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Abstract 

Nucleotide variants can cause functional changes by altering protein-RNA binding in various and 

subtle ways that are not easy to predict. This can affect processes such as splicing, nuclear shuttling, 

and stability of the transcript. Therefore, correct modelling of protein-RNA binding is critical when 

predicting the effects of sequence variations. Many RNA-binding proteins recognize a diverse set of 

motifs and binding is typically also dependent on the genomic context, making this task particularly 

challenging. Although existing protein binding site models incorporate various additional data 

sources to incorporate context, such as RNA structure and functional gene context, they still need 

improvement and they have not been developed to predict the effect of sequence variants. Here, we 

present DeepCLIP, the first method for context-aware modeling and predicting protein binding to 

nucleic acids using exclusively sequence data as input. We show that DeepCLIP outperforms 

existing methods for modelling RNA-protein binding. Importantly, we demonstrate that DeepCLIP is 

able to reliably predict the functional effects of contextually dependent nucleotide variants in 

independent wet lab experiments. Furthermore, we show how DeepCLIP binding profiles can be 

used in the design of therapeutically relevant antisense oligonucleotides, and to uncover possible 

position-dependent regulation in a tissue-specific manner. DeepCLIP can be freely used at 

http://deepclip.compbio.sdu.dk. 
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Highlights 

 We have designed DeepCLIP as a simple neural network that requires only CLIP binding 

sites as input. The architecture and parameter settings of DeepCLIP makes it an efficient 

classifier and robust to train, making high performing models easy to train and recreate. 

 Using an extensive benchmark dataset, we demonstrate that DeepCLIP outperforms existing 

tools in classification. Furthermore, DeepCLIP provides direct information about the neural 

network’s decision process through visualization of binding motifs and a binding profile that 

directly indicates sequence elements contributing to the classification. 

 To show that DeepCLIP models generalize to different datasets we have demonstrated that 

predictions correlate with in vivo and in vitro experiments using quantitative binding assays 

and minigenes. 

 Identifying the binding sites for regulatory RNA-binding proteins is fundamental for efficient 

design of (therapeutic) antisense oligonucleotides. Employing a reported disease associated 

mutation, we demonstrate that DeepCLIP can be used for design of therapeutic antisense 

oligonucleotides that block regions important for binding of regulatory proteins and correct 

aberrant splicing. 

 Using DeepCLIP binding profiles, we uncovered a possible position-dependent mechanism 

behind the reported tissue-specificity of a group of TDP-43 repressed pseudoexons.  

 We have made DeepCLIP available as an online tool for training and application of protein-

RNA binding deep learning models and prediction of the potential effects of clinically 

detected sequence variations (http://deepclip.compbio.sdu.dk/). We also provide DeepCLIP 

as a configurable stand-alone program (http://www.github.com/deepclip). 

Keywords 

Protein-RNA, CLIP, deep learning, neural networks, mutation analysis  
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INTRODUCTION 

The massive technological progress in next generation sequencing (NGS) technologies has made 

sequencing affordable in the context of precision medicine and personalized health. NGS analysis 

enables identification of millions of sequence variants in each patient sample, increasing the need for 

in silico prediction of the functional consequences of a diverse range of variations. In particular, the 

effect of deep intronic sequence variants at the mRNA level through altered binding to RNA-binding 

proteins (RBPs) is difficult to predict in silico as existing tools’ predictions of functional outcomes of 

splicing are primarily based on the analysis of point mutations within or near exons1-3. While some 

existing binding site prediction tools can work on sequences of any type, there is an unmet need for 

improved modelling of contextual dependencies other than structure that are important for correctly 

estimating the in vivo functionality of the binding sites. Extracted contextual information may form 

the basis for design of antisense oligonucleotide based therapies, which modulate RBP activity, such 

as splice-switching oligonucleotides (SSOs)4-6. Thus, improving information on whether contexts act 

positively or negatively with regard to binding is an important area of research that will ultimately 

enable the development of novel therapeutic options in personalized medicine. 

Sequencing technologies have also vastly expanded the wealth of information concerning protein 

binding to RNA when combined with cross-linking and immunoprecipitation (CLIP) techniques7-9, 

which allow accurate mapping of protein binding sites in functional in vivo contexts. Classically, 

binding preferences or binding motifs have been represented by position frequency matrices (PFMs). 

Well-known de novo motif discovery tools such as MEME10 and HOMER11 output PFMs and base 

their motif detection and identification on the PFM concept. This approach to motif discovery 

implicitly assumes that such fixed-length motifs exist and that they function in a context-independent 

manner regarding the surrounding sequences. They further assume pairwise independence of the 

nucleotide frequencies within the motifs. 
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However, proteins that bind RNA typically do so in a context dependent manner. In particular, 

secondary structure may influence the binding of some RBPs12. Information about double-stranded 

or single-stranded structure has been incorporated into MEMERIS13, which is an extension of the 

MEME algorithm. Further structural dependencies have been incorporated into RNAcontext12, which 

expands the information about secondary structure from simple double or single-stranded structures 

into paired, hairpin loops, bulges and internal or multi-loops, and unstructured contexts in order to 

further optimize the modeling of binding preference of RBPs. More recently, a graph-based 

modeling of structural and sequence binding preferences was introduced in the GraphProt14 software, 

which out-performed RNAcontext on a set of diverse CLIP datasets using different CLIP methods. 

GraphProt uses RNAshapes15 to predict the structures of RNA-sequences, which are then encoded 

into a hypergraph from which important structural features can be extracted. To improve the 

structure estimations, GraphProt extends the CLIP-derived sequences by 150 bp in each direction. 

Together with sequence features extracted only from the CLIP-derived binding sites, an overall 

model of binding preference is generated using support vector machines.  

While inclusion of structural preferences may increase accuracy in prediction, these models still fail 

to capture other contextual dependencies affecting the in vivo functionality, such as a high density of 

protein binding sites nearby or localization within a specific functional region of the transcript, such 

as proximity to splice sites. For instance, exonic splicing enhancers (ESEs) that enhance splicing of 

exons by binding to SR proteins are enriched in exons, while exonic splicing silencers (ESSs) are 

underrepresented in exons. These observations have been used to generate ESE and ESS motifs from 

sequences enriched16,17 or depleted16 in exons. Such contextual dependencies were recently 

introduced in the iONMF software18, which uses integrative orthogonality-regularized nonnegative 

matrix factorization to incorporate multimodal information about CLIP-derived binding sites such as 

their position within the gene (5’UTR, CDS, exon, intron, 3’UTR), gene ontology, and presence of 
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other protein binding sites determined by other CLIP studies, in addition to structural information, 

which improved performance for some datasets.  

In recent years, deep learning techniques have been used to model protein binding. Deep learning has 

proven successful in various difficult classification tasks such as natural language processing 19, 

object recognition 20 and reconstructing brain circuits 21.  Deep learning allows computational models 

composed of multiple processing layers to learn representations of data with multiple levels of 

abstraction 22. Deep learning models can identify dependencies and complex structures in very high-

dimensional data - such as CLIP data - and have been used, for example, for predicting the effects of 

mutations in non-coding DNA on gene expression and disease1,23, predicting DNA function24, 

mRNA coding potential25, and prediction of subcellular locations of proteins26. Starting with 

DeepBind27, which uses convolutional neural networks (CNN) to classify bound sequences and non-

bound, neural networks have also been used to directly model RBP preferences. Deepnet, a 

multimodal deep belief network incorporating 2D structure information (mDBN-) or both 2D and 3D 

structure information (mDBN+) along with a CNN architecture was introduced in the deepnet-rbp 

software28, while more recently the iDeep framework combines the annotation data used by iONMF 

with a CNN into a multimodal neural network with increased accuracy in classification compared to 

iONMF29. Even more recently, iDeepS was introduced as a replacement for iDeep to include analysis 

of 2D structural motifs much like GraphProt, using a combination of CNN and bidirectional LSTM 

layers akin to DeepCLIP’s architecture30. 

