dozen distinct DE progenitor states between 

E8.5 and E9.0, based on the restricted expression of lineage specifying transcription factors (TF), 

including Otx2+ anterior foregut, Sox2/Sp5-enriched dorsal lateral foregut, Osr1/Irx1-enriched 

foregut, Hhex+ hepatic endoderm, Nkx2-3+ ventral DE adjacent to heart and a small population 

of Cdx2+ midgut cells (Supplementary Fig. S2 and Table S1).  

 

Validation of novel mesenchymal subtypes 
At all stages, the SM cell type diversity in the foregut was surprisingly complex, much more than 

previously appreciated (Fig. 1f and Supplementary Fig. S2). However, unlike the DE, SM 

populations were typically defined not just by one or two markers, but rather by a combination of 

multiple transcripts (Fig. 2a,b and Table S1). In situ hybridization and immunostaining of E9.5 

foreguts and embryo sections confirmed that combinations of co-expressed transcripts defined 

different organ-specific SM subtypes (Fig. 2c-q and Supplementary Movies 1 and 2). The 17 SM 

cell populations at E9.5 included five Tbx1/Prrx1+ pharyngeal clusters, Isl1/Mtus2+ cardiac 

outflow tract cells, Nkx6-1/Gata4/Wnt2+ respiratory and Nkx6-1/Sfrp2/Wnt4+ esophageal 

mesenchyme (Fig. 2b-j). We annotated three Barx1/Hlx+ stomach mesenchyme populations, 

(one was probably ventral based on Gata4 expression) and one Hand1/Hoxc8+ duodenum 

mesenchyme. We were unable to identify pancreas-specific mesenchyme and suspect that these 

cells were in the stomach or duodenum clusters (Fig. 2p,q).  

 

 Unexpectedly, the liver bud had five distinct mesenchymal populations. Data mining of 

MGI and in situ validation allowed us to annotate an Alcam/Wnt2/Gata4-enriched stm, a 

Tbx5/Wnt2/Gata4/Vsnl1+ sinus venosus, a Msx1/Wnt2/Hand1/Col1a1+ fibroblast population and 

two Wt1/Gata4/Uroplakin+ mesothelium populations (Fig. 2k-n and Supplementary Fig. S4). 

Interestingly we observed the restricted expression of Hand1 and Hand2 in the posterior versus 
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anterior liver bud (Supplementary Fig. S4b) and the mutually exclusive expression of Msx1 from 

Wnt2 and Wt1 (Supplementary Fig. S4e-f). This indicated extensive compartmentalization of the 

early liver bud mesenchyme warranting future investigation. 

 

Pseudotime spatial ordering of foregut cells  
Different organs form at precise locations along the anterior-posterior (A-P) axis of the gut. To 

assess whether this was reflected in the single cell transcriptional profiles, we employed a 

pseudotime analysis, which several groups have recently used to examine positional information 

of cells in a continuous field of embryonic tissue 16, 19, 21. To this end we analyzed the DE and SM 

cells at each stage using diffusion maps, a dimensional reduction method for reconstructing 

developmental trajectories 22, 23 . Anchoring the most anterior pharyngeal cluster as a root, we 

plotted the pseudotime density distribution for each cluster based on transition probabilities from 

root cells to all other cells in the graph  (see Methods). Remarkably, this ordered both the DE and 

SM cell populations according to their appropriate A-P position in the embryo, indicating that the 

analysis represents an unbiased proxy of pseudo-space (Fig. 1g-j; Supplementary Fig.S2). The 

data also indicated that at this time in development, cells in the embryonic gut tube exhibit a 

continuum of transcriptional signatures of which spatially adjacent cell types having more similar 

expression profiles than distant cell types. Indeed the E9.5 clusters from the anterior dissections 

were located in the anterior half of the pseudo-space continuum, compared to posterior tissue, 

confirming the robustness of the computational ordering. Finally, we examined Hox genes which 

are known to be expressed in a co-linear fashion along the A-P axis and accordingly we observed 

a progressive increase of posterior Hox paralog expression in more posterior clusters, particularly 

within the SM (Supplementary Fig. S5a).  

 

Combining the pseudo-space analysis, MGI curations and in situ validation, we were able 

to map each DE and SM population to their approximate locations in the gut tube (Fig. 1i, j; 

Supplementary Fig. S2). This revealed that the SM diversity mirrored DE lineages, indicating their 

closely coordinated development from the very beginning of organogenesis.   

 

Transcription factor code of foregut endoderm and mesenchyme. 
DE organ lineages have historically been defined by the overlapping expression domains of a few 

key transcription factors (TFs) 1, 2, 24. While some regionally expressed TFs have been reported in 

the SM, the single cell RNA-seq data allowed us to define a comprehensive combinatorial code 

of differentially expressed TFs that distinguish different SM and DE subtypes (Supplementary Fig. 
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S5c and Table S1). This revealed new lineage-restricted markers such as homeodomain TF 

Nkx6-1. Well known for its expression in the pancreatic endoderm (Fig. 2p) 25, 26, Nkx6-1 was also 

specifically expressed in the respiratory and esophageal mesoderm at E9.5 (Fig. 2b,c,h-j, and 

Supplementary Movies 1 and 2). This TF code will facilitate lineage tracing experiments and 

prompt studies testing their role in mesenchymal differentiation. 

 

Synchronized endoderm and mesenchyme lineage trajectories. 
The transcriptional cell state complexity of the DE and SM doubled in just 24 hours between E8.5 

and E9.5, reflecting progenitors forming more specialized cell types. To examine the temporal 

dynamics of lineage diversification, we visualized the single cell data using SPRING (Fig. 3a, b), 

an algorithm that represents k-nearest neighbors in a force directed graph, facilitating analysis of 

developmental trajectories27. Both the DE and SM trajectories progressed from a continuum of 

closely related cell states at E8.5 to transcriptionally distinct cell populations at E9.5 (Fig. 3a, b 

and Supplementary Fig. S6), consistent with the transition from multipotent progenitors to organ 

specific lineages. Importantly the cell clusters defined by tSNE were well-preserved in SPRING 

(Supplementary Fig. S6), supporting the robustness of the clustering. One striking observation 

evident in the structure of the SPRING plots was the apparent coordination of SM and DE lineage 

diversification over the 24 hours. 

 

To more clearly visualize the developmental trajectories associated with lineage 

diversification, we generated a consensus cell state tree using a single cell voting method, where 

each cell of a later time point votes for its most likely parent of the previous time point based on 

gene expression similarity. We then tabulate all the cell votes for each cluster (Fig. 3c,d) and 

represented this in a simple tree manifold (Fig. 3e,f). While we cannot rule out SM migration 

bringing distant cell types to a given organ, the data supported the notion of transcriptionally 

related cell states arising from the subdivision of common progenitor populations. Given that our 

time points were generated from pooled embryos of slightly different ages, it was possible that 

parent-child relationships could exist within a given time point. To address this and confirm the 

single cell voting results, we assessed each trajectory with a pseudotime analysis that 

computationally predicts progenitor states in a cell population (Monocle14). In general, the 

pseudotime analysis agreed with the single cell voting. But in the case of the liver endoderm, 

Monocle predicted a parent-child relationship within E9.0, where Hhex+ posterior foregut 

endoderm (cluster e_b2) gives rise to both Prox1/Afp+ hepatoblasts (e_b5) and 
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Prox1/Sox17/Pdx1+ hepatopancreatic biliary progenitors (e_b7) (Supplementary Fig. S7), 

consistent with in vivo lineage tracing experiments 28, 29.   

 

Overall the DE trajectories inferred by the single cell transcriptomes are consistent with 

experimentally determined fate maps 28-30, demonstrating the robustness of our analysis and 

suggesting that the SM trajectories, which previously have not been well defined, may also 

represent lineage relationships. Having said that we caution that cells with this similar 

transcriptomes may not necessarily be lineage-related. Indeed there are cases where cells from 

different lineages such as ventral and dorsal pancreas can converge on similar transcriptional 

profiles. Thus our results establish a theoretical framework for future experimental analysis of 

foregut mesenchyme development. 

