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ABSTRACT 

Activity cascades are found in many complex systems. In the cortex, they arise in the form of 

neuronal avalanches that capture ongoing and evoked neuronal activities at many spatial and 

temporal scales. The scale-invariant nature of avalanches suggests that the brain is in a critical 

state, yet predictions from critical theory on the temporal unfolding of avalanches have yet to be 

confirmed in vivo. Here we show in awake nonhuman primates that the temporal profile of 

avalanches follows a symmetrical, inverted parabola spanning up to hundreds of milliseconds. 

This parabola constrains how avalanches initiate locally, extend spatially and shrink as they 

evolve in time. Importantly, parabolas of different durations can be collapsed with a scaling 

exponent close to 2 supporting critical generational models of neuronal avalanches. 

Spontaneously emerging, transient γ–oscillations coexist with and modulate these avalanche 

parabolas thereby providing a temporal segmentation to inherently scale-invariant, critical 

dynamics. Our results identify avalanches and oscillations as dual principles in the temporal 

organization of brain activity. 

 

Significance Statement 

The most common framework for understanding the temporal organization of brain activity is 

that of oscillations, or ‘brain waves’. In oscillations, distinct physiological frequencies emerge at 

well-defined temporal scales, dividing brain activity into time segments underlying cortex 

function. Here, we identify a fundamentally different temporal parsing of activity in cortex. In 

awake Macaque monkeys, we demonstrate the motif of an inverted parabola that governs the 

temporal unfolding of brain activity in the form of neuronal avalanches. This symmetrical motif 

is scale-invariant, that is, it is not tied to time segments, and exhibits a scaling exponent close to 
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2, in line with prediction from theory of critical systems. We suggest that oscillations provide a 

transient regularity in an otherwise scale-invariant temporal organization pervading cortical 

activity at numerous scales.  

 

INTRODUCTION 

Cascades are found in many complex systems. The dissemination of information in social 

media1, the spread of infections during epidemics2, and the propagation of neuronal activity in 

the brain3 are prominent examples of how cascades and cascade failures4-6 provide insight into 

system function. In the brain, cascading activity has been identified in the form of neuronal 

avalanches by the presence of power laws in the distributions of avalanche size and duration3,7,8. 

The scale-invariant nature of neuronal avalanches describes the firing of nerve cells9,10 and, at 

larger scales, captures neuronal population dynamics in zebrafish11, nonhuman primates7,12,13, 

and humans14-19. This supports the idea that the brain might operate close to a critical state8,20-22 

where numerous aspects of information processing are optimized23-30. Yet, avalanche size and 

duration statistics do not provide insight into the process of cascading itself. This process can be 

more rigorously assessed by studying the temporal profile of avalanches, that is, how avalanches 

initiate locally and expand and shrink spatially as they evolve in time.  

Theory and simulations31-34 predict that cascade profiles follow an inverted parabola in 

critical systems, but it is currently not known whether such a unique avalanche profile guides 

brain activity. Variable and asymmetric profiles have been reported for neuronal cultures35,36, 

and profiles seem to depend on avalanche duration in humans18. Identifying the correct profile of 

neuronal avalanches will provide insights into the temporal evolution of brain activity, will 
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distinguish between different models of avalanche generation37-40 and, importantly, might 

provide a biomarker given recent findings that profiles predict recovery from brain insults41,42 . A 

second prediction from critical theory is that the avalanche parabola can be collapsed over many 

avalanche durations with a scaling exponent, χ, larger than 1.5 (Refs.31-34). Robust collapses, 

though, require a large amount of data to include long avalanches, which are rare. Equally 

challenging are recent reports that χ ranges between 1–1. 5 for rodent tissue in vitro35,36 and in 

vivo43, as well as in human MEG18, suggestive of non-critical dynamics38. A scaling collapse 

with χ ≅ 2 was recently found in zebrafish whole brain activity11, yet it is unknown whether this 

is the case for mammalian cortex. 

Compared to non-biological systems, profile estimates in the brain are further challenged 

by the presence of prominent brain oscillations, such as gamma activity (γ; ~30–100 Hz)44-46. 

Oscillations establish temporal scales for neuronal dynamics with activity arising around specific 

cycle times47-49. Such a scale-dependent temporal organization based on oscillations seems 

contradictory to the scale-invariant temporal organization encountered in avalanches. 

Specifically, it is currently not known how the scale introduced by an oscillation affects the 

temporal evolution of avalanches. 