Previous models for RBP binding properties that consider contextual clues are focused either 

specifically on structural dependencies, which may fail to capture other important contextual 

dependencies, or on the presence of annotation data to aid in the task of classification. However, 

static annotations will not contribute to determining the effect of a mutation on the binding activity 

of proteins. For instance, a model, which relies heavily on clues from annotation data about the 

genomic region, such as location within an exon, will be unable to use this level of information to 
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ascertain the effect of an exonic point mutation in which the context is maintained. Only iDeepS has 

a general-purpose LSTM layer able to model general context dependency, but it is supplemented 

with structural predictions from an external program and thus does not work on sequence data alone. 

Understanding binding preferences is important for evaluation of the phenotypic impact of sequence 

variations. Mutations may alter the phenotype at several different levels, as in the case of missense 

mutations, which in addition to altering the amino-acid sequence, may also change the splicing 

pattern31. Other mutations with less visible deleterious effects may abolish healthy splicing by 

altering the binding of RBPs, sometimes at somewhat distant sites. Splicing and the overall binding 

activity of RBPs is the result of a balance between positively and negatively acting elements that 

cooperate or compete for binding32,33, so even minor changes in RBP binding sites can change the 

outcome of splicing events.  

Importantly, before they can be applied in predicting clinically important changes or functional 

elements to be targeted, binding models needs to be validated in the laboratory, using in vitro 

techniques such as RNA-protein affinity measurements and in vivo techniques such as minigene 

transfections and predictions need to be consistent with effects reported in clinically affected 

patients.  

In this paper, we present DeepCLIP, a novel deep learning based tool for discovering and 

characterizing binding preferences of RBPs. We demonstrate how it outperforms current state-of-the-

art RBP binding analysis tools, and we show that DeepCLIP’s predictions provide information about 

high-affinity RBP binding sites and that it successfully predicts alterations of the RBP affinity for 

RNA-sequences when single nucleotide polymorphisms (SNP) or disease-causing mutations are 

introduced. This is reflected both in the binding profiles that show the region(s) important for RBP 

binding, and in the predictions of the sequences which indicate whether they are more similar to the 

“consensus” CLIP-sequence or to the genomic background. Last but not least, we have made 
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DeepCLIP available as an online tool for training and application of protein-RNA binding deep 

learning models and prediction of the potential effects of clinically detected sequence variations 

(http://deepclip.compbio.sdu.dk/). We also provide DeepCLIP as a configurable stand-alone program 

(http://www.github.com/deepclip). 
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RESULTS 

DeepCLIP outperforms structural and multimodal models from sequence data alone 

DeepCLIP is a neural network that combines shallow convolutional layers with a small bidirectional 

long short-term memory (BLSTM) layer to produce both a binding profile and a classification score 

ranging from 0 to 1 (Figure 1, S1a-c). Models are created by training a network on a set of known 

binding sites and a set of background genomic sequences (Figure S1d,e), which can optionally be 

generated by DeepCLIP by providing binding locations instead of raw binding sequences. 

To ascertain DeepCLIP’s classification performance on a standardized dataset, we generated models 

from the curated CLIP datasets8,9,34-42 used in the GraphProt publication14, which has previously been 

used in other studies18,28. First, we trained DeepCLIP models in a 10-fold cross-validation scheme 

using 50-500 epochs depending on the size of the individual dataset with early stopping after 10% of 

the maximum number of epochs (Table S1). Next, we measured area under receiver operator 

characteristic curve (AUROC) using the standard method of 10-fold cross-validation and the 

combined performance across the 10 different sets (Figure S1e, Table S2). Importantly, DeepCLIP 

does not directly model structure. Consequently, we used the peak area alone, which is akin to the 

viewpoint mechanism as adopted in GraphProt. We compared the performance of our models with 

the performance numbers reported in the earlier studies describing GraphProt, iONMF, and deepnet-

rbp (mDBN- and mDBN+). To obtain AUROC values for iDeepS, we performed a 10-fold cross-

validation using the curated CLIP-datasets, as this was omitted in the iDeepS paper, by extending the 

peak area to 101 nt per the input requirement for iDeepS. We found that DeepCLIP was the overall 

best classifier in every pair-wise comparison and when looking at the mean AUROC score, 

underscoring that DeepCLIP performs well on a broad set of data. Furthermore, DeepCLIP had more 

narrow distributions of scores with fewer low-scoring datasets and a majority of datasets scoring 

above 0.9 (Figure 1c). DeepCLIP consistently ranked among the best classifiers on individual 
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datasets (Figure S2a, Table (S3)1), even without additional contextual data, i.e. working on the 

sequence input data alone. In total, DeepCLIP had the best performance for 14 of the 24 datasets, and 

second best for 6 datasets. For TAF15, mDBN+ and DeepCLIP had identical scores when rounding 

to the 3rd decimal. DeepCLIP was also a better classifier than DeepBind (18.22 %-points (CI-95%: 

7.28-29.16), Wilcoxon signed-rank p=0.00372), on the 12 datasets for which DeepBind models are 

available (Figure S2c,d). Note, however, that DeepBind models were trained on very different input 

data, which makes it difficult to ascertain the true performance of DeepBind. 

We did not observe any significant differences in DeepCLIP AUROC scores between the CLIP 

methods (Figure S3a) or a significant correlation to the number of bound sites (Figure S3b, p = 

0.5311), but a tendency towards improved performance on the nucleotide-resolution CLIP datasets 

(iCLIP and PAR-CLIP) versus HITS-CLIP did appear. Due to the limited number of HITS-CLIP and 

iCLIP datasets it is not clear whether this is a significant difference or not. DeepCLIP performed 

well on all datasets regardless of size and CLIP method, with the exception of ALKBH5, which is a 

problematic dataset for all methods that do not rely on additional metadata, presumably due to non-

specific binding that may take place in cooperation with a number of other factors that target the 

factor to specific regions within the transcript. DeepCLIP is thus a robust classifier of in vivo binding 

sites using only sequence data. It compares favorably to models employing external structural 

information and annotation data in addition to sequence data.  
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Figure 1 | Classification performance of DeepCLIP surpasses competing methods.  (a) One-hot 

embedded RNA-sequences function as input to the neural network and the 1D convolutional layers, 

which are further enhanced by a winner-takes-all (WTA) layer. (b) The outputs are concatenated 

with the input sequence and each segment of the concatenated arrays that corresponds to aligned 

bases is introduced to the following BLSTM layer as individual time-steps. The WTA-enhanced 

RNA-sequences are the three uppermost and the input sequence is in the bottom. DeepCLIP 

produces a prediction score, which is used during training, as well as binding motifs and a binding 

profile. (c) Boxplot of comparative analyses of DeepCLIP classification performance against other 

state-of-the-art tools. Area under receiver operator characteristic curve (AUROC) were measured in 

10-fold cross-validation and statistical significance was computed through an exact Wilcoxon signed 

rank test. P-values above individual tools are from pair-wise comparisons with DeepCLIP. Mean 

AUROC score is indicated in the bottom. 
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DeepCLIP models predict binding motifs 

Although the classifications of DeepCLIP are based entirely on the values of the binding profiles, 

binding motifs can be assessed from the CNN filters incorporated in the network architecture. The 

motif of each filter was generated using the patterns from the 1,000 input sequences that produced 

the highest DeepCLIP classification score. We found that DeepCLIP produces binding motifs that 

are in agreement with previously published motifs43-48, illustrating that DeepCLIP’s classification 

performance is not simply a result of learning how to recognize the background sequences, but 

depends on the binding preferences of the RBP in question (Figure S4). Additional model 

performance and CNN filter motifs are available (Table S2, Figure S5-S28). 