 

Coordinated development of multi-potent progenitors 
A close examination of the DE and SM trajectories suggests the coordinated development from 

multipotent progenitors within adjacent endoderm and mesoderm tissue layers. For example, at 

E8.5 the DE lateral foregut cells (e_a2) and the spatially neighboring SM cells (m_a0) both 

express the TF Osr1, and the trajectories predict that these two cell populations are multipotent 

progenitors, giving rise to the respiratory, esophageal and gastric epithelium and mesenchyme 

respectively (Fig. 4a-b). As development proceeds, different cell populations appear to be 

segregated as they progressively express distinct lineage regulating TFs and growth factors (Fig. 

4a-d). In situ validation confirmed that Osr1 is expressed in both the epithelium and mesenchyme 

of the presumptive esophagus, lung and stomach at E9.5 (Fig. 4e-g). 

 

Furthermore, a close examination of the DE trachea cluster suggested a transitional cell 

population co-expressing the respiratory maker Nkx2-1 and the esophageal marker Sox2 at E9.5 

when the foregut is being patterned along the dorsal-ventral axis (Fig. 4h-i). Immunostaining 

confirmed that this was indeed a rare Nkx2-1/Sox2+ cell population at the prospective tracheal-

esophageal boundary (Fig. 4k-l), which recent studies have demonstrated to be critical in 

tracheoesophageal morphogenesis31, 32. In sum, the foregut lineage trajectories predicted from 

the single cell transcriptomes represent a valuable resource for further studies. 

 

Predicting a signaling road map of organ induction 
We next sought to computationally predict the paracrine signaling microenvironment in the foregut 

that controls these cell fate decisions (Fig. 5a,b). We calculated metagene expression profiles for 
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all the ligands, receptors and context-independent response genes in each DE and SM cluster 

for six major signaling pathways implicated in organogenesis: BMP, FGF, Hedgehog (HH), Notch, 

retinoic acid (RA) and canonical Wnt (see Methods & Supplementary Fig. S8, Table S2). 

Leveraging our spatial map of each cell population in the foregut (Fig. 1i,j) we ordered cell 

populations along the A-P axis such that DE and SM cell types most likely to be in direct contact 

were opposite one another in the signaling diagram (Fig. 5c). We then used the metagene 

expression levels to predict potential ligand-receptor pairs and the likelihood that a given cell 

population was responding to local paracrine or autocrine signals (Fig. 5a-c, Supplementary Fig. 

S9). We benchmarked the metagene expression thresholds on experimentally validated 

interactions from the literature. Also we limited potential ligand-receptor pairings to nearby cell 

clusters, consistent with the generally accepted view that these pathways act over a relatively 

short range. Together this analysis revealed a hypothetical combinatorial signaling network (Fig. 

5a-c, Supplementary Fig. S9). 

 

Overall the computational predictions are consistent with known expression patterns of 

ligands and receptors, and identified most known signaling interactions controlling DE lineage 

specification. This includes mesoderm derived BMP, FGF and Wnt promoting DE liver and lung 

fate, and autocrine notch signaling in the DE endocrine pancreas 1, 2, 33, 34.  This suggested that 

previously undefined SM signaling predictions are also likely to be accurate. To test this we 

examined BMP signaling as an example. Consistent with the scRNA-seq data, in situ hybridization 

confirmed high levels of Bmp4 ligand expression the stm and the respiratory mesenchyme, while 

immunostaining for phospho-Smad1/5/8, the cellular effector of BMP signaling, confirmed 

autocrine and paracrine signaling in the developing liver and respiratory mesenchyme and 

epithelium respectively as predicted (Fig. 5e-g).  

 

We projected the signaling response-metagene expression levels onto the SPRING plots 

and cell state tree which revealed spatiotemporally dynamic signaling domains that correlated 

with cell lineages (Fig. 5d, Supplementary Fig. S10). In general, the transcriptome data predicts 

locally restricted interactions, with the SM being the primary source of BMP, FGF, RA and Wnt 

ligands, signaling to both the adjacent DE and within the SM itself (Fig. 5c). In contrast, HH ligands 

are produced by the DE and signal to the gut tube SM, with no evidence of autocrine activity in 

the DE (Fig. 5c). Combining the data for all six signaling pathways onto the cell state trees, we 

generated a comprehensive roadmap of the combinatorial signals predicted to coordinate the 

temporal and spatial development of each DE and SM lineage (Fig. 5h,i). This analysis predicts 
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a number of previously unappreciated signaling interactions and represent a hypothesis 

generating resource for further experimental validation. 

 

Testing the role of epithelial Hedgehog signaling in foregut mesenchyme patterning. 
To genetically test the predictive value of the signaling roadmap, we focused on HH activity, which 

is suggested by the scRNA-seq to be high in gut tube SM (esophagus, respiratory, stomach and 

duodenum) but low in the pharyngeal and liver SM (Fig. 6a-c). HH ligands stimulate the activation 

of Gli2 and Gli3 TFs, which in turn promote the transcription of HH-target genes (e.g. Gli1)35. As 

expected, mouse embryo sections confirmed that Shh ligand was expressed in the gut tube DE 

with high levels of Gli1-LacZ expression in the adjacent SM. By contrast, the hepatic endoderm 

did not express Shh 36 and the hepatic SM had very few if any Gli1-LacZ positive cells (Fig. 6d). 

To define the function of HH in SM patterning, we performed bulk RNA-seq on foreguts from Gli2-

/-;Gli3-/-  double mutant embryos, which lack all HH activity and fail to specify respiratory fate 34. 

Comparing homozygous mutants to heterozygous littermates, we identified 156 HH/Gli-regulated 

transcripts (Fig. 6e; Supplementary Table. S3). Given the caveat that this bulk RNA sequencing 

is performed with both endoderm and mesoderm, we examined the enrichment of these HH-

regulated transcripts in the transcriptome of DE and SM single cell clusters. This revealed that 

most transcripts were expressed the SM compared to the DE. Importantly, transcripts 

downregulated in Gli2/3-mutants (n=80) were normally enriched in the gut tube SM, whereas 

upregulated transcripts (n=76) were normally enriched in the liver or pharyngeal SM (Fig. 6e-g).  

Interestingly HH/Gli-regulated transcripts, including downregulated TFs (Osr1, Tbx4/5, Foxf1/2) 

and upregulated TFs (Tbx18, Lhx2 and Wt1), have been implicated in respiratory and hepatic 

development respectively (Fig. 6e; Supplementary Table S3)  37. This genetic analysis confirmed 

the predictive value of the signaling roadmap where differential HH activity promotes gut tube 

versus liver and pharyngeal SM (Fig. 5i), in part by regulating other lineage specifying TFs and 

signaling proteins. 

  

Our data, together with previous work, suggested a model where the reciprocal epithelial-

mesenchymal signaling network coordinates DE and SM lineages during organogenesis. In this 

model, SM-derived RA induces a regionally restricted expression of Shh in the DE by E9.0 34, 

which then signals back to the SM, establishing broad pharynx, gut tube and liver domains. Other 

SM ligands (BMP, FGF, Notch, RA and Wnt), with distinct combinations of regional expressions 

in these three broad domains, then progressively subdivide DE and SM progenitors in a 

coordinated manner. In the future it will be important to test this model by cell-specific genetic 
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manipulations. 

 

Differentiation of splanchnic mesenchyme-like lineages from human PSCs.  
We next tested whether our new SM markers and signaling roadmap could be used to direct the 

differentiation of distinct SM subtypes from human pluripotent stem cells (hPSC), which to date 

have been elusive. Previous studies have established protocols to differentiate hPSC into lateral 

plate mesoderm (lpm) and cardiac tissue 38. Although both the SM and heart are derived from the 

lpm, the single cell data suggested that in the mouse, the early SM experiences more RA signaling 

than the early cardiac mesoderm. This was confirmed by RA-responsive RARE:lacZ transgene 

expression in E8.5 embryos (Supplementary Fig. S11a, b). Accordingly, addition of RA to the lpm 

differentiation media on days (d) 2-4 down-regulated the cardiac markers NKX2-5, ISL1 and 

TBX20 and promoted the SM markers FOXF1, HOXA1, HOXA5 and WNT2 (Fig. 7b, 

Supplemental Fig. S11c,d). This is consistent with the mouse scRNA-seq data which shows that 

E8.5 SM expresses Nkx2-5, Isl1 and Tbx20, at lower levels than the cardiac mesoderm. 

