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Abstract  29 

The ability to design functional sequences and predict effects of variation is central to protein 30 

engineering and biotherapeutics. State-of-art computational methods rely on models that 31 

leverage evolutionary information but are inadequate for important applications where multiple 32 

sequence alignments are not robust. Such applications include the prediction of variant effects of 33 

indels, disordered proteins, and the design of proteins such as antibodies due to the highly 34 

variable complementarity determining regions. We introduce a deep generative model adapted 35 

from natural language processing for prediction and design of diverse functional sequences 36 

without the need for alignments. The model performs state-of-art prediction of missense and 37 

indel effects and we successfully design and test a diverse 105-nanobody library that shows better 38 

expression than a 1000-fold larger synthetic library. Our results demonstrate the power of the 39 

‘alignment-free’ autoregressive model in generalizing to regions of sequence space traditionally 40 

considered beyond the reach of prediction and design.  41 
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Introduction 42 

Over the past twenty years, success in protein engineering has emerged from two distinct 43 

approaches, directed evolution1, 2 and knowledge-based force-field modeling3, 4. Designing and 44 

generating biomolecules with known function is now a major goal of biotechnology and 45 

biomedicine, propelled by our ability to synthesize and sequence DNA at increasingly low costs. 46 

However, since the space of possible protein sequences is so large (for a protein of length 100 47 

this is 10130), deep mutational scans5 and even very large libraries (e.g. >1010 variants) barely 48 

scratch the surface of the possibilities. As the vast majority of possible sequences will be non-49 

functional proteins, it is crucial to minimize or eliminate these sequences from libraries. 50 

Therefore, the open challenge is to develop computational methods that can accelerate this 51 

search and bias the search space for protein sequences that are likely to be functional. This will 52 

enable design of libraries for tractable high-throughput experiments that are optimized for 53 

functional sequences and variants that are distant in sequence.  54 

Antibody design is a particularly challenging problem in the area of statistical modeling of 55 

sequences for the purposes of prediction and design. Antibodies are valuable tools for molecular 56 

biology and therapeutics because they can detect low concentrations of target antigens with high 57 

sensitivity and specificity6. Single-domain antibodies, or nanobodies, are composed solely of the 58 

variable domain of the canonical antibody heavy chain. The increasing demand for and success 59 

with rapid and efficient discovery of novel nanobodies using phage and yeast display methods7-10 60 

have spurred interest in the design of optimal starting libraries. Previous statistical and structural 61 

modeling of antibody repertoires11-18 have addressed the characterization of sequences of natural 62 

antibodies or predicted higher affinity sequences from immunization or selection experiments. 63 

One of the biggest challenges is to design libraries diverse enough to target many antigens but 64 

also be well-expressed, stable, and non poly-reactive. In fact, a large, state-of-art synthetic 65 

library contains a substantial fraction of non-functional proteins8 because library construction 66 

methods lack higher-order sequence constraints. Eliminating these non-functional proteins 67 

requires multiple rounds of selection and poses the single highest barrier to identifying high-68 

affinity antibodies. In order to circumvent these limitations, there has been emphasis on very 69 

large libraries (~109-1010) to achieve these desired features19, 20.  70 

Instead of experimentally producing unnecessarily massive, largely non-functional libraries, we 71 

can design smart libraries of fit and diverse nanobodies for the development of highly specific 72 
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and possibly therapeutic nanobodies. One way to approach this is to leverage the information in 73 

natural sequences to learn constraints on specific amino acids in individual positions in a way 74 

that captures their dependency on amino acids in other positions. The sequences of these variants 75 

contain rich information about what contributes to a stable, functional protein, and in recent 76 

years generative models of these natural protein sequences have been powerful tools for the 77 

prediction of the first 3D fold from sequences alone21, 22,  to generally more 3D structures and 78 

conformational plasticity23, 24,  protein interactions25-28, and most recently, mutation effects29-34. 79 

However, these state-of-art methods and established methods35-38 rely on sequence families and 80 

alignments, and alignment-based methods are inherently unsuitable for the statistical description 81 

of the variable length, hypermutated complementarity determining regions (CDRs) of antibody 82 

sequences, which encode the diverse specific of binding to antigens. While antibody numbering 83 

schemes such as IMGT provide consistent alignments of framework residues, alignments of the 84 

CDRs rely on symmetrical deletions39. Alignment-based models are also unreliable for low-85 

complexity or disordered proteins40 and cannot handle variants that are insertions and deletions. 86 

Indels make up 15-21% of human polymorphisms41-43, 44% of human proteins contain 87 

disordered regions longer than 30 amino acids40, 44, and both are enriched in association with 88 

human diseases such as cystic fibrosis, many cancers45, 46, cardiovascular and neurodegenerative 89 

diseases, and diabetes47, 48. 90 

By contrast, the deep models that have transformed our ability to generate realistic speech such 91 

as text-to-speech49, 50 and translation51, 52 use generative models that do not require “word 92 

alignment”, e.g., between equisemantic sentences, but instead employ an autoregressive 93 

likelihood to tackle context-dependent language prediction and generation. Using this process, an 94 

audio clip is decomposed into discrete time steps, a sentence into words, and a protein sequence 95 

into amino acid residues. Models that decompose high-dimensional data into a series of steps 96 

predicted sequentially are termed autoregressive models, and they are well suited to variable-97 

length data that have not been forced into a defined structure such as a multiple-sequence 98 

alignment. Autoregressive generative models are uniquely suited for modeling and designing the 99 

complex, highly diverse CDRs of antibodies. Here, we develop and apply a new autoregressive 100 

generative model that aims to capture key statistical properties of sets of sequences of variable 101 

lengths.  102 
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We first test our method on the problem of prediction of mutation effects, which are typically 103 

analyzed using alignment based statistical methods. The new method performs on par with the 104 