Here we reliably identify avalanche profiles at several temporal resolutions, 1–30 ms, 

using long-term recordings from awake nonhuman primates with high-density microelectrode 

arrays. By overcoming statistical and oscillation-induced constraints in profile collapse, we show 

that neuronal avalanches exhibit the scale-invariant profile of an inverted parabola with a scaling 

exponent χ ≅ 2, as predicted for critical dynamics. We also demonstrate that the removal of γ–

oscillations by bandpass filtering abolishes the critical avalanche profile thus demonstrating 
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interdependence and coexistence of critical dynamics during intermittent oscillation periods. Our 

findings suggest a novel scale-invariant temporal motif that governs neuronal activity in cortex 

over many durations to which γ-oscillations add distinct regularity in time. 

 

RESULTS 

Neuronal avalanches and oscillations coexist in ongoing brain activity  

We studied the temporal profile of neuronal avalanches and its potential interdependence on 

oscillations in the ongoing local field potential (LFP) of nonhuman primates. Using chronically 

implanted high-density microelectrode arrays, the ongoing LFP (1–100 Hz) was recorded in 

premotor (PM, n = 2) and prefrontal cortex (PF, n = 4) of three nonhuman primates (Macaca 

mulatta; K, V, N) sitting in a monkey chair. The animals were awake during the recording 

sessions but were not engaged in behavioral tasks. For each array, about 4 ± 2 hr (mean ± s.d.) of 

activity were analyzed during 9 ± 7 recording sessions over the course of 5 ± 4 weeks (85 ± 8 

electrodes/array; Supplementary Table 1; see Methods).  

Avalanches were identified first by extracting from each electrode negative LFP 

transients (nLFPs) exceeding a threshold of -2 s.d. (Fig. 1a). nLFPs occurred at a rate of 3.4 ± 0.3 

Hz per electrode and were separated on the array by an average inter-event interval, ⟨IEI⟩ = 3.4 ± 

0.6 ms (Supplementary Table 2; n = 6 arrays). In line with experiments3,12 and theory50, we then 

concatenated successive time bins with nLFPs on the array at temporal resolution ∆t = ⟨IEI⟩ into 

nLFP clusters (Fig. 1b). We found that nLFP cluster size, S, i.e. the number of nLFPs in each 

cluster, distributed as a power law P(S) ~ S-α with a slope α ≅ 3/2, the hallmark of neuronal 

avalanches (Fig. 1c; power law vs. exponential, LLR>>104, P < 0.001; Ref.51,52). In contrast, 
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avalanche durations, T, did not distribute according to a power law P(T) ~ T-β and no duration 

slope β could be obtained at ∆t = ⟨IEI⟩ (Fig. 1d; LLR < 0; P > 0.1). Instead, durations T, or, 

alternatively, lifetimes L = T/Δt, distributed shorter than expected and were closer to an 

exponential distribution. This suggested the presence of a secondary process affecting avalanche 

durations. Indeed, the average periodogram of the continuous LFP, besides having a 1/fa decay 

with a ≅ 1 (Ref.53), indicated a prominent oscillation at 29.3 ± 1.7 Hz (n = 6 arrays; Fig. 1e). 

Oscillations between 25–35 Hz are within the lower regime of the γ–band46, but they have also 

been identified as the β2 sub-band in primate PF and PM45,54. These oscillations, which we will 

refer to simply as γ–activity, were variable in peak frequency and power, spatially heterogeneous 

and differed significantly between arrays and areas (Fig. 1f; P < 0.001, ANOVA, Fpower = 133.6, 

Ffrequency = 86.1). Establishing the coexistence of avalanches and γ–oscillations in ongoing 

activity of motor and prefrontal cortex in nonhuman primates paved the way to study the 

interdependencies regarding critical measures of avalanche dynamics and oscillation strength. 
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Fig. 1: Neuronal avalanches and γ–oscillations coexist during resting activity in prefrontal (PF) 

and premotor (PM) cortex of nonhuman primates. a, Ongoing single electrode LFP with negative 

threshold crossing (2 s.d.; dashed line) defines nLFP times and peaks (asterisks). b, 

Concatenating successive time bins with at least 1 nLFP defines nLFP clusters of size 4, 5 (gray) 

at temporal resolution ∆t on a 12-electrode array (schematic). c, Power law in nLFP cluster sizes 

identifies avalanche dynamics (∆t = ⟨IEI⟩). Dashed line: power law with slope of -3/2. Arrow: 

cut-off at ~90 electrodes55. d, Non-power law duration distributions of nLFP clusters at ∆t = 

⟨IEI⟩. e, Power spectrum density (PSD) of the LFP with γ–activity peaks at 25–35 Hz. Average 

PSD per array (color coded) from single electrode PSDs. Dashed line: 1/f. f, Peak frequency vs. 