Examination of PAX3, PRRX1 and CD31 confirmed that the d4 SM cultures did not express 

significant levels of endothelial, somatic or limb mesenchyme markers (Supplemental Fig. S11c). 

 

We next treated the primitive SM with different combinations of HH, RA, Wnt and BMP 

agonists or antagonist from d4-d7 (Fig. 7a), to drive organ-specific SM-like lineages based on the 

roadmap. As predicted, the HH-agonist promoted gut tube identity and efficiently blocked the 

hepatic fate. In the HH treated cultures, addition of RA and BMP4 (RA/BMP4) followed by WNT 

on d6-7 promoted gene expression consistent with respiratory mesenchyme (NKX6-1, TBX5 and 

WNT2) with low levels of esophageal, gastric or hepatic markers. In contrast, addition of RA and 

BMP4-antagoist on d6-7 promoted an esophageal/gastric-like identity (MSC, BARX1, WNT4 and 

NKX3-2) (Fig. 7b-c and Supplementary Fig. S12d). In the absence of HH agonist, cells treated 

with RA/BMP had a gene expression profile similar to liver stm and mesothelium (WT1, TBX18, 

LHX2 and UPK1B), whereas RA/BMP4/WNT treated cells expressed liver-fibroblast markers 

(MSX1/2 and HAND1). Immunostaining and RNA-scope confirmed the RT-PCR analysis  (Fig. 

7c-d and Supplementary Fig. S12a-c) showing that ~70-80% cells in the liver stm/mesothelium-

like cultures were WT1+,MSX1-,NKX6-1-, whereas the other populations appear to be around 30-

40%. The remainder of cells appeared to be undifferentiated rather than an alternative lineage. 

While future work is needed to optimize the culture conditions for each lineage, these data 

provided a proof of principle that the signaling roadmap inferred from the mouse scRNA-seq data 

can be used to direct the differentiation of different organ specific SM subtypes from hPSC. 
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DISCUSSION 
 
We have used single cell transcriptomics to define the complexity of DE and SM cell types in the 

embryonic mouse foregut over the first 24 hours of organogenesis as the primitive gut tube is 

subdivided into distinct organ domains. Our analysis revealed an unexpected diversity of distinct 

cell types in the foregut mesenchyme, defined by new marker genes and a combinatorial code of 

transcription factors. Cell trajectories indicate that the development of organ-specific DE and SM 

is closely coordinated, suggesting a tightly regulated signaling network. We computationally 

predicted a putative ligand-receptor signaling roadmap of the reciprocal epithelial-mesenchymal 

interactions that are likely to coordinate lineage specification of the two tissue compartments. This 

study represents a valuable resource for further experimental examination of foregut 

organogenesis and the data can be explored via the interactive website 

https://research.cchmc.org/ZornLab-singlecell. 

 

Prior studies of SM regional identity in the early embryo have been limited. Besides well-

known regionalization of Hox gene expression, most studies have largely focused on individual 

organs such as the gastric or pulmonary mesenchyme 9, 39, 40. By comparing single cell 

transcriptomes across the entire foregut, we revealed an extensive regionalization of the early 

SM into distinct organ-specific mesenchyme subtypes. It is possible that the divergent 

transcription signatures of early SM cell types are only transiently utilized to define position and 

molecular programs during fetal organogenesis. After organ fate is determined, different SM cell 

types may converge on similar differentiation programs such as smooth muscle or fibroblasts, 

which are common in all visceral organs. However, our results of fetal SM diversification are 

interesting in light of the emerging idea of organ-specific stromal cells in adults, such as hepatic 

versus pancreatic stellate cells and pulmonary specific fibroblasts 41, 42. For example, Tbx4 is 

expressed in embryonic respiratory SM and later is specifically maintained in adult pulmonary 

fibroblasts but not in fibroblast of other organs42. Future integrated analyses of our data with other 

scRNA-seq dataset from later fetal and adult organs 43, 44  should resolve how transcriptional 

programs evolve during cellular differentiation, homeostasis and pathogenesis. 

 

One unexpected observation was that the liver bud contained more distinct SM cell states 

than any other organ primordia with the septum transversum mesenchyme (stm), sinus venosus, 

two mesothelium and a fibroblast population. This may be due to the fact that unlike other GI 
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organs that form by epithelium evagination, the hepatic endoderm delaminates and invades the 

adjacent stm, a process that may require more complex epithelial-mesenchymal interactions with 

the extracellular matrix. Our transcriptome analysis is consistent with lineage tracing experiment 

showing that the early stm gives rise to the mesothelium, hepatic stellate cells, stromal fibroblasts, 

and perivascular smooth muscle 45. It will be important to determine if other organ buds have a 

similar elaboration of cell types as they differentiate. Alternatively, mesothelium and fibroblast that 

originate in the liver may migrate to other organ buds.  Indeed mesenchymal cell movement is 

one confounding limitation of our study and there is good evidence that mesothelium of the liver 

bud, also known as the proepicardium migrates to surround the heart and lungs 46, 47.  Going 

forward, it will be important to use technologies that couple lineage tracing with single cell 

transcriptomics and live imaging 48  to resolve these important questions.  

 

The foregut SM and the cardiac mesoderm are closely related, both arising from the 

anterior lateral plate mesoderm 10, 11. A preliminary cross-comparison of our data with recent 

single cell RNA-seq studies of the early heart suggests that this common origin is reflected in the 

transcriptomes 12. The developing heart tube is contiguous with the ventral foregut SM (also 

known as the second heart field), with the arterial pole attached to the pharyngeal SM and the 

venous pole attached to the lung/liver SM.  Fate mapping studies indicate that the second heart 

field gives rise to heart tissue as well as pharyngeal SM, respiratory SM, and pulmonary 

vasculature10, 49. Indeed, our single cell transcriptomics and genetic analysis of Gli mutants are 

consistent with previous studies indicating that the epithelium derived HH signals are critical for 

the development of these cardio-pulmonary progenitors49, 50. How the SHF is subsequently 

segregated into different cardiac and SM lineages is unclear but could be addressed by an 

integration of our data with other cardiac centric studies. 

 

One important outcome of our study was to use the signaling roadmap inferred from the 

single cell transcriptomics to direct the development of hPSCs into different SM-like cell types, 

which to date have been elusive. While more work is needed to optimize the purity of the cell 

populations and to determine the differentiation potential of each of these cell populations, this 

system provides a unique opportunity to model human fetal mesenchyme development and to 

interrogate how combinatorial signaling pathways direct parallel mesenchymal fate choices. 

These hPSC-derived SM-like tissue may also have important applications for tissue engineering. 

To date, most hPSC-derived foregut organoids (gastric, esophageal and pulmonary) tend to lack 

mesenchyme, unlike hindgut derived intestinal organoids. This is because the differentiation 
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protocol needed to make foregut epithelium is not compatible with mesenchymal development. 

The protocols we have defined here should enable the recombination of DE and SM organoids, 

an important step towards engineering complex foregut tissue for regenerative medicine. Looking 

forward, our approach of computational inferring signal interactions coupled with manual curation 

and a deep understanding of tissue anatomy could be used to predict cell-cell interactions in other 

organ systems or those that drive pathological states such as the cancer niche.     
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METHODS  
 
Embryo collection and single cell dissociation  
All mouse experiments were performed in accordance with protocols approved by the Cincinnati 

Children’s Hospital Medical Center Institutional Animal Care and Use Committee (IACUC). No 

statistical sample size estimates were performed prior to the experiment, sufficient embryos to 

generate the material need for the experiments were used. No randomization was utilized as no 

particular treatment was performed in different groups. Timed matings were set up between 

C57BL/6J mice and the day where a plug was detected was considered embryonic day 0.5. 