DeepSequence machine-learning VAE-based method30, which does require aligned sequences 105 

and which in an independent evaluation, testing against experimental data, was reported to 106 

outperform all currently available methods34. In addition to this state-of-the-art performance, our 107 

new alignment-free method is inherently more general. It can deal with a much larger class of 108 

sequences and take into account variable length effects. Another recently developed method53 109 

does aim to quantify the of mutation effects without the need for alignments. However, 80% of 110 

the mutational data labelled with experimental outcomes from the same experiments it is tested 111 

on as well as fine-tuning with specific families as input. Previous neural language models54-56 are 112 

so far not suitable for mutation effect prediction for sequences without extensive experimental 113 

data or sequences with high variability, such as the complementarity-determining regions 114 

(CDRs) of antibody variable domains. By contrast, a fully unsupervised, alignment-free 115 

generative model of functional sequences is therefore desirable for the design of efficient 116 

nanobody libraries. 117 

We then trained our validated statistical method on naïve nanobody repertoires57 as naïve 118 

antibody repertoires have been shown to have functional sequences with capacity to target 119 

diverse antigens58 and used it to generate probable sequences. In this manner we designed a 120 

sequence library that is 1000-fold smaller than state-of-art synthetic libraries but has an almost 121 

two-fold higher expression level, from which we identified a candidate binder for affinity 122 

maturation. A well designed library can also be used in continuously evolving systems59 to 123 

combine the hypermutation and affinity maturation processes of living organisms in a single 124 

experiment. Smart library design opens doors to more efficient search methods of nanobody 125 

sequence space for rapid discovery of stable and functional nanobodies. 126 

Results 127 

An autoregressive generative model of biological sequences 128 

Protein sequences observed in organisms today result from mutation and selection for functional, 129 

folded proteins over time scales of a few days to a billion years. Generative models can be used 130 

to parameterize this view of evolution. Namely, they express the probability that a sequence 𝒙 131 

would be generated by evolution as 𝑝(𝒙|𝜽), where parameters 𝜽 capture the constraints essential 132 
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to functional sequences. An autoregressive model is one that makes a prediction in a time series 133 

(or sequence) using the previous observations. In our context, this means predicting the amino 134 

acid in a sequence using all of the amino acids that come before it. With the autoregressive 135 

model, the probability distribution 𝑝(𝒙|𝜽) can be decomposed into the product of conditional 136 

probabilities on previous characters along a sequence of length L (Supplementary Fig. 1) via an 137 

autoregressive likelihood: 138 

𝑝(𝒙|𝜽) = 𝑝(𝑥!|𝜽))𝑝(𝑥"|𝑥!, … , 𝑥"#!; 𝜽)
$

"%&

 139 

Many different neural network architectures can model an autoregressive likelihood, including 140 

attention-based models60 and recurrent neural networks61. However, we encountered exploding 141 

gradients62 during training on long sequence families with LSTM63 or GRU64 architectures. 142 

Instead, we parameterize this process with dilated convolutional neural networks 143 

(Supplementary Fig. 1), which are feed-forward deep neural networks that aggregate long-144 

range dependencies in sequences over an exponentially large receptive field65-67 (See Methods). 145 

The model is tasked with predicting an amino acid at some position in the sequence given all the 146 

previous amino acids in the sequence, i.e. forward language modeling. The causal structure of 147 

the model allows for efficient training to a set of sequences, inference of mutation effects, and 148 

sampling of new sequences. By learning these sequential constraints, the model can be directly 149 

applied to generating novel, fit proteins, one residue at a time. The autoregressive nature of this 150 

model obviates the need for a structural alignment and opens doors for application to modeling 151 

and design of previously challenging sequences such as non-coding regions, antibodies, and 152 

disordered proteins. 153 

The autoregressive model predicts experimental phenotype effects from sequences  154 

In order to gain confidence in the new model for generating designed sequences, we first tested 155 

the ability of our new model to capture the dependencies between positions by testing the 156 

accuracy of mutation effect prediction. Somewhat surprisingly, unsupervised, generative models 157 

trained only on evolutionary sequences are proving the most accurate for predicting the effect of 158 

mutations when compared to large datasets of experimentally measured mutation effects30, 34, and 159 

they avoid the risk of overfitting that can occur as a result of circularity in supervised methods68. 160 