 

DeepCLIP predictions and binding profiles explain splicing mutations 

Splicing of mRNA is regulated by binding of RBPs to the nascent pre-mRNA.  To test DeepCLIP’s 

ability to predict effects of mutations on splicing we generated new models for the splicing factors 

hnRNP A1 and SRSF1 based on previous CLIP studies49,50 with DeepCLIP-generated background 

sequences in order to demonstrate DeepCLIP’s performance on novel datasets. We ran 10-fold cross-

validation (Figure S29 and S30) using the same input parameters as previously, which produced 

CNN filters (Figure 2a) demonstrating binding motifs similar to previous studies39,47,51,52. We then 

used the best performing model to predict binding of hnRNP A1 to a set of exonic point mutations2, 

grouped into mutations known to cause skipping and mutations known to not cause skipping (Figure 

2b, Table S4).  

We used the 15-mer sequences used by Raponi et al. in their work describing splicing because this 

represents the length of a typical RNA oligonucleotide used in affinity purification experiments to 

measure the binding of protein to RNA. Interestingly, we observe no significant difference in the 

overall change of hnRNP A1 scores for skipping and non-skipping mutations (Figure 2c, Wilcoxon 

signed rank p = 0.9455), suggesting that hnRNP A1 is not a general regulator of these splicing 
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events. This is to be expected, since only a subset of these events is likely to be meditated by altered 

binding of hnRNP A1. 

When scoring the same 15 nt oligonucleotides with the best performing SRSF1 model, we observe 

that the SRSF1 scores are significantly different between the two groups (Figure 2d, Wilcoxon 

signed rank p = 0.0003569). Also, when combining the hnRNP A1 scores with the SRSF1 scores, we 

find that the groups were significantly different (Figure 2e, Wilcoxon signed rank p = 0.0459). 

Importantly, the scores of the mutations known to cause skipping were decreased, consistent with the 

known role of SRSF1 as a positive regulator of exon inclusion.  

To investigate whether the hnRNP A1 and SRSF1 models improve with extended sequence context, 

we expanded the 15-mer sequences from the middle and out to a length of 75 bp, the maximum 

sequence length used during training. This resulted in less pronounced changes that were not 

statistically significant (Figure 2f-h, Table S3), although the combined score indicated that the 

combined effect of losing SRSF1 binding and gaining hnRNP A1 binding was retained to a higher 

degree. This is likely caused by DeepCLIP’s classification being based on the total binding profile 

resulting in diminished differences as the sequence is expanded. This is exemplified by the PTEN 

c.511C>T exon skipping mutation53 located at +19 in exon 6 of PTEN, which results in an overall 

score change of +0.04 between the wt (0.87) and mutant (0.91) 75 nt long sequences (Figure 2i), but 

a score change of +0.27 (from 0.29 to 0.56) when the 15 nt long sequence is used (Figure 2j). 

Importantly, both binding profiles predict a localized increase in hnRNP A1 binding to the mutant, 

show-casing the relevance of using importance profiles when analyzing sequence data and not 

simply an overall prediction score. 
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Figure 2 | DeepCLIP models of hnRNPA1 and SRSF1 used to analyze splicing mutations. (a) 

The CNN filters trained in the hnRNP A1 DeepCLIP model. (b) The CNN filters trained in the 

SRSF1 model. (c) Box-plot of the prediction score change of DeepCLIP hnRNP A1 model 

predictions on 15 nt sequences representing wt and mutant versions exons that are skipped upon 

mutation (yellow, n = 37 sequence-pairs) and exons that remain included in the mutant version 

(green, n = 46 sequence-pairs). Two-tailed Wilcoxon rank sum test p-value is indicated above. Box-

plot elements are defined as center line: median, box limits: upper and lower quartiles, whiskers: 

1.5x interquartile range. All data points are shown, outliers are not highlighted. (d) Same as (c) but 

with SRSF1 DeepCLIP model. (d) The combined change in DeepCLIP scores obtained by 

subtracting the hnRNP A1 score change in (c) from the SRSF1 score change in (d). (f-h) Same as in 

(c-e) but with 75 nt sequences. (i) DeepCLIP profiles of wt (black) and mutant (red) 75 nt sequence 

representing the PTEN exon 6 +19C>T mutation. The overall DeepCLIP prediction scores are 

indicated in bold within the plot. (j) Same as (i), but with 15 nt input sequence. 
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DeepCLIP hnRNP A1 and SRSF1 prediction scores correlate with exon inclusion levels of a 

known SRSF1-dependent exon 

We have previously characterized splicing of ACADM exon 5, which shares sequence similarity with 

SMN1 exon 7 and we identified a similar regulation with splicing ultimately relying on the balance of 

SRSF1 and hnRNP A1 binding33. A prevalent disease-causing c.362C>T mutation reduces the 

strength of a SRSF1 binding ESE, allows hnRNPA1 binding and causes exon 5 skipping. To test 

DeepCLIP models of hnRNP A1 and SRSF1 in relation to splicing of ACADM exon 5, we generated 

minigenes with all possible variants at positions c.361, c.362, and c.363 located down-stream of the 

CAG core motif (Figure 3a). DeepCLIP scores were obtained from the sequences using a window of 

36 bp on each side of the 3 positions, totaling 75 nt. We then transfected the minigenes in HEK293 

cells and measured exon inclusion levels (PSI) using RT-PCR and gel-electrophoresis (Figure 3b). 

We observe a moderately strong negative correlation (Spearman’s ρ = -0.661, p = 0.04403, Figure 

3c) between the hnRNP A1 prediction score and the observed inclusion of ACADM exon 5, and a 

strong correlation between the SRSF1 prediction score and the observed inclusions (Spearman’s ρ = 

0.770, p = 0.01367, Figure 3d). The observed correlation is even stronger for the combined scores 

(Spearman’s ρ = 0.842, p = 0.004459, Figure 3e), in agreement with the hypothesis that the overall 

inclusion level is a result of the balance between positive and negative factors. The same is true when 

we use the SRSF1 model generated from the GraphProt dataset (Figure S31), but not when we 

perform the same analysis with EX-SKIP2 on the full exon (Spearman’s ρ = -0.177, p = 0.625, Fig 

S32a). When we use SPANR1 we do observe a stronger positive correlation than with EX-SKIP 

(Spearman’s ρ = 0.552, p = 0.1043, Fig S32b), but all variants are predicted to have an inclusion 

level between 81.9% and 82.8%. This conflicts directly with the observed level of exon skipping 

induced by the disease-causing c.362C>T mutation in patient cells33 as well as with the observed 

splicing pattern of the minigenes tested. 
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Overall, when the hnRNP A1 DeepCLIP model predicts an increase in hnRNP A1 binding, there was 

a decrease in exon 5 inclusion (Figure 3f). In particular, the high degree of exon skipping of all c.362 

variants relative to wt were reflected by increases in hnRNP A1 scores (Figure 3b and f). The c.363A 

variant is predicted to abolish binding of SRSF1 and increase binding of hnRNP A1 and the 

minigene analysis demonstrates predominant skipping in agreement with this. Like hnRNP A1, many 

of the variants predicted to lose SRSF1 binding show increased skipping consistent with a loss of 

ESE activity. 