1/f-corrected γ–power for each electrode. Legend in c applies to d–f.  
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Exploration in temporal resolution identifies power law regimes for size and duration yielding χslope 

close to 2  

Provided that both avalanche duration and size can be described by power laws, theory links the 

average size of avalanches with duration T, ⟨S⟩(T), to the avalanche profile33,34. Specifically, the 

slope of ⟨S⟩(T) vs. T predicts the scaling exponent of avalanche profiles, χslope. Yet, at ∆t = ⟨IEI⟩, 

durations did not distribute according to a power law (see Fig. 1d), preventing an estimate of 

χslope. Previous work has shown that an increase in Δt retains the power law in avalanche size 

while systematically reducing the corresponding slope α (Ref.3,12,55-57). Here we extended this 

approach to avalanche duration in the monkey to identify temporal resolutions for which both 

size and duration distributions of avalanches distribute according to power laws, potentially 

minimizing interference from γ–oscillations and thus allowing for an estimate of χslope.  

We assessed avalanche parameters for temporal resolutions Δt = 1–30 ms in steps of 0.5 

ms and found that an increase in Δt systematically changed distributions for size and duration 

(Figs. 2a, b; see also Supplementary Fig. 1). Power laws were maintained for size (Fig. 2c; LLR 

>> 103; vs. exponential; P << 0.005), with a steady shift in the cut-off and decrease in α (Fig. 2a, 

e). Importantly, whereas duration distributions failed the power law test for intermediate Δt = 2– 

15 ms (Figs. 2d, f; gray area), they exhibited distinct power laws at higher and lower temporal 

resolutions (LLR >> 103; vs. exponential; P < 0.005). Similar results were obtained when testing 

against log-normal alternative distributions (Supplementary Fig. 2). In the corresponding plots of 

⟨S⟩(T) vs. T as a function of Δt, χslope was close to 2 for small and large Δt (Fig. 2g; dashed 

lines). This was quantified for all arrays by estimating χslope using linear regression based on 

lifetimes L ranging from n = 1–5, which avoids the cut-off in the lifetime distributions. For all 
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arrays, χslope was found to be closer to 2 for valid power law duration regimes, whereas it 

approached 1–1.5 for intermediate temporal resolutions where lifetime distributions did not 

conform to power laws anymore (Fig. 2h; c.f. asterisks Fig. 2b, g).  
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Fig. 2: Systematic variation of temporal resolution yields power law regimes with χslope close to 

2. a, Size distributions (single nonhuman primate; N-PM) decrease in slope (upward arrow) with 

increase in ∆t and corresponding rightward shift in cut-off (downward arrow). b, Corresponding 

dependence of duration distribution on Δt. Note deformations (asterisks) at intermediate Δt. c, 

Size distributions remain power laws for all Δt (LLR values > 0 significant; vs. exponential 

distribution; all arrays; color coded). d, Corresponding summary for duration distributions 

demonstrating loss of power law for intermediate Δt (LLR < 0; grey area; all arrays). e, 

Summary of decrease in slope α as a function of Δt. f, Summary of slope β, which plateaus at 

intermediate Δt (grey area taken from d). g, Mean size-per-duration, ⟨S⟩(T), reveals 

deformations (asterisks) at intermediate Δt. h, χslope estimates are depressed at intermediate Δt. 

Red arrows: <IEI> for all arrays. Dashed lines: power law with given slope as visual guides. 

Legend in a applies to b, g. Legend in c applies to d–f, h.  