Staging was validated by counting somite numbers E8.5 (5-10 somites; “s”), E9.0 (12-15s) and 

E9.5 (25-30s) (Fig. 1a, b). We micro-dissected the foregut between the posterior pharynx and the 

midgut, removing most of the heart and paraxial tissue and excluded the thyroid. At E9.5, we 

isolated anterior and posterior regions separately, containing lung/esophagus and liver/pancreas 

primordia, respectively. We pooled dissected foregut tissue from 16, 20, 18 and 15 embryos  for 

E8.5, E9.0 and E9.5 anterior and E9.5 posterior, respectively isolated from 2-3 litters.  

 

Single cell dissociation by cold active protease protocol was performed as described 

previously51. Rapidly dissected C57BL/6J mouse embryo tissues were transferred to ice-cold PBS 

with 5 mM CaCl2, 10 mg/ml of Bacillus Licheniformis protease (Sigma) and 125 U/ml DNAse 

(Qiagen) and incubated on ice with mixing by pipet. After 7 min, single cell dissociation was 

confirmed with microscope. Cells were then transferred to a 15 ml conical tube, and 3ml ice cold 

PBS with 10 % FBS (FBS/PBS) was added. Cells were pelleted (1200 G for 5 min), and 

resuspended in 2 ml PBS/FBS. Cells were washed three times in 5 ml PBS/0.01%BSA 

(PBS/BSA) and resuspended in a final cell concentration of 100,000 cells/ml for scRNAseq. Single 

cell suspensions of each stage were loaded onto the Chromium Single Cell Controller instrument 

(10x Genomics) to generate single-cell gel beads in emulsion. Single cell RNA-Seq libraries for 

high-throughput sequencing were prepared using the Chromium Single Cell 5’ Library and Gel 

Bead Kit (10x Genomics). All samples were multiplexed together and sequenced in an Illumina 

HiSeq 2500. The technician was blinded during the RNA extraction, library preparation and 

sequencing. 

  

Immunofluorescence staining, in situ hybridization and RNAscope 
Mouse embryos were harvested at indicated stages and fixed in 4% paraformaldehyde (PFA) at 

4°C for overnight. The fixed samples were washed with PBS 10 min 3 times and the foreguts 
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were micro-dissected when indicated. Embryos or dissected foreguts were then processed as 

described previously 52 by antibody staining (supplementary table.S4) or processed for in situ 

hybridization. 

For RNAscope on mouse tissue, fixed embryos were immersed in 30% sucrose/PBS overnight, 

embedded in OCT , cryosectioned (12 µm) onto SuperfrostTM Plus slides and stored at -80˚C 

overnight.  For RNAscope of adherent hPSC culture cells were differentiated on Geltrex-coated 

u-Slide 8 well (80826, ibid) and fixed in 4% PFA at room temperature for 30min.  Cells were 

dehydrated with ethanol gradient and stored in 100% ethanol at -20˚C. RNAscope fluorescent in 

situ hybridization was conducted with RNAscope Multiplex Fluorescent Detection Reagents V2 

(323110, advanced cell diagnostics, Inc.) and Opal fluorophore (akoya biosciences) according to 

manufacturer’s instructions. Detail procedures were listed on Tables S5. 

 

Pre-processing 10x Genomics raw scRNA-seq data  
Raw scRNA-Seq data was processed using CellRanger (v2.0.0 10xGenomics) 

(https://github.com/10XGenomics/cellranger). Reads were aligned to mouse genome [mm10] to 

produce counts of genes across barcodes. Barcodes with less than ~5k UMI counts were not 

included in downstream analysis. Percentage of reads mapped to transcriptome was ~70% 

each sample. The resulting data comprised 9748 cells in E8.5, 9265 cells in E9.0 7208 cells in 

E9.5 anterior samples and 5085 cells in E9.5 posterior samples.  

 

Quality control, dimensionality reduction, clustering and marker prediction 
Subsequent QC, and clustering was performed using Seurat [v2.3.4] package in R53, 54. Basic 

filtering was carried out where all genes expressed > 3 cells and all cells with at least 100 

detected genes were included. QC was based on nGene and percent.mito parameters to 

remove the multiplets and cells with high mitochondrial gene expression. After filtering 9748, 

9265 and 12255 cells were retained in E8.5, E9.0 and E9.5 samples respectively. Global 

scaling was used to normalize counts across all cells in each sample [scale factor: 10000] and 

cell cycle effect was removed by regressing out difference between S phase and G2M phase 

from normalized data using default parameters. We first clustered each developmental stage 

separately to identify major cell lineages. Approximately 1500 Highly variable genes (HVG) 

across each population were selected by marking outliers from dispersion vs. avgExp plot. 

PCA was performed using HVG, and the first 20 Principal Components were used for cells 

clustering, which then was visualized using t-distributed stochastic neighbor embedding 

(tSNE). Marker genes defining each cluster were identified using ‘FindAllMarkers’ function 
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(Wilcoxon Rank Sum Test) in Seurat and these were used to annotate clusters based on well-

known cell type specific genes.  

 

Cells from all three time points were integrated with Seurat (v3.0) using a diagonalized 

canaonical correlation analysis (CCA) was used to reduce the dimensionality of the datasets 

followed by L2-normalization of canonical correlation vectors (CCV). Finally, mutual nearest 

neighbors (MNN) were  obtained which also are referred as integration anchors (cell pairs) to 

integrate the cells. First 30 CCs (canonical correlation components) were used for clustering 

and non-linear dimension reduction approaches (UMAP and tSNE) were used to reduce the 

dimensions and visualize cells in two dimensions. 

 

In silico selection and clustering for definitive endoderm and splanchnic mesenchyme 
Definitive Endoderm (DE) clusters (4,448 cells) were defined by the co-expression of 

Foxa1/2, Cdh1 and/or Epcam, whereas the splanchnic SM (10,097 cells) were defined by co-

expression of Foxf1, Vim and/or Pdgfra as well as being negative for cardiac, somatic and 

paraxial mesoderm specific transcripts. Cells from DE and SM clusters were extracted from 

each time point and re-clustered using Seurat [v2.3.4] to define lineage subtypes. Prior to re-

clustering blood, mitochondrial, ribosomal and strain-dependent noncoding RNA genes were 

regressed from the data. Dimensionality reduction, clustering and marker prediction steps 

were performed as described above for each stage. DE and SM cell subtypes were 

annotated by manual curation comparing the cluster marker genes with over 300 published 

expression profiles in the MGI database20 and our own gene expression validations. DE and 

SM clusters from all three time points analyzed together using Seurat (v3.0) integration 

approach explained above respectively.  

 

Transcription factor code for DE and SM lineages 
To identify TFs with enriched expression specific to different DE and SM cell types 

‘FindAllMarkers’ function in Seurat [v3.0] was utilized on set of 1623 TFs expressed in the 

mouse genome [AnimalTFDB] 55. Raw counts of TFs were normalized and scaled in Seurat 

[v3.0]. Cells in clusters served as replicates in finding marker TFs for each lineage. Wilcoxon 

rank sum test was used in identifying marker TFs. Top 5 marker TFs were then visualized 

using DimHeatmap function in Seurat(v3.0) 

 

Pseudo-time analysis of cell populations spatial organization 
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To examine whether pseudo-time analysis could inform the spatial organization of cells in the 

continuous sheet of tissue DE or SM tissue a pseudo-time analysis was performed using 

URD [v1.0] [Farrell, 2018 #354]. Firstly, in order to calculate pseudotime, transition 

probabilities were calculated for DE and SM cells at each stage using diffusion maps. Then 

the calcDM function was used to generate diffusion map components and the first 8 

components were used to calculate transition probabilities among cells.  Next to calculate 

pseudotime, root cells were fixed to the most anterior clusters based on manual annotation. 

Starting from root cells a probabilistic breadth-first graph search using transition probabilities 

was performed until all the cells in the graph have been visited. Multiple simulations were run 

and pseudotime equaled average iteration that visited each cell in the graph from the root 

cells. Following functions in URD were used to calculate pseudotime (“floodPseudotime” and 

floodPseudotimeProcess”). Finally, density distribution of pseudotime was plotted for each 

cluster/cell-type using plotDists function. Density distribution of pseudotime, ordered clusters 

similarly to the manually curated order of cell types along the A-P axis. 