We compared the accuracy of this new, non-alignment-based model to state-of-art methods for a 161 
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benchmark set of 40 deep mutational scans across 33 different proteins, totaling 690,257 162 

individual sequences (Supplementary Table 1). 163 

The autoregressive model was first fit to each family of protein sequences and then we used the 164 

log-ratio of likelihoods of individual sequences to predict mutation effects: 165 

log
𝑝(𝒙'()*+)|𝜽)
𝑝(𝒙,"-.#)/01|𝜽) 166 

which estimates the plausibility of mutant sequence 𝒙'()*+) relative to its wild-type, un-mutated 167 

counterpart, 𝒙,"-.#)/01. This log-ratio has been shown to be predictive of mutation effects29, 30. 168 

Importantly, this approach is fully unsupervised: rather than learning from experimental mutation 169 

effects, we can learn evolutionary constraints using only the space of natural sequences. We 170 

benchmark the model predictions against the deep mutational scan experiments and compare the 171 

Spearman’s rank correlation to state-of-art models trained on alignments of the same sequences. 172 

The autoregressive model is able to consistently match or outperform a model with only site-173 

independent terms (30/40 datasets) and the EVmutation model29 that includes dependencies 174 

between pairs of sites (30/40 datasets); it performs on par with the state-of-the-art results of 175 

DeepSequence30 (19/40 datasets, average difference in rank correlation is only 0.09); and it 176 

outperforms the supervised Envision model31 for 6/9 of the datasets tested (Fig. 2a; 177 

Supplementary Figs. 2, 3).  Previously published benchmarks29 demonstrate the higher 178 

accuracy of the probabilistic models, EVmutation compared to SIFT and PolyPhen, and recent 179 

work demonstrates that DeepSequence outperforms all currently available methods when 180 

measured against experimental mutation scans34. These benchmarks, taken together with our 181 

previous benchmarks29 and evidence from independent assessments34, show that our 182 

autoregressive model outperforms all methods including supervised and performs on par with 183 

our own state-of-art alignment-based method30 for single mutation effect prediction, providing us 184 

with the confidence to use the model for sequence design.   185 

As with previous models that use evolutionary sequences, the accuracy of mutation effect 186 

prediction increases with increasing numbers of non-redundant sequences, as long as there is 187 

coverage of the length, tested here across eight of the protein families for four sequence depths 188 

(Supplementary Fig. 4, Supplementary Table 2). Interestingly, the accuracy of effect 189 

predictions against the aliphatic amidase mutation scan are remarkably robust even with a low 190 
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number of training sequences—123 non-redundant sequences provide the same accuracy as 191 

36,000—suggesting that there is more to learn about the relationship between evolutionary 192 

sampling and model learning. For now, we advise a conservative Meff/L (number of effective 193 

sequences normalized by length) requirement of 5 in order to sample enough diversity.  194 

Because the autoregressive model is not dependent on alignments, we can now learn mappings 195 

of sequences of high variability and diverse lengths for which meaningful alignments are 196 

difficult or non-sensical to construct, such as antibody and nanobody sequences. The 197 

autoregressive model was thus also validated on nanobody thermostability measurements to test 198 

whether we could learn the sequence constraints of fit nanobodies, including the highly variable 199 

regions. To do so, we fit the autoregressive model to a set of ~1.2 million natural llama 200 

nanobody sequences57. Sequence likelihoods from this trained model are expected to reflect 201 

nanobody fitness, i.e., the multiple convolved aspects that nanobodies are selected for in vivo, 202 

including thermostability, expression, and potentially low polyreactivity. Using this model, we 203 

find that the log-probability fitness calculations predict the thermostability of unseen llama 204 

nanobody sequences from four different stability experiments69-72 (Fig. 2b, Supplementary Fig. 205 

5, Supplementary Table 3). These experiments span a wide range of mutation types, lengths, 206 

and sequence diversity. The autoregressive model consistently outperforms a hidden Markov 207 

model (HMM, hmmer3)73, 74 in predicting the relationship between sequence and thermostability 208 

of nanobodies. 209 

Previous alignment-dependent generative models are constrained to predicting the effects of 210 

missense mutations. However, in-frame insertions and deletions can also have large phenotypic 211 

consequences for protein function, yet these changes have proved difficult to model. We 212 

compare the fitness predictions calculated as log probabilities by the autoregressive model to 213 

experimental assays for the fitness of mutated biomolecules, using rank correlation (𝜌) for 214 

quantitative measurements and area under the receiver-operator curve (AUC) for binary fitness 215 

categorization, identifying the two groups with a two-component Gaussian mixture model. The 216 

model is able to capture the effects of single amino acid deletions on PTEN phosphatase75 217 

(r=0.69, N=340, HMM r=0.75; PROVEAN r=0.7; Fig. 2c) and multiple amino acid insertions 218 

and deletions in imidazoleglycerol-phosphate (IGP) dehydratase76 (AUC=0.90, N=6102, HMM 219 

AUC=0.88; Fig. 2d, Supplementary Table 4). Here we use the AUROC metric for IGP 220 
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dehydratase as the experimental data are bimodal with a large fraction at zero fitness. While 221 