 

We note that estimates of χslope for temporal resolutions more coarse than 30 ms revealed 

the increasing influence of the cut-offs in both size and lifetime distribution, demonstrated by n = 

3 arrays that provided a sufficient number of avalanches under these conditions. When lowering 

the temporal resolution to 30, 50, 80 and 100 ms (Fig. 3), a rapid transition to the cut-off regime, 

beyond which avalanches cannot be accurately assessed55, dominates ⟨S⟩(T) with a 

corresponding change to χslope = 1. At this value, average avalanche size grows linearly with 

duration, which identifies an uncorrelated data regime comparable to shuffled data for which 

temporal correlations have been removed (Fig. 3; colored dashed lines). We conclude that the 

slope relationship for avalanche size and duration identifies a scaling exponent close to 2 at 

temporal resolutions that support power law regimes.  
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Fig. 3: Shift in ⟨S⟩(L) power law-cutoff shows creeping transition from critical to linear trend for 

overly coarse temporal resolutions. Mean size-per-lifetime, ⟨S⟩(L), at time resolutions Δt = 30, 

50, 80, 100 ms in a subset of arrays (color coded). Black dashed lines: visual guides for given 

power law slopes. Arrows: elbows in ⟨S⟩(L) are associated with the transition to P(S) and P(L) 

power law cutoffs, where cluster size simply grows linearly with cluster duration. Black dashed 

lines: visual guides for χslope = 2 and χslope = 1 respectively. Colored dashed lines: Corresponding 

⟨S⟩(L) relationship for phase-shuffled data with χslope = 1 for uncorrelated temporal activity.  
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The inverted parabolic profile of neuronal avalanches is modulated by γ–activity at 

intermediate Δt 

To detail the impact of γ–activity on profile measures, we directly calculated avalanche profiles 

for different Δt. Critical theory predicts the avalanche profile to be an inverted parabola 

independent of duration T (Refs.33,34,58). Indeed, avalanche profiles followed an inverted-

parabola at small and large Δt (Fig. 4a). The corresponding underlying continuous LFP time 

course revealed that at small Δt, profiles fit within a single γ–cycle, whereas profiles did not 

resolve γ–activity at large Δt. On the other hand, profiles deviated from a parabola at 

intermediate Δt for which they tracked multiple γ–cycles on the array (Fig. 4a; Δt = 3.5 ms, 10 

ms). Accordingly, when analyzing avalanches of different lifetimes L, we find scale-invariant 

profiles at small and large Δt, but not at intermediate Δt (Fig. 4b; Δt = 9 ms, 15 ms). We 

quantified this relationship for all 6 arrays in corresponding error density plots in the (L, Δt)–

plane. Strongest systematic deviations from a parabola were uncovered for T = L×Δt ≅ 66 ms, 

which spans ~2 γ–cycles at 30 Hz (Fig. 4c; dashed lines). In contrast, error density plots based 

on a semicircle revealed reasonable fits mainly in the cut-off regime of avalanche duration 

distributions (Supplementary Fig. 3a). 
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Fig. 4: The inverted parabolic profile of neuronal avalanches is modulated by γ–activity at 

intermediate Δt. a, Examples of temporal avalanche profiles (red: mean size-per-timestep ± s.e.; 

N-PM) at increasing Δt and corresponding underlying γ–oscillations in the LFP (grey: mean 

inverted LFP of single electrode; black: mean ± s.d. of the array). b, Variable profiles are 

bracketed by parabolic profiles at small and large Δt for lifetimes L = 3, …, 11 (mean ± s.e.; K-

PF1). c, Density plot of fit quality to an inverted parabola for all arrays and all profiles in the (L, 

Δt)–plane. Note compact regions of high deviations from a parabola surrounded by good 

parabolic fits. Rectangular regions in K-PF1 indicate profile ranges displayed in b. Dashed lines: 

high Δparab for condition T = L×Δt ≅ 66 ms. 
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The scale-invariant, parabolic profile of neuronal avalanches reveals a scaling exponent 

χcollapse ≅ 2  

Critical theory predicts an exponent χ larger than 1.5 for the successful collapse of neuronal 

avalanche profiles into a single scale-invariant temporal motif 𝓕𝓕(t/L)31-34. Our demonstration of 

regimes with good parabolic fit (Fig. 4c) allowed us to identify 𝓕𝓕(t/L) directly over a range of L 

(Methods; Equation 1) by finding χcollapse, the estimate of χ that provided us with the lowest 

collapse error (ΔF) over an extended range of L and different Δt (Fig. 5). Example profiles for L 

= 3 to 11, their corresponding best global collapse, χcollapse, as well as residual profile differences 

together demonstrate good collapse with χcollapse ≅ 2 at small and large Δt, but not at intermediate 

Δt (Fig. 5a–c). These findings on χcollapse are in line with our findings on χslope derived from the 

⟨S⟩(T) vs. T relationship. To further delineate the impact of γ–activity on profile collapse, we 

systematically identified non-collapsible regions in the (L, Δt)–plane by plotting ΔF for the local 

collapse of (L–1, L, L+1) as a function of Δt (Fig. 5d). This approach revealed a band of high ΔF 

for T = L×Δt ≅ 40 ms for all arrays, located at the transition from single- to double-peaked 

profiles. We note that the band of high ΔF was solidly placed within the power law regime (Figs. 