 
SPRING analysis of cell trajectories  
To examine cell trajectories across the three time points, we implemented SPRING [v1.0] 27, 

which uses a k-Nearest Neighbors (KNN) graph (5 nearest neighbors) to obtain force-directed 

layout of cells and their neighbors. To understand transcriptional change across cell states 

(lineages), first 40 principle components (PC) were learnt from the latest time point E9.5, and 

this PC space was used to transform the entire data set (E8.5, E9.0 and E9.5). This 

transformed data was used to generate a distance matrix which then was used to obtain the 

KNN graph using the default parameters.  

 

Inferring a cell-state tree by parent-child single cell voting 
To visualize the trajectories in a simple transcriptional cell state tree, we used a parent-child 

single cell voting approach based on the KNN classification algorithm. First, a normalized 

counts matrix was generated using the distinguishing marker genes from all DE or SM clusters 

as features at each stage. Marker genes were used as features to train KNN, during which the 

KNN learns the distance among cells in the training set based on the feature expression. Each 

cell was classified based on the Seurat cluster assignment. Cells of a later time point vote for 

their most likely parent cells in the earlier time point as follows: train KNN using E8.5 cells and 

test by E9.0 cells voting for E8.5 cells. KNN resulted in vote probability for each cell in E9.0 

against each cluster in E8.5, which was subsequently averaged for each cluster in E9.0 against 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2020. ; https://doi.org/10.1101/756825doi: bioRxiv preprint 

https://doi.org/10.1101/756825


	

	 19	

each cluster in E8.5. This approach was repeated with E9.5 cells voting for E9.0 parents. The 

average vote probability for a given cluster was tabulated, normalized for cluster size and 

represented as a % of total votes in a confusion matrices. The top winning votes linking later 

time points back to the preceding time point were displayed as a solid line on the tree. 

Prominent second choices with >60% of winning votes were reported on the tree as dashed 

lines. We also compared this vote probability with the confusion matrix resulting from the KNN 

to assess our transcriptional cell-state tree. In more than 99% cases, these two methods 

resulted in the same first and second choices, thereby validating deduced parent-child 

relationships. 

 We validate the cell state tree assertions using pseudotime analysis, Monocle [v3.0.0] 
14 was deployed on individual lineages/cell states. tSNE was used for Dimensionality Reduction 

and principle graph was learnt using SimplePPT. All the other parameters were set to default.  

 
Calculation of metagene profiles  
For six of the major paracrine signaling pathways implicated in foregut organogenesis (BMP, FGF, 

HH, Notch RA and canonical Wnt), we curated a list of all the well-established ligands, receptors 

and context-independent pathway response genes that were encoded in the mouse genome 

(supplementary table S2a -excel tab1). We then calculated a “ligand-metagene”, “receptor-

metagene” and “response-metagene” profiles by summing the normalized expression of each 

individual gene for each pathway (e.g.: Wnt-ligand metagene 

=ΣWnt1+Wnt2+Wnt2b+Wnt3…Wnt10b expression) in each cell and cluster as follows:  

Assuming that there are x genes in the gene set and n cells. Gene1 has (a1,a2…an) counts, 

Gene2 has (b1,b2…bn) counts and so on. 

Step1: Each gene’s counts were normalized using the gene’s max count across all DE and SM 

cells (n=14,545 cells) : Gene1_norm = (a1,a2,..an)/max(a1,a2…an) 

Step2: Normalized counts of genes were summed up, for each cell, to generate a metagene_v1 

with counts across cells: metagene_v1 = Gene1_norm+ Gene2_norm+..+Genex_norm 

Presuming summed up counts are: m1,m2,..mn 

Step3: Summed counts of metagene_v1 were normalized by max counts of the metagene_v1, 

to create a meta gene profile for each cell : MetaGene = (m1,m2,..mn)/max(m1,m2…mn) 

The average Metagene expression profiles for ligands, receptors and response genes in each 

DE and SM cluster were then calculated in Seurat [v3.0] using ‘AverageExpression’ function. 

The average expression profile of metagene across all DE and SM clusters were visualized as 
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a Dotplot using Seurat (v3.0). Average Expression of Metagene expression profiles were 

scaled from -2 to 2 for Dotplot visualization. 

 

Prediction of receptor-ligand interactions  
A given cell type was scored to be expressing enough ligand to send a signal or enough receptor 

to respond to ligand if the average ligand-metagene or receptor-metagene expression level was 

> -1 and expressed in > 25% of cells. (Except for the Notch ligand-metagene where expression 

threshold of > -1.5 was used due to low overall expression in all cells). These thresholds 

empirically set to be conservative and benchmarked against experimentally validate signaling 

interactions in DE liver, lung and pancreas from the literature. Furthermore, we determined the 

likely hood that a given cell population was responding based on the context-independent 

pathway response-metagene expression level being > -1 and expressed in > 25% of cells. 

Context-independent response genes are those genes that are known from the literature to be 

directly transcribed in most cell types that are responding to a ligand-receptor activation.  

 

DE and SM cell clusters of each stage are ordered along the A-P axis consistent with the location 

of organ primordia in vivo with spatially adjacent DE and SM cell types across from one another 

in the diagram. To assign receptor-ligand interactions for each cell cluster we first determined 

if a given cluster was responding based on having response-metagene and receptor-metagene 

levels > -1 threshold. If the responding cluster also expressed the ligand-metagene level > -1, 

an autocrine signaling was established. For paracrine signaling, we then identified adjacent 

cell populations, within the same tissue layer and from the adjacent layer  that expressed the 

ligand-metagene above the threshold and then established a receptor-ligand interaction 

(arrow). The signal strength was calculated as the sum of the ligand-metagene and the 

response-metagene values. If this value was > 1, the signal was considered “strong”. 

 

Comparison of bulk RNA-Seq vs scRNA-Seq: 
Foregut tissue was dissected from E9.5 double mutant Gli2-/-;Gli3-/-  (n=3) and Gli2+/-;Gli3+/-  

heterozygous litter mate controls (n=3). Each dissected foregut was separately used for RNA 

extraction, library preparation and bulk RNA-Seq.  These mice were of mixed strains, and the sex 

of the embryos were unknown. The CSBB [v3.0] (https://github.com/csbbcompbio/CSBB-v3.0) 

pipeline was used to aligned to mouse genome [mm10] and determine differentially expressed 

transcripts between the two gene types were obtained using RUVSeq (LogFC > |1| and FDR < 
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0.1). Differentially expressed (DE) genes were clustered using hierarchical clustering and 

visualized in Morpheus (https://software.broadinstitute.org/morpheus/) across samples.  

To compare our bulk analysis to scRNA-Seq, we visualized the expression of DE genes across 

cells in scClusters. We utilized the ‘DoHeatmap’ function in Seurat [v3.0.0]. Cells were arranged 

according to Anterior/Posterior axis position of their respective clusters and genes were 

ordered as returned from the clustering order obtained above. We also performed Gene Set 

Enrichment Analysis (GSEA) [v3.0] 56 to examine statistical enrichment of the DE genes in the 

gut tube SM (respiratory, esophagus, gastric, duodenum), pharynx and liver SM clusters. 

Normalized counts of genes across cells and up/down-regulated genes from bulk RNA 

sequencing were used as custom gene sets to perform the GSEA analysis. 
 
Maintenance of PSCs  
Two hPSC lines were used in this study; 1) WA01-H1 human embryonic stem cells purchased 

from WiCell (NIH approval number NIHhESC-10-0043 and NIHhESC-10-0062) and 2) human 

iPSC72_3 generated by the CCHMC Pluripotent Stem Cell Facility. Both cell lines have been 

authenticated as follows: i) Cell identity; via STR profiling by Genetica DNA Laboratory (a LabCorp 

brand; Burlington, NC), ii) Genetic stability; by standard metaphase spread and G-banded 

karyotype analysis in CCHMC Cytogenetics Laboratory and iii) Functional pluripotency; cells were 

subjected to analysis of functional pluripotency by teratoma assay demonstrating ability to 

differentiate into each of the three germ layer. Both cell lines routinely tested negative for 

mycoplasma contamination. hPSC lines were maintained on feeder-free conditions in mTeSR1 

medium (StemCell technologies, Vancouver, Canada) on six-well Nunclon surface plates (Nunc) 

coated with Geltrex (ThermoFisher Scientific) and maintained in mTESR1 media (Stem Cell 

Technologies) at 37°C with 5% CO2. Cells were checked daily and differentiated cells were 

manually removed. Cells were passaged every 4 days using Dispase solution (ThermoFisher 

Scientific). 