PROVEAN77 predicted the effect of single PTEN deletions comparably to our model, it fails to 222 

predict the effect of multiple insertions, deletions, and substitutions as were tested in IGP 223 

dehydratase and it cannot generate new sequences. Three additional insertion and deletion 224 

mutation scan fitness predictions are included in the supplement: yeast snoRNA (r=0.49), beta 225 

lactamase (r=0.45), and p53 (r=0.035; Supplementary Fig. 6). Predicting the effects of indels 226 

also has clinical significance: the four different single amino acid deletions annotated as 227 

pathogenic by Clinvar78 in two cancer genes, BRCA1 and P53, and one Alzheimer’s-linked gene, 228 

APOE, are in the bottom 25th percentile of predicted deletion effect distributions 229 

(Supplementary Fig. 7). Other indels that are predicted to be highly deleterious by the 230 

autoregressive model may be of clinical interest for experimental study of pathogenicity. We 231 

expect that the autoregressive model can predict mutation effects in disordered and low-232 

complexity sequences. As a proof-of-concept, we have provided an in silico mutation scan of the 233 

human tau protein, which contains regions of low complexity and is strongly associated with 234 

neurodegenerative diseases, (Supplementary Fig. 8). Our mutation effect prediction 235 

distinguishes between 40 pathogenic and 10 non-pathogenic mutations (two-tailed independent 236 

t=-4.1, P=0.001, AUC=0.86) that were collected from the Alzforum database79. 237 

Generating an efficient library of functional nanobodies 238 

Screening large, high-throughput libraries of antibodies and nanobodies in vitro has become 239 

increasingly prevalent because it can allow for rapid identification of diverse monoclonal binders 240 

to target antigens. However, these synthetic libraries contain a large fraction of non-functional 241 

nanobody sequences. Natural nanobody sequences are selected against unfavorable biochemical 242 

properties such as instability, poly-reactivity, and aggregation during affinity maturation6. 243 

Similarly to nanobody thermostability prediction, we sought to learn the constraints that 244 

characterize functional nanobodies by fitting the autoregressive model to a set of ~1.2 million 245 

nanobody sequences from the immune repertoires of seven different naïve llamas57. Using this 246 

trained model and conditioning on the germline framework-CDR1-CDR2 nanobody sequence, 247 

we then generate over 107 fit sequences, generating one amino acid at a time based on the 248 

learned sequential constraints. As nanobody CDR3s often contact the framework in 3D, 249 

conditioning in this way allows the model to learn any resulting constraints on the CDR3 250 
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sequence and incorporate them during generation. We remove sequences that do not end with the 251 

final beta strand of our nanobody template, duplicate sequences, and CDR3s likely to suffer post-252 

translational modification to obtain ~3.7 million sequences (Supplementary Table 5). From 253 

these, we select 185,836 highly diverse CDR3 sequences for inclusion in our designed library. 254 

We compare our designed library to a state-of-art synthetic library8, which was constructed 255 

combinatorically based on position specific amino acid frequencies of nanobody sequences with 256 

crystal structures in the PDB database. This library contains CDR3 sequences that have a similar 257 

distribution of biochemical properties as the naïve llama immune repertoire (Methods; Fig. 3a). 258 

The distribution of hydrophobicity and isoelectric points are similar to the natural llama 259 

repertoire even though explicit constraints on these properties were never imposed during 260 

generation or selection of sequences for the designed library. The lengths of the CDR3 sequences 261 

in the designed library are shorter than the natural repertoire; this is due to the strategy of 262 

choosing cluster centroids during selection of the 105 sequences and can be adjusted by changing 263 

the sampling method. Longer CDR3s may also be attained by allowing interloop disulfide 264 

bridges that stabilize longer CDR3s in some VHH domains80; this would require a different 265 

nanobody template and ideally camel or dromedary nanobody repertoires. The sequences in the 266 

designed library are extremely diverse and are more distant from each other than sequences in 267 

the natural repertoire (Fig. 3b), while maintaining nearly as much diversity as an equivalent 268 

sample of a combinatorial synthetic library8 (Supplementary Fig. 9). Additionally, we are 269 

exploring new regions of sequence space because the generated sequences in the designed library 270 

are diverse from the naïve repertoire (Fig. 3c). 271 

Using these designed CDR3 sequences, a nanobody library was constructed using our yeast-272 

display technology for experimental characterization alongside a combinatorial synthetic 273 

nanobody library8. The designed library had more length diversity and a longer CDR3 median 274 

length (13) than the synthetic library (12) (Supplementary Fig. 9), while the synthetic library 275 

included designed diversity in specific residues of the CDR1 and CDR2. Individual nanobody 276 

sequences were expressed on the surface of yeast cells, allowing for rapid sorting of nanobody 277 

clones based on expression and/or binding levels. Upon induction, the designed nanobody library 278 

contained 1.5 times higher proportion of cells expressing and displaying nanobodies on their cell 279 

surface than the synthetic nanobody library (Fig. 4a,b, Supplementary Fig. 10). In the designed 280 

library, we can also see a clearer separation of cells expressing nanobodies and those that are not. 281 
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Of cells expressing nanobodies, the mean nanobody display levels from the designed library is 282 

almost twice the level of the previous library (Fig. 4a,b). Furthermore, the designed library had 283 

nearly half the fraction of poorly expressed nanobodies (cells with fluorescence below 10,000 284 