The data indicate that while single DeepCLIP models capture binding preferences of individual 

proteins, the scores are additive and can be used to model effects of multiple proteins interacting in 

antagonistic and synergistic ways. 
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Figure 3 | DeepCLIP models successfully model ACADM minigene splicing results. (a) Minigene 

schematic and location of variants tested, reference in blue. The disease-causing mutation is 

indicated in red. (b) Splicing of minigenes determined by RT-PCR. Estimates of mean PSI (n = 3) is 

indicated below, along with 95% CI size. (c) Scatter plot of PSI and DeepCLIP hnRNP A1 score 

with linear regression (red line, n = 10) and 95% confidence interval (shaded area). (d) Same as (c) 

but with DeepCLIP SRSF1 score instead. (e) Same as (c) and (d), but showing the DeepCLIP SRSF1 

score minus the DeepCLIP hnRNP A1 score. (f) Barplot showing the difference to wt for the 

minigene PSI and DeepCLIP prediction scores for hnRNP A1 and SRSF1. Spearman’s correlation 

coefficient is indicated in (c), (d), and (e). 
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DeepCLIP binding profiles can guide the design of therapeutic antisense oligonucleotides 

DeepCLIP models produce binding profiles which are directly used for prediction calculations.  We 

wanted to test how the binding profiles reflect in vivo sequence-protein binding dynamics and see if 

the profiles can help locating sites where splice-switching oligonucleotides (SSOs) can be applied for 

correction of splicing. Thus, we analyzed a known disease-causing mutation54 in the ACADM gene, 

c.468+7A>G. The mutation is located outside the core U1 snRNP binding motif but is located within 

a larger GT-rich region, which is extended by the A>G mutation suggesting that it could be 

generating or strengthening a TDP-43 binding site. We selected wt and mutant sequences 75 bp of 

length by including the first 37 bp from either side of the locus of the A>G mutation. We then 

generated a TDP-43 DeepCLIP model based on publicly available binding sites from the POSTAR2 

database55 using the same model parameters as previously (Figure S33) and scored the wt and mutant 

sequences. We found that DeepCLIP predicts increased binding of TDP-43 to the mutant relative to 

the wt (Figure 4a).  

Next, we designed a minigene harboring ACADM exon 6 and part of the flanking introns to test 

whether the c.468+7A>G mutation affects splicing of exon 6. We found that the mutation caused 

dramatic skipping of exon 6 from the minigene (Figure 4b). We hypothesized that this was caused by 

an increase of TDP-43 binding to the mutant sequence, and that exon skipping therefore could be 

reversed by treating the cells containing the minigenes with siRNA targeting TDP-43 mRNA. 

Indeed, TDP-43 siRNA treatment resulted in increased exon inclusion (Figure 4b), corroborating that 

the c.468+7A>G mutation generates a TDP-43 binding site that causes skipping of ACADM exon 6.  

Splice-switching oligonucleotides (SSOs) are a type of antisense oligonucleotide (ASO) that can be 

used to modulate splicing by sterically preventing binding of splicing regulatory factors to the RNA. 

Because of the close proximity of the mutation to the 5’ss, directly blocking the mutant position with 

an SSO most likely would not result in increased exon inclusion. Interestingly, DeepCLIP finds sites 

important for binding in a region downstream of the GT-rich core binding motif, which suggests that 
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blocking these sites could prevent TDP-43 binding to the core motif and restore splicing of exon 6. 

We tested this hypothesis using two different SSO molecules that targeted this downstream region 

and which had small overlaps with the end of the GT-rich region (Figure 4d). Strikingly, both SSOs 

proved very efficacious and almost completely restored splicing from the mutant minigene, 

indicating that blocking of the downstream motif prevented binding of TDP-43. This indicates that 

TDP-43 may exhibit context dependent binding modularity, and that the DeepCLIP model is able to 

detect these context-dependent signatures from the sequence alone.  

To validate that TDP-43 binding is directly affected by the mutation, we first analyzed a set of 23 nt 

oligonucleotides with DeepCLIP (Figure 4e,f) showing that in this shorter context the mutation is 

still predicted to increase. We then used Surface Plasmon Resonance imaging (SPRi) to measure 

binding to the 3’ biotin labeled RNA oligonucleotides and observed a pronounced increase in TDP-

43 binding to the mutant (Figure 4g-h) in agreement with DeepCLIP predictions.   
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Figure 4 | DeepCLIP predicts increased TDP43 binding as mechanism behind ACADM exon 6 

skipping. (a) DeepCLIP TDP43 profile across the 5’ss of ACADM exon 6 with wt indicated in black 

and patient mutation indicated in red. Along the first axis the sequence is shown and along the 

second axis the DeepCLIP BLSTM values are shown. SPRi oligo location and SSO locations are 

indicated in blue and red bars above and below the sequence, respectively. (b) Splicing of wt and 

mutant minigenes with either TDP-43 targeting siRNA or non-targeting siRNA determined by RT-

PCR. (c) Western blot of TDP-43 and HPRT from siRNA and minigene transfected samples. (d) 

Splicing of wt and mutant minigenes treated with either a control SSO (Ctrl-SSO), SSO1, or SSO2 

determined by RT-PCR. (e) DeepCLIP profile of short RNA oligos used in SPRi measurement, 

reference in black and +7A>G variant in red. (f) The difference in DeepCLIP binding profiles in (e) 

between reference and variant. Positive score indicates higher score in variant. (g) SPRi 

measurements of TDP-43 binding to the wt oligo in (e). (h) SPRi measurements of TDP-43 binding 

to the variant oligo in (e). In both (g) and (h) the black line indicates the fitted binding model. 
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DeepCLIP binding scores correlate with in vitro binding affinities 

One of the most important tasks of a model that predicts presence of RBP binding sites is to 

accurately estimate the effects of mutations on binding affinity. Therefore, we analyzed 6 sets of wt 

and mutant exonic variants from the Raponi et al 15-mer set employing SPRi using recombinant 

hnRNP A1 and SRSF1 as input-proteins (Figure S34-S39, Table S5). These measurements quantify 

the binding to wt and mutant oligonucleotides, allowing confirmation of DeepCLIP predictions, such 

as the increase in hnRNP A1 binding to the PTEN exon 6 +19C>T mutant (Figure 5a,b). The 

maximum affinity values obtained by fitting binding models to the measured response by the 

different SPRi-models correlated well with both hnRNP A1 and SRSF1 DeepCLIP models (Figure 

5c-d), across the diverse set of sequences in the dataset (hnRNP A1: Spearman correlation ρ=0.853, 

p=0.0007719; SRSF1: Spearman correlation ρ=0.782, p=0.01165). This was also true when we 

compared DeepCLIP predictions with the Rmax value (Figure S40). This demonstrates that despite 

being trained on in vivo data, the modelling approach of DeepCLIP is also applicable with short in 

vitro sequences, which can be used to examine and validate specific changes in binding to target sites 

identified by DeepCLIP.  
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Figure 5 | DeepCLIP predictions correlate with binding affinity studies. (a,b) Scatter plots of raw 

hnRNP A1 SPRi measurements (dots) and the fitted models (black lines) to wt (a) and mutant (b) 

PTEN exon 6 15 nt oligonucleotide. (c,d) Scatter plots showing DeepCLIP predictions of hnRNP A1 

binding (c) and SRSF1 binding (d) to 15 nt oligonucleotides corresponding to wt and mutant pairs 

from Raponi et al against the maximum of the binding model fitted to SPRi measurements. The 95% 

confidence intervals of fitted linear regression models (red line) are shown in grey. Spearman’s rho is 

show in red in lower right corner, and the p-value in the upper left. 
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DeepCLIP analysis of TDP-43-repressed pseudoexons indicates that tissue-specificity is 

position-dependent 

In addition to analyzing sequence variations, DeepCLIP can also be used on a global scale to conduct 

larger analyses of binding preferences of RBPs. TDP-43 is depleted in the nucleus of motor neurons 

in patients suffering from amyotrophic lateral sclerosis (ALS)56,57. TDP-43 has been reported to 

repress the inclusion of pseudoexons, and these are then erroneously activated following nuclear 

depletion, potentially leading to development of ALS symptoms58. A conditional TDP-43 knock-out 

mouse-model displays increased pseudoexon inclusion, some of which are muscle and neuron-

specific59. Because these pseudoexons are not necessarily conserved in humans, they may not 

directly relate to ALS, but they may nevertheless improve our understanding of how some 

pseudoexons are selectively up-regulated in motor neurons. This can prove important to the 

understanding of the underlying molecular pathology of ALS. We therefore used DeepCLIP to 

analyze TDP-43-repressed pseudoexons in mice to examine the tissue specific differences in TDP-43 

binding. We found that DeepCLIP overall predicted decreased binding to the region down-stream of 

the 5’ss of pseudoexons that are neuron specific compared to pseudoexons that are muscle-specific 