 

Differentiation of PSCs into mesenchyme 
Differentiation of hPSCs into lateral plate mesoderm was induced using previously described 

methods 38 with modifications. In brief, partially confluent hPSCs were dissociated into very fine 

clumps in Accutase (Invitrogen) and passaged 1:18 onto new Geltrex-coated 24-well plates for 

immunocytochemistry and 12-well plates for RNA preparation in mTeSR1 with 1uM thiazovivin 

(Tocris) (Day -1). Next day, a brief wash with DMEM/F12 is followed with Day0 medium 30ng/ml 

Activin A (Cell Guidance Systems) + 40ng/ml BMP4 (R&D Systems) + 6uM CHIR99021 (Tocris) 
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+20ng/ml FGF2 (Thermo Fisher Scientific) +100nM PIK90 (EMD Millipore) for 24 hours. A basal 

media composed of Advanced DMEM/F-12, N2, B27, 15 mM HEPES, 2 mM L-glutamine, 

penicillin-streptomycin is used for this and all subsequent differentiation. On Day 1, a brief wash 

with with DMEM/F12 is followed with Day 1 medium 1uM A8301 (Tocris) +30ng/ml BMP4+1uM 

C59 (Cellagen Technology) for 24 hours. For cardiac mesoderm generation, cells are cultured in 

1uM A8301+30ng/ml BMP4+1uM C59+20ng/ml FGF2 from Day2 to Day4 (medium changed 

every day). From Day 4, cells are cultured in 200ug/ml 2-phospho-Ascorbic acid (Sigma) + 1uM 

XAV939 (Sigma) + 30ng/ml Bmp4 for 3 days. For splanchnic mesoderm generation, cells are 

cultured in 1uM A8301+30ng/ml BMP4+1uM C59+20ng/ml FGF2 + 2uM RA (Sigma) from Day2 

to Day4 (medium changed every day). To further direct regional splanchnic mesoderm, either 

2uM RA+40ng/ml BMP4 is used to promote STM fate for 3 days; 2uM RA+ 2uM PMA (Tocris) is 

used for 2 days, and then 2uM RA+ 2uM PMA + 100ng/ml Noggin (R&D Systems) is used at the 

last 1 day to promote esophageal/gastric mesenchyme fate; 2uM RA+ 40ng/ml BMP4 + 2uM PMA 

is used for 2 days, and then 2uM RA+ 40ng/ml BMP4 + 2uM PMA + 1uM CHIR99021 is used at 

the last 1 day to promote respiratory mesenchyme fate. Medium was changed every day. Similar 

results were obtained with WA-01 hES cells and human iPSC 72_3. 

 

Quantitative RT-PCR 
Total RNA was prepared from differentiating human ES cells by using Nucleospin kit according 

to manufacturer’s protocol. Reverse transcription PCR was performed by Superscript VILO cDNA 

synthesis kit. QuantStudio 5 and 6 were used for qPCR analyses. Primers for qPCR were listed 

in Supplementary Table 4. Statistics were performed with PRISM8 (GraphPad Software). 

Significance was determined by one-way ANOVA, followed by Tukey’s test. 

 

Immunocytochemistry 
Cells were fixed with 4% PFA/PBS for 30min at room temperature. After perforation with 0.5% 

Triton X-100/PBS for 10 min, cells were incubated with 5% normal donkey serum for 2 hours. 

Cells were incubated with primary antibodies (listed in Supplementary Table 4) overnight at 4°C. 

Next day, cells were washed with PBS, and then incubated with secondary antibodies for 1 hour 

at room temperature. 

 

DATA AND CODE AVAILABILITY 
The Source data underlying Figs. 1g,h, 7b,d and Supplementary Figs. S2e-h, S11c,d and S12d 

are provided as a Source data file. The scRNA-seq and bulk RNA-seq data (including bam, raw 
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counts and cell annotations) are available at Gene Expression Omnibus (GEO): GSE136689 

and GSE136687. All the code (scripts, R-packages and software) and their documentation has 

been uploaded to GitHub [https://github.com/ZornLab/Single-cell-transcriptomics-reveals-a-

signaling-roadmap-coordinating-endoderm-and-mesoderm-lineage]. All the deposited code is 

available to use with GPLv3.0. The scRNA-seq data can be explored  at 

https://research.cchmc.org/ZornLab-singlecell. 
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Fig. 1. Single cell analysis of the mouse foregut endoderm and mesoderm lineages. a, 
Representative mouse embryo images at three developmental stages showing the foregut region 

(dashed) that was microdissected (insets) to generate single cells. At E9.5, anterior foregut (a.fg) 

and posterior foregut (p.fg) were isolated separately. E, embryonic day; s, somite number; n, 

number of cells. Scale bar 1 mm. b, Schematic of the RNA-seq workflow. c, UMAP visualization 

of 31,268 cells isolated from pooled samples of all three stages. Cells are colored based on major 

cell lineages. d. Whole-mount immunostaining of an E9.5 mouse foregut, showing the Cdh1+ 

endoderm and the surrounding Foxf1+ splanchnic mesoderm. e and f, t-SNE plot of in-silico 

isolated E9.5 endodermal (e) and splanchnic mesodermal (f) cells.  g and h, Pseudo-spatial 

ordering of E9.5 endodermal (g) and mesodermal (h) cells along the anterior-posterior (A-P) axis. 

i and j, Schematic of the predicted locations of E9.5 cell types mapped onto i) the embryonic 

mouse foregut endoderm (yellow) and j) mesoderm (orange). def. definitive; meso, mesoderm; 

lg, lung; eso, esophagus; lv, liver; splanch; splanchnic. stm, septum transversum mesenchyme; 

sto, stomach; pha, pharynx. Source data for g,h are provides in the Source Data file. 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2020. ; https://doi.org/10.1101/756825doi: bioRxiv preprint 

https://doi.org/10.1101/756825


	

	 28	

 
 
Fig. 2 Lineage-restricted gene expression in different SM cell types. 
a, Schematic of the E9/5 foregut indicating the level of sections. b, Dot plot showing scRNA-seq 

expression of marker genes in different E9.5 SM cell clusters. c-g, Whole-mount immunostaining 

c) or in  situ hybridization d-g) of dissected E9.5 foregut tissue. Scale bar 100µm. h-q, RNA-scope 

in situ detection on transvers E9.5 mouse embryos sections (i-iv indicates the A-P  level of the 

section in a). Scale bar 50µm. duo; duodenum, dp; dorsal pancreas, eso; esophagus, ht; heart, 

lg; lung, liv; liver, oft, outflow tract, pha pharynx, res; respiratory, stm; septum transversum, 

mesenchyme, sto; stomach, sv; sinus venosus, vp; ventral pancreas. 
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Fig. 3. Coordinated endoderm and mesoderm cell trajectories. a and b, Force directed 
SPRING visualization of the a) splanchnic mesoderm (n=10,097) and b) definitive endoderm 

(n=4,448) cell trajectories. Cells are colored by developmental stage. White arrows indicate cell 

lineage progression. c and d, Confusion matrix summarizing “parent-child” single cell voting for 

c) SM and d) DE cells, used to construct the cell state tree. Each cell at the later time point (y-

axis) voted for its most similar cell at the preceding time point (x-axis) based on transcriptome 

similarity (KNN) (see Methods). All of the votes for a give cluster are tabulated, normalized for 

cluster size (see Methods for details) and represented as a % of votes in the heatmap. E8.5, 