AU) as compared to the synthetic library (Fig. 4a,b) as well as a significant increase in the 285 

fraction of highly expressed nanobodies as can be seen in the upper limits in the respective 286 

expression distributions (Fig. 4a, Supplementary Fig. 10). Expression experiments were 287 

performed with two replicates in addition to a single control experiment of yeast expressing a 288 

single well-behaved nanobody clone (Nb. 174684). These experimental results demonstrate that 289 

with the autoregressive model trained on natural llama nanobody sequences, we successfully 290 

designed a smart library consisting of a higher proportion of stable, well-expressed nanobodies. 291 

With this small designed library, we selected nanobody sequences that bound to human serum 292 

albumin (HSA) using fluorescence activated cell sorting (FACS) (Fig. 4c), from which we were 293 

even able to identify weak to moderate binders—the strongest binder has a predicted Kd of 9.8 294 

µM (Fig. 4d). This experiment is a proof-of-concept that this small library contains antigen-295 

binding sequences that can be starting points for affinity maturation to identify strong binders. 296 

Though not explicitly designed to minimize poly-reactive nanobody sequences, training on a 297 

naïve llama repertoire, which presumably contain a moderate proportion of poly-reactive 298 

sequences81-87, the designed library shows similar levels of poly-reactivity to the synthetic 299 

library, which had been designed according to a small set of highly specific nanobodies 300 

(Supplementary Fig. 11). These results indicate that we have successfully designed an efficient 301 

library containing a high proportion of promising diverse, stable, specific, and sensitive 302 

nanobody sequences. 303 

Discussion 304 

Here we show how neural network-powered generative autoregressive models can be used to 305 

model sequence constraints independent of alignments and design novel functional sequences for 306 

previously out of reach applications such as nanobodies. The capability of these models is based 307 

on demonstrated state-of-the-art performance and on an extended range of applicability in the 308 

space of sequences. In the particular version in this paper, we validated our model first on deep 309 

mutational scan data, with on par performance with the best currently available model29-31, 34, 77, 310 

and demonstrated application to examples for which robust alignments cannot be constructed, 311 
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such as sequences with multiple insertions, deletions, and substitutions, and cases for which 312 

protein structures and experimental data are not available. As for comparison with a potentially 313 

competing alignment-free model, while we do not discount the utility of semi-supervised 314 

methods (exploiting mutation effect-labeled experimental data), great care must be taken in the 315 

way the split between training and test is conducted to evaluate the true generalizability of the 316 

method. For instance, randomized subsets excluded from training will still be learned from the 317 

labeled data in a way that is not generalizable to required predictions for other proteins53,88,89. 318 

Our model is not subject to these limitations as its training is fully unsupervised. 319 

Due to their flexibility, deep autoregressive models could also open the door to new 320 

opportunities in biological sequence analysis and design. Unlike alignment-based techniques, 321 

since no homology between sequences is explicitly required, generative models with 322 

autoregressive likelihoods can be applied to variants with insertions and deletions, disordered 323 

proteins, multiple protein families, promoters and enhancers, or even entire genomes. 324 

Specifically, prediction of insertions and deletions and mutation effects in disordered regions has 325 

been a difficult research area, despite their prevalence in human genomes. Disordered regions are 326 

enriched in disease-associated proteins, so understanding variant effects will be important in 327 

understanding the biology and mechanism of genes indicated in cardiovascular, cancer, and 328 

neurodegenerative diseases. For example, classical tumor suppressor genes, such as p53, 329 

BRCA1, and VHL, and proteins indicated in Alzheimer’s disease, such as Tau, have long 330 

disordered regions where these models may prove particularly useful.   331 

With this model, we designed a smart, diverse, and efficient library of fit nanobody sequences 332 

for experimental screening against target antigens. Designing individual hypervariable CDR 333 

sequences that make up a library of diverse, functional, and developable nanobodies allows for 334 

much faster and cheaper discovery of new therapeutics, minimizing both library waste and 335 

necessary experimental steps. Our streamlined library (1000-fold smaller than combinatorial 336 

synthetic libraries) enables rapid, efficient discovery of candidate nanobodies, quickly providing 337 

a starting point for affinity maturation to enhance binding affinity. In combination with a 338 

continuous evolution system, candidate binders from the designed library have been identified 339 

and affinity matured after only a few rounds of selection with a single experiment90. As the cost 340 

to synthesize sequences decreases, the demand for methods that can design highly optimized and 341 
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diverse sequences will increase as compared to constructing libraries via random or semi-random 342 

generation strategies.  343 

A challenge of using synthetic libraries is the poly-reactivity of many sequences that in vivo, 344 

would be cleared by an organism's immune system. Naïve llama repertoires also contain poly-345 

specific sequences, so training a model on sequences from mature or memory B cell repertoires 346 

may provide information on how to improve library design in the future and minimize the poly-347 

reactivity of the designed library sequences. Multi-chain proteins such as antibodies present an 348 

additional challenge that multiple domains must be designed together. Models incorporating 349 

direct long-range interactions such as dilated convolutions or attention may identify the relevant 350 

dependencies between domains, even when the domains simply concatenated and generated 351 

sequentially. Paired antibody chains are more challenging to sequence than nanobodies, but more 352 

repertoires are becoming available91. Beyond antibody and antibody fragment libraries, this 353 

method is translatable to library design for any biomolecule of interest, including disordered 354 

proteins.  355 

Our model is the first alignment-free method demonstrating state-of-art mutation effect 356 

prediction without experimental data and applied to at scale to design of protein sequences. New 357 

developments in machine learning will enhance the power of such autoregressive models and 358 

incorporating protein structural information may further improve the capacity to capture long-359 

range dependencies92 for these applications. The addition of latent variables could also allow for 360 

targeted design of high affinity and specificity sequences to a desired target antigen56, 93-95. 361 