(Figure 6, Figure S41), while neuron-specific pseudoexons were predicted to bind more TDP-43 in 

the region covering the poly-pyrimidine tract compared to muscle-specific pseudoexons. This might 

reflect interplay between TDP-43 and tissue-specific factors interacting with these regions in a 

position-dependent manner. These results indicate that sequence analysis of known pseudoexons can 

lead to discovery of neuron-specific pseudoexons involved in ALS pathology in humans. 
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Figure 6 | DeepCLIP analysis of TDP43-repressed pseudoexons indicate position-dependent 

tissue-specificity. (a) The average DeepCLIP TDP43 profile scores of 58 neuron-specific and 79 

muscle-specific pseudoexons activated in TDP43-null mice in the areas covering the 25 first and last 

nucleotides of the pseudoexon, and the 50 nt spanning intronic regions. 95%-confidence intervals are 

indicated by shaded areas. 
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DISCUSSION 

We present DeepCLIP, a novel deep learning approach to modelling RNA-binding protein sites 

using a shallow neural network composed of CNN and LSTM layers to capture context-dependent 

binding. DeepCLIP generalizes well across a diverse set of sequences in both in vitro and in vivo 

settings, and produces a profile of the sequence, which indicates sequence elements important for the 

binding of the RNA binding protein in question. 

Previous RNA-protein binding classifiers attempted to improve their performance by incorporating 

context dependencies in a number of different ways, e.g. secondary and tertiary structure, known 

binding sites of other RNA-binding proteins, and annotated gene regions such as exons, introns, and 

UTRs.  

With DeepCLIP, we demonstrate that a neural network, in which context dependency is not pre-

defined, but modelled implicitly by a BLSTM layer, is competitive or outperforming existing 

classifiers that, in addition to the RNA-sequences, depend on one or more predefined data sets 

containing different categories of contextual information.  This allows DeepCLIP to be agnostic with 

regard to other inputs and makes it robust towards any limitations in e.g. the modelling of the 

structure, or the level and quality of annotation of gene structure and other protein binding sites. 

Structure modelling was previously shown to improve model accuracy for the datasets Ago1-4, 

CAPRIN1, IGF2BP1-3, MOV10 and ZC3H7B14. While DeepCLIP does not directly include 

predictions of secondary structures when classifying, DeepCLIP AUROC measures for these 

proteins were the highest of all classifiers except for IGF2BP1-3, where iONMF, which also does not 

model structure, had a higher AUROC score. This indicates that the BLSTM layer of DeepCLIP 

captures sufficient structural information, or that other, potentially even hidden and unknown, 

contextual dependencies are as important as structure modelling.  
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DeepCLIP produces motifs of varying sizes ranked by the average information content (Figure 2a, 

b). The top-ranking motifs of DeepCLIP for the analyzed proteins were remarkably similar to core 

binding sites as described in literature (Figure S4). DeepCLIP does not generate motifs describing 

structural preferences of RBPs, however this may be obtained by using structure modelling software 

on high-scoring sites identified by DeepCLIP. DeepCLIP instead integrates contextual information in 

its models and uses this to output predictions and binding profiles, which indicate binding strength of 

the total sequence and shows areas of the input-sequence with high and low affinity for the protein in 

question, respectively.  

When searching for binding sites in longer sequences, the information contained in the DeepCLIP 

binding profiles becomes invaluable, since it unravels interesting areas that are important for protein 

binding (Figure 2i-j). In the case where a longer sequence contains mainly strong background 

patterns and only a small segment with binding site potential, DeepCLIP and other tools will be 

prone to classify this sequence as a background sequence. However, DeepCLIP is able to identify the 

foreground segment and highlight it on the binding profile of the sequence. 

DeepCLIP binding profiles can be used for estimating high- and low-affinity regions of sequences 

(Figure 4). The predictions, which are directly based on the binding profile values, display a strong 

correlation with affinity studies (Figure 5) suggesting that DeepCLIP successfully captures binding 

preferences of RBPs. To this end, the binding profiles produced by DeepCLIP can be used to identify 

splicing regulatory sites that can be targeted by SSOs (Figure 4a), which is an important novel and 

missing functionality of existing binding site discovery tools. Thus, DeepCLIP greatly facilitates the 

design of new drugs based on blocking protein-RNA binding sites, which is a very promising new 

therapeutic approach, as illustrated for instance by the recent success of the SpinrazaTM SSO in 

treating SMA60,61.  
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In summary, DeepCLIP models provide valuable insight into the functional consequences of 

sequence variants. Both in vitro binding assays and in vivo splicing assays as well as observed 

splicing of disease-causing mutations in patient cells correlate well with DeepCLIP predictions. This 

demonstrates that an in silico analysis with DeepCLIP can serve as a valuable tool for assessing the 

functional effects of potentially pathogenic sequence variants, providing an important tool for 

clinical diagnosis. Finally, we demonstrate that DeepCLIP can serve as tool for designing efficient 

SSOs for correcting aberrant splicing caused by disease-causing mutations.   
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METHODS 

DeepCLIP: more than just a motif discoverer 

DeepCLIP is essentially a deep neural network that uses shallow 1D convolutional layers to find and 

enhance features of a set of presented sequences26,62,63. This is followed by a Bidirectional Long 

Short Term Memory (BLSTM) layer64,65 which uses the extracted features and contextual 

information of the sequences to find areas of the RNA-sequences associated with RBP binding 

(Figure 1). Initially, the convolutional layers of DeepCLIP can be regarded as a collection of 

randomly generated PFMs of user-defined sizes that, as training progresses, learn to recognize 

important nucleotide patterns in the input data. When predicting, the convolutional layers score 

sequence segments according to their importance for the classification task. Pseudo-PFMs can be 

generated by collecting scored sequence patterns and counting the frequencies of different 

nucleotides at each possible position. We use the term pseudo-PFMs because each sequence used for 

the PFM generation is weighted by the squared output score given by the convolutional layers. In 

this way, the pseudo-PFMs will depict important class-specific nucleotide patterns. The BLSTM 

layer of DeepCLIP is used to generate a binding profile at the nucleotide level. The BLSTM layer 

consist of two LSTM layers that analyze “hidden” sequence representations (modified outputs of the 

convolutional layers) in a bidirectional manner (Figure S1). 

 

The DeepCLIP tool takes a single or more RNA oligonucleotides (short RNA sequences) as input 

and predicts binding probability and calculates a binding profile. The main purpose of DeepCLIP is 

to identify binding sites of proteins in novel untested sequences using trained models that have 

extracted binding site information provided by CLIP data, to predict the effect of sequence variants 

on the binding, and to identify the importance of individual nucleotides for protein binding affinity.  