5d, white solid line indicates crossover to fewer than 1000 avalanches) and thus, does not 

indicate weak statistics due to e.g. a low number of avalanches as found beyond the cut-off (c.f. 

Figs. 1, 2). Use of a global collapse approach, i.e. L = 3, …, 20 revealed similar regimes of 

perturbation from γ–activity, yet with less resolution (Supplementary Fig. 3b).
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Fig. 5: Scaling collapse of the inverted parabolic profile of neuronal avalanches. a, Examples of 

the average temporal profile ⟨S⟩(t, L) for avalanches of lifetime L = 3, …, 11 (color coded; mean 

± s.e.) at temporal resolution Δt = 1, 5, 15 and 30 ms (single nonhuman primate; V-PM). b, 

Corresponding profile collapse with duration normalized by L and ⟨S⟩ scaled by Lχ-1. χcollapse 

obtained from best parabolic collapse 𝓕𝓕(t/L) (solid black line; see Methods). c, Profile collapse 

differences, ΔF, obtained by subtracting best collapse 𝓕𝓕(t/L) from normalized profiles are largely 

symmetrical around profile peak. d, Density plot of collapse error for all 6 arrays ranked from 

low (left) to high γ–oscillation power (right). Collapse error obtained from profiles L-1, L, and 

L+1 for given Δt. Collapse failure visible for intermediate Δt before the cut-off in lifetime 

distribution (white border equals threshold for L with <1000 avalanches indicating a statistical 

cut-off regime).  

 

If γ–activity was a major factor in preventing proper avalanche profile collapse, we 

expect the collapse error to correlate with the strength of γ–activity. Indeed, the average collapse 

error, ⟨ΔF⟩, significantly correlated with peak γ–power across arrays, confirming that the band of 

high ΔF reflects the impact of γ–oscillations (Fig. 6a; P = 0.0054). For temporal resolutions of 1 

ms and 30 ms, which were found to be least affected by γ–activity, the corresponding collapsed 

motif 𝓕𝓕 was significantly closer to a parabola than a semicircle (Fig. 6b; Δparab < Δsemi, ANOVA, 

P = 1.4×10-6; F = 22.2), the latter being predictive of non-critical dynamics38. The finding of 

χcollapse ≅ 2 for these temporal resolutions and the deviations from 2 for intermediate resolutions 

is summarized for all arrays in Fig. 6c.  

Theory34 predicts that the quotient of size and duration slopes, (β-1)/(α-1), provides the 

scaling exponent of avalanche profiles, χratio. Although individual slope estimates are a function 

of Δt, we asked whether the ratio of slope estimates might support a critical scaling exponent of 
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χratio ≅ 2. Accordingly, when plotting β(Δt) vs. α(Δt) we find that χratio follows closely a slope of 

≅ 2 except for intermediate Δt (Fig. 6d).  

 

So far, we have shown that straightforward estimates of χ are not possible at temporal 

resolutions that appropriately resolve γ–activity. Next, we devised an approach that allowed us to 

estimate the value of χcollapse in the limit of vanishing γ–activity for temporal resolutions that 

accurately track multiple γ–cycles. This approach takes advantage of spontaneous moment-to-

moment fluctuations in ongoing γ–activity. We first sorted subsequent 1-second intervals of 

ongoing activity into quintiles according to their absolute γ–intensity (see Methods) and then 

obtained a collapse in avalanche profiles for each quintile (Fig. 6e). In line with expectations, we 

obtained estimates of χcollapse ≅ 2 that were independent of γ–intensity across quintiles for Δt = 1 

ms and Δt = 30 ms. Furthermore, as expected for intermediate temporal resolutions, χcollapse 

depended on γ–intensity, being larger for quintiles with less γ–intensity. Importantly, regression 

estimates of χcollapse in the limit of no γ–influence predicted χcollapse ≅ 2 (Fig. 6e, dotted lines; Δt = 

9ms, χcollapse = 1.95 ± 0.03, slope -0.02, P < 0.001; Δt = 15 ms, χcollapse = 1.96 ± 0.04, slope -0.01, 

P = 0.01; linear regression, mean ± s.e.). In summary, our analysis robustly supports a critical 

scaling exponent of χ ≅ 2  for the collapse of avalanche profiles based on three estimates of this 
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exponent: χslope, χratio and χcollapse. 