Conversely, we also anticipate better exploration of broader spans of sequence space for 362 

generation, either by exploiting variance explained by latent variables96 or diverse beam search 363 

strategies97. With the increased number of available sequences and growth in both computing 364 

power and new machine learning algorithms, autoregressive sequence models may enable 365 

exploration into previously inaccessible pockets of sequence space. 366 

  367 
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Methods 368 

Model 369 

Sequences are represented by a 21-letter alphabet for proteins or 5-letter alphabet for RNAs, one 370 

for each residue type and a ‘start/stop’ character. Training sequences are weighted inversely to 371 

the number of neighbors for each sequence at a minimum identity of 80%, except for viral 372 

families, where a 99% identity threshold was used, as was done previously30. Sequence sets are 373 

derived from alignments by extracting full sequences for each aligned region; sequence 374 

identities, boundaries, and weights are the only information provided to the model by alignments. 375 

The log-likelihood for a sequence is the sum of the cross-entropy between the true residue at 376 

each position and the predicted distribution over possible residues, conditioned on the previous 377 

characters. Since we encountered exploding gradients62 during training on long sequence 378 

families with LSTM63 or GRU64 architectures, we parameterize an autoregressive likelihood with 379 

dilated convolutional neural networks (Supplementary Fig. 1). These feed-forward deep neural 380 

networks aggregate long-range dependencies in sequences over an exponentially large receptive 381 

field65-67. Specifically, we use a residual causal dilated convolutional neural network architecture 382 

with 6 blocks of 9 dilated convolutional layers and both weight normalization98 and layer 383 

normalization99, where the number of blocks and layers were chosen to cover protein sequences 384 

of any length. To help prevent overfitting, we use L2 regularization on the weights and place 385 

Dropout layers (p = 0.5) immediately after each of the 6 residual blocks100. We use a batch size 386 

of 30 for all sequence families tested. Channel sizes of 24 and 48 were tested for all protein 387 

families, and channel size 48 was chosen for further use. Six models are built for each family: 388 

three replicates in both the N-to-C and C-to-N directions, respectively. Each model is trained for 389 

250,000 updates using Adam with default parameters101 at which point the loss had visibly 390 

converged, and the gradient norm is clipped62 to 100. 391 

Data collection 392 

40 datasets which include experimental mutation effects, the sequence families, and effect 393 

predictions were taken  from our previous publication30 and 5 datasets that include indels and 394 

nanobody thermostability data were added for this work (references and data in Supplementary 395 

Table 4 and Extended Data). For new mutation effect predictions such as the indel mutation 396 

scans, sequence families were collected from the UniProt database in the same procedure as 397 

described in previous published work30. Pathogenic muations for the Tau protein were 398 
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downloaded from the Alzforum database79. The naïve llama immune repertoire was acquired 399 

from57.  Due to the large number of sequences in the llama immune repertoire, sequence weights 400 

were approximated using Linclust102 by clustering sequences at both 80% and 90% sequence 401 

identity thresholds. 402 

Nanobody library generation 403 

Using the N-to-C terminus model trained on llama nanobody sequences, we generated 404 

33,047,639 CDR3 sequences by ancestral sampling61, conditioned on the germline framework-405 

CDR1-CDR2 sequence and continued until generation of the stop character. Duplicates of the 406 

training set or generated sequences and those not matching the final beta strand of our nanobody 407 

template were excluded. CDR3 sequences were also removed if they contained glycosylation 408 

(NxS and NxT) sites, asparagine deamination (NG) motifs, or sulfur-containing amino acids 409 

(cysteine and methionine), resulting in 3,690,554 sequences. 410 

From this large number of sequences, we then sought to choose roughly 200,000 CDR3 411 

sequences that are both deemed fit by the model and as diverse from one another as possible to 412 

cover the largest amount of sequence space. First, we featurized these sequences into fixed 413 

length, L2 normalized k-mer vectors with k-mers of size 1, 2, and 3. We then used BIRCH 414 

clustering103 to find diverse members of the dataset in O(n) time. We used a diameter threshold 415 

of 0.575, resulting in 382,675 clusters. K-mer size and BIRCH diameter threshold were chosen 416 

to maximize the number of clusters within a memory constraint of 70 GB. From the cluster 417 

centroids, we chose the 185,836 most probable sequences for final library construction. 418 

Construction of nanobody library 419 

FragmentGENE_NbCM coding for the nanobody template was amplified with oligonucleotides 420 

NbCM_pydsF2.0 and NbCM_pydsR and then cloned into the pYDS649 yeast-display plasmid8 421 

using HiFi Mastermix (New England Biolabs). The original NotI site in pYDS649 was then 422 

removed by amplification with primers NotI_removal_1F and Pyds_NbCM_cloning_R followed 423 

by cloning again into pYDS649 to generate the pYDS_NbCM display plasmid for the nanobody 424 

template. 425 

An oligonucleotide library was synthesized (Agilent) with the following design ACTCTGT 426 