DeepCLIP is fast enough to run online on a web server (http://deepclip.compbio.sdu.dk/) and its 

Python code is also publicly available (http://www.github.com/deepclip). 
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Training workflow of DeepCLIP 

The core of DeepCLIP is a convolutional BLSTM network implemented in Theano66 using the 

Lasagne library67 and a few customized network layers and functions. DeepCLIP is a binary 

classifier that uses supervised learning to distinguish between unbound sequences and bound 

sequences derived from CLIP-experiments. The input to DeepCLIP consists of positive (bound) 

sequences, which are assigned to class 1, and negative (unbound) sequences assigned to class 0. 

These input sequences are converted into linearized one-hot encoded vectors, which serve as the 

actual input to the neural network layers.  The DeepCLIP architecture is shown in Figure 1.  

By default, 80% of the input data is used for training while 10% is used for validation and the last 

10% for testing (Figure S1d). DeepCLIP is trained by iterating over the training and validation sets 

several times (also called epochs). While training, performance is measured on the validation set 

after every epoch and the best performing model is saved. Early stopping can be applied to prevent 

training after a likely maximum performance has been obtained. The final performance of the saved 

model is measured on the test set, which contain data that have not previously been introduced to the 

model. When running in 10-fold cross-validation the input sequences are divided into 10 equal sized 

bins, and each bin is used once as a test set, once as a validation set and 8 times as part of the training 

set (Figure S1e). 

 

Encoding of sequence data  

DeepCLIP processes sequence data as linearized one-hot encoded vectors. In the one-hot 

representation, the items of the vocabulary, v = (A, C, G, U), are represented by vectors with lengths 

equal to the length of the vocabulary that each have a 1 in unique dimensions. The one-hot encoded 

bases are therefore independent of one another and are equally similar or dis-similar. It signals that 
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no prior correlations between the bases are known. In this way, the network will determine 

correlations between the bases on its own68. All input sequences are zero-padded until they have 

identical lengths and until the largest filter can conduct “full convolutions” as it is defined in the 

Lasagne documentation67. Following vectorization of the bases of the sequences, the combined 

vectors are linearized, and the resulting one-dimensional data used as input to the neural network. 

 

Convolutional neural network layer 

Convolutional layers consist of nodes that are only sensitive to a defined receptive field referred to as 

kernels or filters. Nodes of convolutional layers apply weight-sharing and sparse-connectivity, which 

means that the same filter can “view” all possible filter-sized segments of the input individually69.  

As in previous work26-29, the filters of the convolutional layers in DeepCLIP can be interpreted as 

motif detectors. The sizes of the filters of the convolutional layers are optional but we used ranges 

from 4-8 one-hot encoded bases. DeepCLIP only applies a single filter of each size. The strides of 

the filters are |𝑣|, so the filters only convolve patterns consisting of whole one-hot encoded bases. 

The convolutional layers apply the rectifier activation function70. In this context, it means that only 

patterns that receive a score above zero can be assumed important for sequence identification. 

The bias parameters of the convolutional layers are removed to ensure that only sequential areas 

containing one-hot encoded bases produce outputs above 0, which implies that these areas are 

deemed more important in the further processing. The initial weights of the convolutional nodes are 

set to 0.01.  The filter sizes allow for diverse sequence patterns of various length to be incorporated 

into the model. The output vectors of convolutional layers in DeepCLIP are vectors containing 

values between 0 and ∞. Before the output vectors are passed to the BLSTM layer they undergo a so-

called WTA-enhancement (Winner Take All-enhancement), which is described below. 
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The single highest values of the different output vectors are multiplied by 2 which is followed by a 

squaring of the vectors to enhance differences between high low values. These squared vectors have 

now been WTA-enhanced, where the "winners" are the highest values in the output vectors (see 

Figure 1 for a thorough explanation). The WTA-enhanced vectors are used for a recreation of the 

original one-hot embedded sequences where the one-hot values are defined by the WTA-enhanced 

vector elements. For each convolutional layer, a WTA-enhanced sequence is created and 

concatenated in a manner that makes it possible to process each numerical base representation of the 

sequences as individual steps in the following BLSTM layer (see Figure 1). 

 In this way, the convolutional layers help guide the attention of the BLSMT layer. The pseudo-

PFMs created by the DeepCLIP tool that depict the important patterns in the RBP-bound sequences, 

are based on the specific sequential areas that only relate to class 1. Meaning, if an area of a 

sequence is, by the BLSTM layer, predicted as being associated with class 0, any convolutional 

output values in the sequential area will be zeroed out and therefore will not be a part of the pseudo-

PFM calculation. The filters of the convolutional layers of the model with the best performance in 

the 10-fold cross validation were extracted and used for creation of pseudo-PFMs. The top 1000 

sequences with respect to the predictions were used for the pseudo-PFM calculation.   

Bidirectional LSTM layer 

Long short-term memory (LSTM) networks have already proven successful in biological sequence 

analysis26,71. DeepCLIP uses a single BLSTM layer that processes the WTA-enhanced sequences 

(Figure 1). In BLSTM layers, the input sequences are presented forwards and backwards in two 

separate LSTM layers that are connected to the same output layer65. The implementation of a single 

LSTM layer in DeepCLIP is given by equations (1-9): 

𝒊𝑡 = 𝜎(𝑾𝑥𝑖𝒙𝑡 + 𝑾ℎ𝑖𝒉𝑡−1 + 𝒃𝑖) (1) 
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where 𝒊, 𝒇, 𝒈, 𝒐 and 𝒄 are the input gate, forget gate, modulatory gate, output gate and cell, 

respectively. 𝒙𝑡  is the input vector at timestep 𝑡, 𝑾𝑥𝑖 is the input-input gate weight matrix, 𝑾ℎ𝑖 is 

the hidden-input gate weight matrix, 𝒃𝑖 is the bias of the input gate and 𝒉𝑡−1 is the hidden output 

vector from timestep 𝑡 − 1. The same logic applies for the remaining gates. 𝜎 is the sigmoid 

activation function, 𝑡𝑎𝑛ℎ is the hyperbolic tangent activation function and the Hadamard product 

indicates elementwise multiplication. The hidden output vector of a LSTM memory block is 𝒉𝑡 at 

timestep 𝑡.   

The forward LSTM reads an input sequence with length 𝑇 from 𝒙1 to 𝒙𝑇 and the backward LSTM 

reads the same input sequence from 𝒙𝑇 to 𝒙1. The forward LSTM layer produces forward hidden 

vectors, 𝒉1
⃗⃗⃗⃗ , 𝒉2

⃗⃗ ⃗⃗ …𝒉𝑇
⃗⃗⃗⃗  ⃗ and the backward LSTM layer produces backward hidden vectors 𝒉1

⃖⃗ ⃗⃗⃗, 𝒉2
⃖⃗ ⃗⃗⃗ …𝒉𝑇

⃖⃗ ⃗⃗⃗⃗ . 

Here, the output of the backwards LSTM layer has been reversed, so the outputs of forward and 

backward LSTM layers go from 𝒙1 to 𝒙𝑇. The hidden vector of the BLSTM layer at time step 𝑡, 𝒉𝑡, 

𝒇𝑡 = 𝜎(𝑾𝑥𝑓𝒙𝑡 + 𝑾ℎ𝑓𝒉𝑡−1 + 𝒃𝑓) (2) 

𝒈𝑡 = tanh(𝑾𝑥𝑔𝒙𝑡 + 𝑾ℎ𝑔𝒉𝑡−1 + 𝒃𝑔) (3) 

𝒄𝑡 = 𝒇𝑡⨀𝒄𝑡−1 + 𝒊𝑡⨀𝒈𝑡 (4) 

𝒐𝑡 = 𝜎(𝑾𝑥𝑜𝒙𝑡 + 𝑾ℎ𝑜𝒉𝑡−1 + 𝒃𝑜) (5) 

𝒉𝑡 = 𝒐𝑡 tanh(𝒄𝑡) (6) 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 (7) 

tanh(𝑧) =
𝑒2𝑧 − 1

𝑒−2𝑧 + 1
 (8) 

Hadamard product =  ⨀ (9) 
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is given by the concatenation of the forward hidden vector and the backward hidden vector 𝒉𝑡 =

[𝒉𝑡
⃗⃗⃗⃗ ; 𝒉𝑡

⃖⃗ ⃗⃗⃗] 72.  