E9.0 and E9.5 clusters are designated as “a”, “b”, and “c”, respectively.  e and f. Cell state trees 

of e) SM and f) DE lineages predicted by single cell voting. The top choice linking cell states of 

sequential time points are solid lines, and prominent second choices are dashed lines. Nodes 

are colored by stages and annotated with the cluster numbers.   
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Fig. 4 Coordinated development of multipotent progenitors. a and b, Graphical illustration of 

the esophageal-respiratory-gastric cell state trajectories for a) SM and b) DE with key marker 

genes. This suggests the coordinated development of Osr1+ multi-lineage progenitors. c and d, 

SRPING plots of c) SM and d) DE projecting the expression of key genes. e, in situ hybridization 

of Osr1 in dissected foregut, showing Osr1 is expressed in the respiratory, esophageal and gastric 

regions. f and g, in situ hybridization of Osr1 in sections across the respiratory and gastric regions 

within the foregut, showing that Osr1 is expressed in both the endodermal and mesenchymal 

cells. h, SPRING plot of the DE esophageal-respiratory lineages i. Nkx2-1 and Sox2 expression 

are projected onto the SPRING plot, showing co-expression at the esophageal-tracheal boundary. 

k, Sox2 and Nkx2-1 whole mount immunostaining of a E9.5 mouse foregut. l, Sox2, Nkx2-1 and 

Foxf1 immunostaining of a transverse E9.5 foregut section, confirming a rare population of 

Sox2/Nkx2-1 co-expressing cells.  l', Higher magnification of box in l . 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2020. ; https://doi.org/10.1101/756825doi: bioRxiv preprint 

https://doi.org/10.1101/756825


	

	 31	

 
 
 
 
 
 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 21, 2020. ; https://doi.org/10.1101/756825doi: bioRxiv preprint 

https://doi.org/10.1101/756825


	

	 32	

Fig. 5. Computationally inferred receptor-ligand interactions predict a signaling roadmap 
of foregut organogenesis. a and b, E9.5 foregut immunostaining of Cdh1 (epithelium) and Foxf1 

(mesenchyme) in a) whole mount (same image as Fig. 1d) and b) section, showing the epithelial-

mesenchymal tissue microenvironment (dashed circle). c, Predicted receptor-ligand interactions 

between adjacent foregut cell populations. The schematics show paracrine signaling between the 

DE (yellow cells) and the SM (brown cells) for six major pathways. E9.5 DE and SM cell clusters 

are ordered along the anterior to posterior axis based to their locations in vivo, with spatially 

adjacent DE and SM cell types are across from one another. Colored circles indicate the relative 

pathway response-metagene expression levels, predicting the likelihood that a given cell 

population is responding to the growth factor signal. Thin vertical lines next to clusters indicate 

different cell populations in spatial proximity that are all responding to a particular signal pathway. 

Arrows represent the predicted paracrine and autocrine receptor-ligand interations (see 

Methods). d, BMP response-metagene expression levels projected on the DE and SM SPRING 

plot. e, in situ hybridization of Bmp4 in a foregut transverse section, showing the expression of in 

the respiratory mesenchyme and the stm.  f and g, pSmad1 immunostaining in foregut transverse 

sections, indicating BMP signal response in the respiratory and liver DE and SM. h and i, 
Signaling roadmap summarizing the inferred signaling state of all 6 pathways projected on the h) 

DE and i) SM cell state trees suggests the combinatorial signals predicted to control lineage 

diversification. The letters indicated the putative signals at each step, with larger font indicating a 

stronger signaling response.  a, anterior; p, posterior; hp, hepatopancreatic; stm, septum 

transversum mesenchyme. 
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Fig 6 Genetic test of the signaling roadmap revealed that HH promotes gut tube versus 
liver mesenchyme. a and b, SPRING visualization of a) the HH ligand-metagene expression in 

DE cells and b) HH response-metagene expression in SM cells. c, The HH response-metagene 

expression projected onto the SM cell state tree, showing low HH activity in the liver and pharynx 

SM but high activity in the gut tube mesenchyme. d, Shh is expressed in the gut tube epithelium 

but not in the hepatic epithelium (outlined). Gli1-lacZ, a HH-response transgene, is active in the 

gut tube mesenchyme but not in the liver stm. e. Differentially expressed genes between Gli2-/-, 

Gli3-/- and Gli2+/-, Gi3+/- mouse E9.5 foreguts through bulk RNA-sequencing (log2 FC >1, FDR 

< 5%). f, Heatmap showing average expression of HH/Gli-regulated genes (from Fig 6e) in E9.5 

DE and SM single cell clusters. g, Gene set enrichment analysis (GSEA) reveals specific cell type 

enrichment of HH/Gli-regulated genes. h, Schematic of HH activity in the foregut. 
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Fig. 7 Generation of splanchnic mesoderm-like progenitors from human PSCs. a,  
Schematic of the protocol to differentiate hPSCs into SM subtypes.  Factors in red indicate signals 

predicted from the mouse single cell signaling roadmap. b, RT-PCR of markers with enriched 

expression in specific SM subtypes based on the mouse single cell data: cardiac (NKX2-5), early 

SM (FOXF1, HOXA1); liver-stm/mesothelium (WT1, UKP1B), liver-fibroblast (MSX1), respiratory 

SM (NKX6-1+, MSC-), esophageal/gastric (MSC, BARX1). Columns show the means ± S.D. 

Tukey’s test *p<0.05, **p<0.005, ***p<0.0005. c, Immunostaining of Day 7 cell cultures. Scale 

bar; 50µm (upper panels), 10µm (lower panels). d, Quantification of % cells positive for the 

indicated immunostaining or RNA-scope in situ hybridization. Columns show the means ± S.D. 

(n=3). Tukey’s test, *p<0.05, **p<0.005, ***p<0.0005. Source data are provided as a Source Data 

file. 
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Supplementary Material 
 

 
Fig. S1 Defining major cell lineages. a, UMAP of single cells from all stages with major lineage 

annotated by known marker genes. b, UMAP of all cells from all stages with computationally 

assigned cell clusters based on transcriptome similarity. c, UMAP of all cells from all stages color 

by stages and regions. d-f, tSNE map of single cells from each stage annotated by major lineages 

at E8.5 in d), E9.0 in e) and E9.5 in f). g, Gene expression heatmap of selected markers in 

individual cells across different lineages and stages. 
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Supplementary Fig. S2 Annotation of E8.5 and E9.0 DE and SM lineages. a-d, t-SNE plot of 

E8.5 DE (a), E8.5 SM (b), E9.0 DE (c) and E9.0 SM cells (d) annotations. E8.5 clusters are 

designated as “a”, E9.0 as “b”, and E9.5 as “c”.  e-h, Pseudo-spatial ordering of E8.5 DE (e), E8.5 

SM (f), E9.0 DE (g) and E9.0 SM cells (h) along the anterior-posterior (A-P) axis of the gut tube. 

i-l, Schematics of the mouse embryonic foregut showing the predicted location of E8.5 DE (i), 
E8.5 SM (j), E9.0 DE (k) and E9.0 SM (l) cell types mapped onto the endoderm (yellow) and 

mesoderm (orange). m-p, Heatmap of selected marker gene expression in individual cells across 

different clusters at E8.5 DE (m), E8.5 SM (n), E9.0 DE (0) and E9.0 SM (p). 
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Fig. S3 Integrated analysis of DE and SM cells. a-d, tSNE and UMAP visualization of all SM 

cells from all stages annotated by major lineages (a,b) and stages (c,d) e-h, tSNE and UMAP 

visualization of all DE cells from all stages annotated by major lineages (e,f) and stage (g,h).  The  

stage-specific annotations making major contributions to each integrated cluster are indicated in 

brackets. E8.5 cells = a_clusters, E9.0 cells = b_ clusters and E9.5 = c_clusters.   
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Fig. S4 Validation of liver mesenchyme subtypes. a, Schematic of mouse embryonic foregut 

at E9.5. Magnified panel shows sagittal section of the liver bud. b-f, RNA-scope in situ detection 

of mesoderm markers on fixed frozen sagittal sections from E9.5 mouse embryos. duo; 

duodenum, dp; dorsal pancreas, eso; esophagus, ht; heart, liv; liver, oft, outflow tract, pha 

pharynx, res; respiratory, stm; septum transversum, mesenchyme, sto; stomach, sv; sinus 

venosus, vp; ventral pancreas. Scale bar 50µm. Insets show merge and separate channels. 
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Fig. S5 Co-linear Hox gene expression and Transcription factor code. a, Heatmaps of 

average Hox gene expression across different DE and SM clusters arranged along the A-P axis. 