 

Fig. 6: Derivation of scaling exponent χcollapse ≅ 2 for the parabolic temporal profile of neuronal 

avalanches in the presence of γ–oscillations. a, Average collapse error positively correlates with 

peak γ–power (based on PSD; c.f. Fig. 1e, f) across arrays (P = 0.005). b, A parabola consistently 

fits the temporal avalanche profile better than a semicircle for high and low temporal resolutions 

(1–100 Hz BPF). However, when γ–oscillations were filtered out (1–20 Hz), a semicircle fit 

could not be rejected. Error bars represent array mean ± s.d. c, Summary of χcollapse obtained as a 

function of Δt (temporal profile collapse L = 3, 4, 5). χcollapse is close to 2 outside γ–activity 

impact. d, Estimation of scaling exponent χratio follows a slope of ≅ 2 when plotting slope 

estimate β vs. α as a function of ∆t. Note strong deviation for intermediate ∆t indicating impact 

of γ–oscillations. Dashed line: slope of 2 as a visual guide. Red arrow: <IEI>. e, Array-averages 

of χcollapse for five quintiles of γ–intensity (black lines indicate mean ± s.d. across arrays; see 

Methods) reveal agreement with the expected value of 2 (dashed lines) for high and low 

temporal resolutions. Colored lines: individual arrays. Intermediate resolutions of 9 and 15 ms 

consistently show χcollapse < 2 with largest deviation seen in high wave-impact quintiles; 
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however, a linear fit of the average trend (dotted lines) intersects with the y-axis at 

approximately χcollapse = 2 (dashed circle). For color code c.f. Fig. 1c. 

 

Filtering γ–activity removes critical signatures in the avalanche profile 

If γ–activity was simply linearly superimposed on an otherwise scale-invariant avalanche 

background, then bandpass filtering between 1–20 Hz should reduce γ–activity without 

significantly changing estimates of avalanche parameter. We found that bandpass filtering 

reduced the rate of nLFPs by a factor of 4 to 5, yet a sufficient number of avalanches were 

obtained for n = 3 arrays (⟨IEI⟩ = 15.2 ± 1.6 ms; n = 3; Fig. 7). To account for the longer ⟨IEI⟩, 

we extended our analysis for Δt up to 100 ms. Power laws for size distributions were maintained 

for all temporal resolutions (LLR >> 103; P < 0.005). However, duration distributions now failed 

the power law test for a new range of Δt = 8–25 ms, which was closer to the scale of β-

oscillations (Fig. 7a, b; grey area; Supplementary Fig. 4) and for which χslope was close to 1.5 

(Fig. 7b; χslope). Similarly, profile collapses previously affected at the scale of γ–activity 

improved, (Fig. 7d, e; Δt = 5 ms), but double-peaked profiles shifted to lower resolutions with 

profile collapse strongly affected for T = L×Δt ≅ 75 ms, equivalent to the transition from one to 

two β–cycles at 20 Hz (Fig. 7c–f; Δt = 15 ms; dashed line). Importantly, profile collapse at Δt  

=1 and Δt = 30 ms now revealed χcollapse ≅ 1.5 (Fig. 7d; c.f. χslope in Fig. 7b), and profiles were not 
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significantly different from a semicircle (Fig. 6b; 1–20 Hz). Our findings demonstrate that 

spontaneously arising γ–activity is intrinsically embedded within critical avalanche dynamics. 
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Fig. 7: Filtering of γ–activity reduces χslope and χcollapse and changes the temporal profile of 

neuronal avalanches to a semicircle. a, Avalanche size and durations distributions, as well as mean 

size-per-duration ⟨S⟩(T) as a function of Δt for data bandpass filtered between 1–20 Hz 

(Butterworth 6th order). Note change in χslope towards values smaller than 2 in the ⟨S⟩(T) plot (c.f. 