The output sequence of a BLSTM layer given an input sequences of length 𝑇 can be seen as a matrix, 

𝑯 = (𝒉1, 𝒉2, … 𝒉𝑇), where each 𝒉𝑡 is a row. Each 𝒉𝑡 contains information about the whole input 

sequence with a strong focus on the parts surrounding the 𝑡𝑡ℎ input vector72. In DeepCLIP, each 𝒉𝑡 

represents a base of a sequence that has knowledge of the surrounding sequence. These context-

aware representations of sequences function as input to the output layer where the final prediction is 

calculated. Dropout is applied on H, which means that recurrent connections are not affected.  
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Output layer, binding profile and prediction  

The output layer consists of a single fixed node without a bias parameter that uses the sigmoid 

activation function. By “fixed” we mean that the parameters of the node do not update when training. 

The initial weight of the node is set to 1.0, which means that the node is forced to associate positive 

values with class 1 and negative values with class 0. The input to the output layer, given a single 

input sequence, is the vector that results from a row summation of the matrix H where segments 

based on zero-paddings are zeroed out. By zeroing out these segments it is ensured that only areas 

that contain one-hot embedded bases are used for the prediction of the given sequence. Basically, the 

prediction of a given RNA-sequence is the sum of the output values of the BLSTM layer inserted 

into a sigmoid activation function. 

In terms of the BLSTM output, if a 𝒉𝑡 is mainly positive the base at its specific position is associated 

with the “consensus patterns” of the sequences derived from the CLIP experiments. If a 𝒉𝑡 is 

primarily negative, the base at its specific position is more associated with random background 

sequences derived from the genome. And if the values of a 𝒉𝑡 sums to ~0, the base at its position 

could belong to both classes. This approach makes DeepCLIP able to highlight sequential areas that 

differ from genomic background and thereby able to identify in vivo binding sites. The binding 

profiles are constructed using the input vectors of the output layer, where all the zero-padding has 

been removed.  

 

DeepCLIP default settings 

DeepCLIP uses ADAM73 (𝛼 = 0.0002, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8) for gradient descent 

optimization. For the BLSTM layer, the parameters are sampled from a Gaussian distribution with 

𝜇 = 0.0 and 𝑠𝑡𝑑 = 0.01. DeepCLIP uses binary cross entropy as loss function and employs dropout in 

order to avoid overfitting. The most optimal network weights based on AUROC performance on the 

validation set are saved during training. Dropout is applied to the BLSTM layer (10%).  
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Generation of background sequences 

Background sequences can be either supplied by the user as sequences or generated automatically by 

DeepCLIP from positive binding sites in one of two ways. The default way is to supply positive 

binding site in BED format and then generate a random set of identically sized genomic regions as 

the positive binding site and randomly placing each within the same gene as the corresponding 

positive binding site such that no background regions overlap either a positive binding site or another 

background region. Alternatively, background sequences can be generated from positive binding 

sites by scrambling the input sequences. When positive binding sites are supplied in BED format, 

they can optionally be expanded on each size, or fixed to a certain width, or a combination of these. 

In this paper, we have used the random genomic background method to most accurately obtain in 

vivo non-bound sites. 

 

Analysis of Area Under Receiver Operator Curve classification performance 

Comparison of Area Under Receiver Operator Curve (AUROC) classification performance was 

performed on the dataset compiled in the GraphProt paper14. In order to minimize computational 

complexity, we took the performance numbers of alternative models on this dataset as they were 

reported in the previous studies14,18,28. We could not compare to iDeep29, as they did not provide 

numbers for the same datasets, and did not provide any way of producing the multimodal data 

required as input. We ran iDeepS on 101 nt sequences from the GraphProt dataset by expanding the 

peak-areas on either side until the sequence was 101 nt. We ran iDeepS on these sequences with the 

same number of epochs that we used to train DeepCLIP models. We generated 10-fold cross-

validation sets where one set was held out for testing one time, and used in training the other 9 times, 

in order to obtain comparable performance measures across the full datasets. We ran DeepCLIP on 
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the peak-area sequences of the datasets in a 10-fold cross-validation, such that each site was held out 

exactly once for validation during training, and once for final testing, while being used for actual 

training the remaining eight times. Model performance was measured for each dataset using the 

performance measure tool “perf” as used by GraphProt on the combined predictions from all CV 

cycles. Additionally, AUROC confidence intervals were estimated using the DeLong algorithm as 

implemented in the “pROC” R package74. 

 

Analysis of additional public CLIP data 

Binding sites from an eCLIP study of SRSF150 were downloaded and converted to BED format 

which was directly used as input to DeepCLIP using same running parameters as previous models, 

with 50 training epochs and early stopping after 5 epochs. TDP-43 binding sites were downloaded 

from POSTAR255 and non-redundant input sites were used to train a DeepCLIP model, again using 

identical running parameters as previous models, but adjusting the number of training epochs to 5 to 

account for the much larger training set. Similarly, hnRNP A1 binding sites49, were used to train a 

DeepCLIP model using default parameters with 200 training epochs and early stopping after 20 

epochs. In all cases, 10-fold cross-validation was used to identify the best performing model. 

 

Analysis of TDP-43 repressed pseudoexons 

Pseudoexons activated by conditional knock-out of TDP-43 in mice59 were analyzed with DeepCLIP 

by first extracting the sequence of the pseudoexon along with 100 nt of the neighboring intronic 

sequences. These sequences were then used to produce binding profiles by using a sliding window 

approach to produce raw DeepCLIP profiles of smaller segments, taking the value of the central 

nucleotide to build a binding profile covering the entire length of the sequence. Subsequently, 

regions corresponding to the 25 first and last nucleotides of the exons along with the 50 first and last 
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nucleotides of the neighboring introns were extract in order to analyze TDP-43 binding to the 

acceptor and donor splice site regions. 

 

Minigene generation 

ACADM exon 5 minigenes were identical to the previously used wt ACADM minigene33, with the 

exception of nucleotide variants at positions corresponding to c.361, c.362, and c.363 with exon 5. 

These variants were introduced as previously described33. 

The ACADM exon 6 wt minigene was generated from genomic DNA by amplifying the complete 

exon 6 (81 bp) along with 864 bp of intron 5 and 603 bp of intron 6 and subsequent cloning into the 

pSPL3 vector (Gibco BRL) using the BamHI and XhoI restriction sites. For amplification we used 

the forward primer 5’-TCGAGAATTCAGGAGCA-3’ and the reverse primer 5’-

CTCCACTAAATAGAGC-3’. The IVS6+7A>G mutation was introduced by GenScript (GenScript, 

Piscataway, NJ, USA). 

 

ACADM exon 5 minigene transfections and RT-PCR. 

HEK-293 cells were seeded in 3.5 cm2 12-well plates (Nunc) at a density of 4x105 cells/well 24 

hours prior to transfection. In each well, cells were transiently transfected using X-tremeGENE 9 

DNA Transfection Reagent (Merck): 0.3 µg of one of the ACADM exon 5 minigenes c.362C 

(wildtype), c.361C, c.361G, c.361T, c.362A, c.362G, c.362T, c.363A, c.363C, or c.363G. After 48 

hours of incubation following minigene transfection, cells were harvested using QIAzol Lysis 

Reagent (Qiagen), followed by phenol/chloroform extraction of total RNA. Reverse transcription 

was performed using the High Capacity cDNA Reverse Transcription Kit (Thermo Scientific). 