[CDR3] ATCGT where CDR3 is a sequence for one of the computationally designed clones. 427 

Two-hundred picomoles of the library was PCR amplified over 15 cycles with oligonucleotides 428 
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Oligo_library_F and Oligo_library_R using Q5 polymerase (New England Biolabs). Amplified 429 

DNA was PCR purified (Qiagen) and ethanol precipitated in preparation for yeast 430 

transformation. 4.8 x 108 BJ5465 (MATα ura352 trp1 leu2Δ1 his3Δ200 pep4::HIS3 prb1Δ1.6 R 431 

can1 GAL) yeast cells, grown to OD600 1.6, were transformed, using an ECM 830 432 

Electroporator (BTX-Harvard Apparatus), with 2.4 µg of NotI digested pYDS_NbCM vector and 433 

9.9 µg of CDR3 library PCR product yielding 2.7 x 106 transformants. Library aliquots of 2.4 x 434 

108 cells per vial were frozen in tryptophan dropout media containing 10% DMSO. 435 

Characterization of nanobody library 436 

Yeast displaying the computationally designed or combinatorial synthetic nanobody library8 437 

were grown in tryptophan dropout media with glucose as the sugar source for one day at 30 °C 438 

and then passaged into media with galactose as the sole sugar source to induce expression of 439 

nanobodies at 25 °C. After two days of induction, one million cells from each library were 440 

stained with a 1:25 dilution of anti-HA AlexaFluor647 conjugated antibody (Cell Signaling 441 

Technology) in Buffer A (20 mM HEPES pH 7.5, 150 mM NaCl, 0.1% BSA, 0.2% maltose) for 442 

30 minutes at 4 °C. After staining, cells were centrifuged, the supernatant was removed, and cells 443 

were resuspended in Buffer A for flow analysis with an Accuri C6 (BD Biosciences, 444 

Supplementary Fig. 12).  445 

To find nanobody binders to human serum albumin (HSA) one round of magnetic-activated cell 446 

sorting (MACS) followed by two rounds of fluorescence-activated cell sorting (FACS) were 447 

performed on our yeast-displayed library of nanobodies. For MACS, 4 x 107 induced cells were 448 

resuspended in binding buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 0.1% ovalbumin) along 449 

with anti-fluorescein isothiocyanate (FITC) microbeads (Miltenyi) and FITC-labeled streptavidin 450 

for 35 min at 4ºC and then passed through an LD column (Miltenyi) to remove binders to 451 

microbeads and streptavidin. Remaining yeast were centrifuged and resuspended in binding 452 

buffer and incubated with 500 nM streptavidin-FITC and 2 µM of biotinylated HSA for one hour 453 

at 4ºC. Yeast were then centrifuged and resuspended in binding buffer containing anti-FITC 454 

microbeads for 15 min at 4ºC before passing them into an LS column and eluting and collecting 455 

the bound yeast. For the first round of FACS, induced yeast were first stained with 1 µM of 456 

biotinylated HSA for 45 min at 4ºC and then briefly stained with 500 nM of streptavidin tetramer 457 

along with antiHA-488 to assess expression levels. Both yeast stainings were performed in 458 
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FACS buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 0.1% ovalbumin, 0.2% maltose). 5 x 106 459 

yeast were sorted and 28,000 were collected and expanded for a second round of FACS. The 460 

second round of FACS was performed under the same conditions as the first and from 3.8 x 106 461 

sorted yeast 21,455 were collected. Nanobody Nb174684 was isolated from a screen of 36 clones 462 

for binding to HSA using a flow cytometer and then sequenced. In order to characterize binding 463 

of Nb174684, yeast displaying Nb174684 were stained with varying amounts of AlexaFluor 488 464 