Annotations are; E8.5 = a_clusters, E9.0 = b_clusters and E9.5 = c_clusters. b, Inferred location 

of cell clusters in the foregut endoderm and mesoderm. c, Transcription factor code. Heatmap 

showing the average expression of top five distinguishing transcription factor (TFs) differential 

expressions across E9.5 DE and SM populations. a, anterior; fg, foregut; post, posterior; v, 

ventral; stm, septum transversum mesenchyme.  
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Supplementary Fig. S6. SPRING plot of DE and SM cell trajectories. a and b, Spring plots of 

all SM cells (n=10,097) colored by a) stage specific lineage annotations and b) expression of key 

marker genes. c and d, Spring plots of all DE cells (n=4,448) colored by c) stage specific lineage 

annotations and d) expression of key marker genes.  
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Fig. S7 hepatic endoderm development. 
a, Cell state tree of the hepatic endodermal lineage with key marker genes indicated in each cell 

state. b, Pseudotime  analysis of the hepatic DE lineage using Molocle_v3 suggests that at E9.0, 

the e_b2 cluster (early hepatoblasts) is a common progenitor of e_b5 (later hepatoblasts) and 

e_b7 (hepatopancreatic duct progenitors). C-i. SPRING plot with hepatic endodermal clusters 

colored by c) stage specific lineage annotations and d-i) expression of key marker genes. 
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Supplementary Fig. S8. Metagene expression for all ligands, receptors and context-
independent response genes. Dot plot showing the average scaled expression (2 to -2) of 

metagenes (X-axis) in each DE and SM cluster (Y-axis).  For each cell signaling pathway (BMP, 

FGF, HH, Notch RA and canonical Wnt), we calculated a “ligand-metagene”, “receptor-metagene” 

and “response-metagene” by averaging the normalized expression of each individual gene for 

each pathway (e.g.: Wnt-ligand metagene =ΣWnt1+Wnt2+Wnt2b+Wnt3…Wnt10b expression/n) 

in each cell and cluster (see Methods for details). Color and size of the dot represents the 

metagene expression level in each cluster. (See Supplementary Table S2 for list of genes that 

make up each metagene and the numeric metagene expression data used to generate the plot). 
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Supplementary Fig.  S9 Computationally predicted receptor-ligand interactions between 
different foregut cell populations. The schematics show paracrine signaling between the DE 

(yellow cells) and the SM (brown cells) for six major pathways. Below the schematics, DE and 

SM cell clusters of each stage are ordered along the A-P axis consistent with their location in vivo. 

Spatially adjacent DE and SM cell types are across from one another. Colored circles for each 

cluster indicate the likelihood that the cell population is responding to the signal based on the 

pathway response metagene expression levels (see Methods). Arrows represent the predicted 

source of the ligands showing paracrine and autocrine receptor-ligand pairs inferred from 

metagene expression profiles. Receptor-ligand pairing (arrows) were restricted to cell populations 

in close spatial proximity (see Methods for details). Thin vertical lines next to a group of clusters 

indicate different cell populations in spatial proximity that are all responding similarly. 
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Supplementary Fig. S10 Predicted temporal and spatial dynamics of signaling responses. 
a-i, Expression levels of the pathway response-metagene (From Fig. S9) projected onto the DE 

and SM SPRING plots and cell state trees for the BMP (a-b), FGF (c-d), HH (e-f), Notch (g-h), RA 

(i-j) and canonical Wnt (k-l) pathways. This shows how coordinated spatial domains of signaling 

activity that correspond to cell lineages, are predicted to change over 24 hours from E8.5 – E9.5. 
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Supplementary Fig. S11. RA suppresses cardiac mesoderm and promotes splanchnic 
mesoderm progenitors. a. Staining of RARE-lacZ transgenic mouse embryos confirms the 

single cell RNA-seq predictions that RA activity is higher in the splanchnic mesenchyme, than 

the cardiac mesenchyme at E8.5. b, Immunostaining of transversal section of RARE-lacZ 

transgenic mouse embryos. c. d4 PSC-derived SM cultures assayed by RT-PCR for paraxial 

mesoderm (PAX3), limb bud (PRRX1), cardiac mesoderm (NKX2.5, ISL1), endothelium (CD31), 

and SM (HOXA1, HOXA5, WNT2) markers. c. Immunostaining of d4 cultures. Scale bar; 50µm. 

d, Quantification of NKX2-5+ cells.  fg; foregut, hg; hindgut, ht; heart, SC; Stem Cell, MPS; 

Middle Primitive Streak, CM, Cardiac Mesoderm, SM; Splanchnic mesoderm, Columns show 

the means ± S.D. (n=3). Tukey’s test, *p<0.05, **p<0.005, ***p<0.0005. Source data are 

provided in the Source Data file. 
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Fig. S12 Additional analysis of d7 SM-like PSC cultures. a-c, RNA-scope in situ analysis of 

different d7 SM-like cultures. Scale bar 50µm (Upper panels), 10µm (Lower panels) (quantification 

in Fig. 7d) d, RT-PCR analysis of mesoderm subtype markers based on the mouse scRNA-seq 

data; cardiac (ACTC1, TBX20, TNNT2), early SM (PDE5A, HOXA5); liver-stm/mesothelium 

(TBX18, LHX2, UPK3B), liver-fibroblast (MSX2, HAND1), esophageal/gastric (WNT4, NKX3-2). 

SC; Stem Cell, MPS; Middle Primitive Streak, CM, Cardiac Mesoderm, SM; Splanchnic 

Mesoderm, STM; Septum Transversum Mesenchyme, LF; Liver Fibroblast, RM Respiratory 

Mesenchyme, EM/GM; Esophageal/Gastric Mesenchyme. Columns show the means ± S.D (n=3). 

Tukey’s test, *p<0.05, **p<0.005, ***p<0.0005. Source data for are provided in the Source Data 

file. 

 
Supplementary Table S1. a, Top distinguishing marker genes for endoderm clusters (excel file 

tab-1). b, Top distinguishing marker genes for splanchnic mesoderm clusters (tab-2). c, 

Transcription factors with enriched expression in endoderm clusters (tab-3). d, Transcription 

factors with enriched expression in splanchnic mesoderm clusters (tab-4). 

 

Supplementary Table S2. a. List of BMP, FGF, HH, Notch and canonical Wnt pathway genes 

used to calculate metagene profiles (tab-1). b. Normalized and scaled average expression of 

each metagene in each DE and SM cluster (tab-2). c. Log2 average expression of metagene 

profiles (tab-3).d. Average Log2 counts of pathway genes in each cluster; BMP (tab-4), FGF (tab-

5), HH (tab-6), Notch (tab-7), RA (tab-8) and Wnt (tab-9). 

 

Supplementary Table S3. Differentially expressed transcripts in the bulk RNA-sequencing of 

E9.5 mouse foregut comparing Gli2-/-;Gli3-/- to Gli2+/-;Gli3+/- littermates. 

 

Supplementary Table S4. Information on antibodies and RT-PCR primers. 

 

Supplementary Table S5. Protocol for RNA-scope in situ hybridization of mouse frozen section 
(tab-1) and human adherent PSC cultures (tab-2).  
 

Supplementary Movie 1. Whole-mount staining of mouse embryo foregut at E9.5. Foregut was 

stained for Nkx2.1 (red), Nkx6.1 (green), Foxa2 (blue), and DAPI (grey).  

 

Supplementary Movie 2. Whole-mount staining of mouse embryo foregut at E9.5. Foregut was 
stained for Foxf1 (red), Nkx6.1 (green), Cdh1 (blue), and DAPI (grey).  