Splicing patterns were analyzed by PCR amplification, using TEMPase Hot Start DNA Polymerase 
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(Ampliqon), and agarose gel electrophoresis. We used the ACADM exon 5 minigene specific 

primers: MCTEST2AS (5′-AGACTCGAGTTACTATTAATTACACATC-3′) and MC242S (5’-

CCTGGAACTTGGTTTAATG-3’). PCR products were quantified according to molar ratios by 

capillary gel electrophoresis on a Fragment Analyzer™ instrument (Agilent), and visualized on 1.5% 

agarose gels. Experiments were performed in triplicates. 

ACADM exon 6 minigene transfections with siRNA mediated knock-down of TDP-43 and RT-

PCR. 

Knockdown of TDP-43 was obtained by performing reverse transfection during initial seeding of 

cells and another transfection 48 hours later. Both transfections were performed using Lipofectamine 

RNAiMAX Transfection Reagent (Thermo Fisher Scientific) and 40 nM of siRNA targeting 

TARDBP (L-012394-00-0020, Dharmacon) or non-targeting siRNA (D-001810-10-20, Dharmacon). 

HeLa cells were seeded in 3.5 cm2 12-well plates (Nunc) at a density of 1.5x105 cells/well 24 hours 

prior to minigene transfection. In each well, cells were transiently transfected using X-tremeGENE 9 

DNA Transfection Reagent (Merck): 0.4 µg of one the two ACADM exon 6 minigenes: WT or 

+7A>G. After 48 hours of incubation following minigene transfection, cells were harvested using 

QIAzol Lysis Reagent (Qiagen), followed by phenol/chloroform extraction of total RNA. Reverse 

transcription was performed using the High Capacity cDNA Reverse Transcription Kit (Thermo 

Scientific). Splicing patterns were analyzed by PCR amplification, using TEMPase Hot Start DNA 

Polymerase (Ampliqon), and agarose gel electrophoresis. We used the minigene specific primers: 

SD6 (5’-TCTGAGTCACCTGGACAACC-3’) and SA2 (5’-ATCTCAGTGGTATTTGTGAGC-3’). 

PCR products were quantified according to molar ratios by capillary gel electrophoresis on a 

Fragment Analyzer™ instrument (Agilent), and visualized on 1.5% agarose gels. Knockdown of 

TDP-43 was validated by SDS-PAGE and Western Blotting and membranes were probed with 

antibodies anti-TDP-43 (10782-2-AP, ProteinTech) and as a loading control anti-HPRT 

(HPA006360, Merck). Experiments were performed in triplicates. 
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SSO co-transfection with ACADM exon 6 minigenes 

HeLa cells were reverse transfected in duplicates with 40 nM SSO using Lipofectamine RNAiMAX 

Transfection Reagent (Thermo Fisher Scientific) according to the manufacturer’s protocol, and 

seeded in 3.5 cm2 12-well plates (Nunc) at a density of 2x105 cells/well 24 hours prior to minigene 

transfection. SSOs were phosphorothioate oligonucleotides with 2′-O-methyl modifications on each 

sugar moiety (LGC Biosearch Technologies): SSO1 (5’-

UAAGUGUGAAAUAAAGCGGCAGUUA-3’), SSO2 (5’-

AGUGUGAAAUAAAGCGGCAGUUACA-3’), or a control SSO without any human target sites: 

5’-GCUCAAUAUGCUACUGCCAUGCUUG-3’. Cells were transiently transfected using X-

tremeGENE 9 DNA Transfection Reagent (Merck): 0.4 µg of one of the two ACADM exon 6 

minigenes: WT, or +7A>G. After 24 hours of incubation following minigene transfection, cells were 

harvested using QIAzol Lysis Reagent (Qiagen), followed by phenol/chloroform extraction of total 

RNA. Reverse transcription was performed using the High Capacity cDNA Reverse Transcription 

Kit (Thermo Scientific). Splicing patterns were analyzed by PCR amplification, using TEMPase Hot 

Start DNA Polymerase (Ampliqon), and agarose gel electrophoresis. We used the minigene specific 

primers: SD6 (5’-TCTGAGTCACCTGGACAACC-3’) and SA2 (5’-

ATCTCAGTGGTATTTGTGAGC-3’). PCR products were quantified according to molar ratios by 

capillary gel electrophoresis on a Fragment Analyzer™ instrument (Agilent), and visualized on 1.5% 

agarose gels. Experiments were performed in triplicates. 

 

Surface plasmon resonance imaging method 

Biotinylated oligonucleotides were immobilized on a Senseye G strep (SSENS) sensorchip in a 

2x4x12 array by continuous flow in a CFM 2.0 printer (Wasatch microfluidics). The 
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oligonucleotides were diluted in 1XTBS to a concentration of 1 µM and spotted for 20 min followed 

by 5 minutes washing with TBS + 0.05% Tween-20. The sensor chip was transferred to the MX-96 

(IBIS technologies) , and the system was primed with SPR buffer (10 mM Hepes/KOH pH 7.9, 150 

mM KCl, 10 mM MgCl2 and 0.075% Tween-80). Surface plasmon resonance imaging (SPRi) by 

IBIS MX-96 was used to measure the kinetics of recombinant hnRNP A1 (ab224866, Abcam), 

SRSF1 (GenScript, Piscataway, NJ, USA) and TDP-43 (R&Dsystems, AP-190) binding to the 

immobilized RNA oligonucleotides. Binding was measured in real time by following changes of the 

SPR angles at all printed positions of the array during 10 min. injections of recombinant protein over 

the entire surface. Seven injections of a 2-fold titration series from 6.25 to 400 nM protein was 

injected in sequence from the lowest concentration to the highest. Before adding protein to the chip, 

residual background binding was blocked by injecting 20mg/ml BSA in SPR buffer onto the chip for 

10 minutes. A continuous flow of SPR buffer flowed over the surface before, between and after the 

protein injections, to measure baseline and dissociation kinetics. Dissociation was measured for 8 

minutes, by injecting SPR buffer over the chip at a rate of 4 µl/sec. Responses for a calibration curve 

were created after the concentration series by measuring SPR responses from defined dilutions of 

glycerol in running buffer (ranging from 5 to 0 % glycerol) and of pure water as defined by the 

automated calibration routine of IBIS MX-96. 

Data analysis: The SPRi data was imported into SPRINTX software (v. 2.1.1.0, IBIS technologies), 

calibrated, reference subtracted, and the baseline of the responses before all injections were zeroed. 

The time starting point was aligned at the beginning of each new injection. Then the data were 

exported to Scrubber 2 (v 2.0c, Biologics Inc.). Binding curves for all chip positions where binding 

was observed were fitted globally to the integrated rate equation that describes simple first order 1:1 

binding kinetics to obtain kinetic association rate (ka), dissociation rate (kd) as well as the Rmax for 

the binding model. For hnRNPA1 and TDP-43 a 1:2 biphasic model was calculated and fitted. 

ClampXP (version 3.50, Biosensor Data Analysis) was used with a bimodal model to fit the binding 
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data. The secondary Ka and Kd parameters were fixed to 1e-7 M, due to very low secondary 

association and dissociation. Primary binding parameters and ligand concentration (Rmax) was set to 

float. SPRi measurements were performed twice, with technical duplicates being used for model 

fitting each time.  

 

Statistical analyses 

All statistical analyses were performed in R (version 3.5.1). We used the default wilcox.test() for 

two-tailed Wilcoxon rank sum and Wilcoxon signed rank tests. Linear regression was carried out 

using ggplot2 (version 2.3.1.1) and geom_smooth(method=lm, colour="red", se=TRUE), with 

correlation significance analysis using the default cor.test() with method="spearman".  
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