labeled HSA and fluorescence was analyzed with a flow cytometer. 465 

Oligonucleotides: 466 

FragmentGENE_NbCM: 467 

GCTGCCCAGCCGGCGATGGCCCAGGTCCAACTTCAAGAATCAGGCGGGGGCCTGGT468 

ACAGGCAGGCGGTTCTCTTCGGCTGTCGTGTGCGGCAAGCGGATTTACATTCAGTAG469 

CTACGCTATGGGCTGGTACCGTCAGGCACCGGGGAAAGAACGGGAATTTGTTGCTG470 

CAATCTCTTGGAGCGGTGGGAGCACATATTATGCAGATTCCGTTAAAGGCAGATTCA471 

CGATCAGTCGCGATAACGCAAAAAATACAGTGTACTTACAAATGAACTCTTTGAAA472 

CCCGAAGACACCGCAGTCTATTACTGCGCGGCCGCTACTGGGGACAAGGCACCCAG473 

GTGACTGTATCATCCCACCACCACCACCACCACTGA 474 

NbCM_pydsF2.0: 475 

GGTGTTCAATTGGACAAGAGAGAAGCTGACGCAGAAGTCCAACTTGTCGAATCAGG476 

CGGGGGCCTGGTACAG 477 

NbCM_pydsR: 478 

CGTAATCTGGAACATCGTATGGGTAGGATCCGGATGATACAGTCACCTGGGT 479 

NotI_removal_1F: 480 

CAACCCTCACTAAAGGGCGTTCGCCATGAGATTCCCATCTATCTTCA 481 

Pyds_NbCM_cloning_ R: 482 

CACCTGGGTGCCTTGTCCCCAGTA 483 

  484 
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Figures 485 
 486 

 487 
 488 
Figure 1. Autoregressive models of biological sequences can learn the genotype-phenotype map 489 
for both prediction and design. From natural sequences in a naïve llama repertoire57, the 490 
autoregressive model can learn functional constraints by predicting the likelihood of each residue 491 
in the sequence conditioned on preceding residues. We then use these constraints to generate 492 
millions of novel nanobody sequences—as many can be generated as desired. Of these designed 493 
sequences we select hundreds of thousands of diverse sequences, synthesize a library, and screen 494 
for expression and binding. We also validate the model on mutation effect prediction tasks of 495 
deep mutational scans including the effects of multiple insertions and deletions, and the 496 
thermostabilities of highly variable nanobody sequences.  497 
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 498 
Figure 2. Validation of the autoregressive model in learning the genotype to phenotype map. 499 
The model accurately predicts fitness of biological sequences of various lengths. a. Even without 500 
using alignments, the autoregressive model can competitively match mutation effect prediction 501 
accuracies of state-of-art alignment-dependent models, such as conservation, evolutionary 502 
couplings, and DeepSequence. Additionally, the mutation effect prediction accuracies improves 503 
upon HMM model accuracies. Without using alignments, the autoregressive model matches 504 
alignment-dependent state-of-art missense mutation effect prediction (DeepSequence30) for 40 505 
different deep mutational scan experiments. Three datasets show significant improvement with 506 
the autoregressive model: HIV env (BF520), HIV env (BG505), and GAL4 DNA-binding 507 
domain. b. The autoregressive model can learn from natural sequence repertoires of llama 508 
nanobodies to predict the thermostability of llama nanobody sequences with variation in the 509 
framework and complementarity determining regions with greater accuracy than hidden Markov 510 
models74. The number of llama nanobody sequences from each study is shown above each pair 511 
of bars. c. Fitness predictions for single deletions in PTEN phosphatase compared with measured 512 
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experimental fitness is accurate, with a Spearman correlation of 0.69. d. Accurate prediction of 513 
binary fitness for IGP dehydratase with a range of insertions, deletions, and missense mutations. 514 
  515 
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 516 
 517 
Figure 3. The designed library has comparable biochemical property distributions and improved 518 
diversity to the natural llama repertoire. a. Conditioned on the framework-CDR1-CDR2 519 
sequence, a diverse set of CDR3 sequences are generated and selected. These CDR3 sequences 520 
are similar to the natural repertoire in their distributions of hydrophobicity104 and isoelectric 521 
point105, 106, while having shorter length distributions due to selection strategies in the final 522 
library construction. b. The designed library contains more diversity in sequences than the 523 
natural repertoire as evidenced by the larger cosine distance to its nearest neighbor. c. Each 524 
sequence in the designed library is diverse from any sequence seen in the natural repertoire, 525 
indicating that we have learned fit sequence constraints but are traversing previously unexplored 526 
regions of sequence space.  527 
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 528 

 529 
 530 
Figure 4. The designed library contains stable and functional nanobody sequences that are well 531 
expressed and can bind target antigens. a. Fluorescence distributions of cells expressing 532 
nanobodies comparing the synthetic combinatorial library and our designed library in two 533 
biological replicate experiments as well as a control experiment of a single, well-expressed 534 
nanobody clone (Nb174684). The distributions of the designed library are consistently right-535 
shifted compared to the combinatorial library and resemble the control nanobody. b. Compared 536 
to the combinatorial library, the designed library has almost double the mean expression level 537 
(left panel, 166,193 AU compared to 92,183 AU), nearly half the fraction of poorly expressed 538 
nanobodies (of cells expressing nanobodies) (middle panel, 15.4% compared to 25.7% of clones 539 
with less than 10,000 AU indicated as a grey bar in panel a), and one and a half times the 540 
fraction of total cells that express nanobodies (right panel, 39.6% compared to 25.1%). The 541 
thresholds for determining the proportion of total cells expressing nanobodies were found by 542 
identifying the local minima on the distributions and are displayed in Supplementary Fig. 10. 543 
Values displayed on the bar graphs are means of the two replicates and the standard deviations 544 
are shown as error bars. There is only one replicate for the control experiment of the single 545 
nanobody clone. c. Fluorescence distributions of nanobodies bound to HSA shows a rightward 546 
shift after screening and selection, indicating a successful enrichment of binders to the target 547 
antigen. d. On-yeast binding assay of Nb.174684, an HSA binder identified from the designed 548 
library with moderate binding affinity. Error bars represent standard deviations in measurements 549 
at each concentration of HSA. e. CDR3 sequence of binder Nb.174684 and the sequences of the 550 
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nearest neighbors from the natural llama repertoire that was used to train the autoregressive 551 
model.  552 
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