Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Deep learning for brains?: Different linear and nonlinear scaling in UK Biobank brain images vs. machine-learning datasets

Marc-Andre Schulz, B.T. Thomas Yeo, Joshua T. Vogelstein, Janaina Mourao-Miranada, Jakob N. Kather, Konrad Kording, View ORCID ProfileBlake Richards, Danilo Bzdok
doi: https://doi.org/10.1101/757054
Marc-Andre Schulz
1Department of Psychiatry, Psychotherapy, and Psychosomatics, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B.T. Thomas Yeo
2Department of Electrical and Computer Engineering, ASTAR-NUS Clinical Imaging Research Centre, Singapore
3Institute for Neurotechnology and Memory Networks Program, National University of Singapore, Singapore
4Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joshua T. Vogelstein
5Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, USA
6Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Janaina Mourao-Miranada
7Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, UK
8Centre for Medical Image Computing, Department of Computer Science, University College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jakob N. Kather
9Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
10German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
11Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Konrad Kording
12Department of Neuroscience and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Blake Richards
13Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
14School of Computer Science, McGill University, Montréal, Québec, Canada
15Canadian Institute for Advanced Research, Toronto, Ontario, Canada
16Mila, Montréal, Québec, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Blake Richards
Danilo Bzdok
1Department of Psychiatry, Psychotherapy, and Psychosomatics, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
17Neurospin, Commissariat à l’Energie Atomique (CEA) Saclay, Gif-sur-Yvette, France
18Parietal Team, Institut National de Recherche en Informatique et en Automatique (INRIA), France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: danilo.bzdok@rwth-aachen.de
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Article Information

doi 
https://doi.org/10.1101/757054
History 
  • September 6, 2019.
Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

Author Information

  1. Marc-Andre Schulz1,
  2. B.T. Thomas Yeo2,3,4,
  3. Joshua T. Vogelstein5,6,
  4. Janaina Mourao-Miranada7,8,
  5. Jakob N. Kather9,10,11,
  6. Konrad Kording12,
  7. Blake Richards13,14,15,16 and
  8. Danilo Bzdok1,17,18,*
  1. 1Department of Psychiatry, Psychotherapy, and Psychosomatics, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
  2. 2Department of Electrical and Computer Engineering, ASTAR-NUS Clinical Imaging Research Centre, Singapore
  3. 3Institute for Neurotechnology and Memory Networks Program, National University of Singapore, Singapore
  4. 4Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore
  5. 5Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, USA
  6. 6Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, USA
  7. 7Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, UK
  8. 8Centre for Medical Image Computing, Department of Computer Science, University College London, UK
  9. 9Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
  10. 10German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
  11. 11Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
  12. 12Department of Neuroscience and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
  13. 13Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
  14. 14School of Computer Science, McGill University, Montréal, Québec, Canada
  15. 15Canadian Institute for Advanced Research, Toronto, Ontario, Canada
  16. 16Mila, Montréal, Québec, Canada
  17. 17Neurospin, Commissariat à l’Energie Atomique (CEA) Saclay, Gif-sur-Yvette, France
  18. 18Parietal Team, Institut National de Recherche en Informatique et en Automatique (INRIA), France
  1. ↵* Corresponding author; email: danilo.bzdok{at}rwth-aachen.de
Back to top
PreviousNext
Posted September 06, 2019.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Deep learning for brains?: Different linear and nonlinear scaling in UK Biobank brain images vs. machine-learning datasets
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Deep learning for brains?: Different linear and nonlinear scaling in UK Biobank brain images vs. machine-learning datasets
Marc-Andre Schulz, B.T. Thomas Yeo, Joshua T. Vogelstein, Janaina Mourao-Miranada, Jakob N. Kather, Konrad Kording, Blake Richards, Danilo Bzdok
bioRxiv 757054; doi: https://doi.org/10.1101/757054
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Deep learning for brains?: Different linear and nonlinear scaling in UK Biobank brain images vs. machine-learning datasets
Marc-Andre Schulz, B.T. Thomas Yeo, Joshua T. Vogelstein, Janaina Mourao-Miranada, Jakob N. Kather, Konrad Kording, Blake Richards, Danilo Bzdok
bioRxiv 757054; doi: https://doi.org/10.1101/757054

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (2543)
  • Biochemistry (4994)
  • Bioengineering (3497)
  • Bioinformatics (15279)
  • Biophysics (6926)
  • Cancer Biology (5427)
  • Cell Biology (7771)
  • Clinical Trials (138)
  • Developmental Biology (4558)
  • Ecology (7180)
  • Epidemiology (2059)
  • Evolutionary Biology (10261)
  • Genetics (7532)
  • Genomics (9826)
  • Immunology (4899)
  • Microbiology (13304)
  • Molecular Biology (5165)
  • Neuroscience (29569)
  • Paleontology (203)
  • Pathology (842)
  • Pharmacology and Toxicology (1470)
  • Physiology (2153)
  • Plant Biology (4780)
  • Scientific Communication and Education (1015)
  • Synthetic Biology (1343)
  • Systems Biology (4022)
  • Zoology (771)