Fig. 2h). b, Smooth decrease in α with increasing Δt (left), yet variable slope changes for β (middle) 

and χslope (right) at intermediate Δt. Grey: 1–100 Hz mean ± s.d. taken from Fig. 1 for comparison; 

average over 3 monkeys. Black: corresponding 1–20 Hz mean ± s.d.. Red arrows: ⟨IEI⟩ for 1–20 

Hz. Black dashed lines: visual guides of theoretical power law slopes. Grey area: loss of power 

law in duration distributions for intermediate Δt (LLR < 0; all arrays). c, Examples of continuous 

LFP waveforms and corresponding avalanche profiles. d, Collapse in temporal profiles over a wide 

range of temporal resolutions Δt (c.f. Fig. 4, here L = 1, …, 9 color coded from red to purple). Best 

collapse is obtained for χcollapse close to 1.5 and lower. e, Symmetrical difference of normalized 

profiles from best fit (c.f. Fig. 5c). f, Density plot of collapse error ΔF obtained from profiles L-1, 

L, and L+1 for given Δt. Dotted lines: high collapse error ΔF for condition T = L×Δt ≈ 80 – 100 

ms, which equals about two β-cycles. Rectangular regions in N-PM indicate profile ranges 

displayed in a, c, d, and e. 

 

DISCUSSION  

Identifying constraints in how neuronal activity changes in time is central to understanding 

cortex function. The most commonly reported temporal organization is that of an oscillation, 

found in cortical activity at separate physiological frequency ranges such as the theta (θ; ~4–8 

Hz), beta (β; ~12–30 Hz) and gamma bands (γ; ~30–100 Hz)44-46,59. The oscillation phase 

provides a distinct scale for neuronal synchronization that is central to many theories on cortical 

processing47,60-62. In contrast, very different dynamics that also capture neuronal synchronization 

have been found in the form of neuronal avalanches3. The present work uncovers a scale-

invariant temporal parabola in the organization of ongoing neuronal avalanches, a finding in line 
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with expectation for critical dynamics. Previous work in in vitro and in rodents reported nested 

θ/β/γ–oscillations63,64 embedded in avalanches. Simulations also demonstrate that oscillations 

can emerge during avalanches65-68. However, it had yet to be determined whether cortical 

avalanches in the awake mammal exhibit a distinct temporal profile that is scale-invariant, nor 

had it been known how that profile might relate to the scale of an oscillation. Here, we 

demonstrate the motif of an inverted parabola that guides the scale-invariant temporal evolution 

of neuronal avalanches in the propagation of ongoing cortical activity in vivo. This motif 

uncovers a specific constraint for ongoing cortical dynamics, that is, local events initiate spatial 

expansion that is similar at all scales and collapses symmetrically in time. Thus, despite the 

complex temporal evolution of activity within an avalanche, the average profile exhibits time 

reversal32. 

This motif and its corresponding collapse are predicted by the theory of critical systems31-

34,58, which also states that the critical exponents of the power law distribution in size, α, and 

duration, β, relate to the collapse exponent as χ = β−1
α−1

 (Ref.34). For neuronal avalanches, 

empirical3 and simulated69 slopes of α are close to an exponent of 3/2 at Δt = ⟨IEI⟩. These 

empirical insights are supported within the Landau-Ginzburg theoretical framework of network 

dynamics50. The size exponent of 3/2 is also characteristic for a critical branching process in line 

with the well-established empirical finding of a critical branching parameter of 1 for neuronal 

avalanches3. Critical branching processes exhibit a lifetime exponent β = 2, leading to a 

corresponding χ = 2. However, empirically obtained lifetime distributions have been difficult to 

analyze due to their typically narrow range in lifetimes3,8. Our analysis identifies a new element 

affecting lifetime distributions by showing that the exponent β cannot be reliably determined at 
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⟨IEI⟩ in the presence of γ–oscillations, leading to a corresponding depression in χ. Importantly, 

when the impact of the oscillation is adequately taken into account, χ comes close to 2, as 

expected for critical avalanche dynamics. This in turn supports a critical exponent for avalanche 

lifetimes of β = 2. Our demonstration of χ = 2 in the awake monkey based on LFPs represents a 

significant departure from estimates of χ = 1.2 – 1.5 based on spike activity70, which suffer from 

subsampling71. 

Scaling collapse of avalanche profiles has been increasingly used to study avalanche 

dynamics beyond the identification of power laws in size and duration (e.g Ref35). While profiles 

utilize more information about avalanches than size or lifetime distributions, robust profile 

collapse requires orders of magnitude more data compared to distribution estimates. Our current 

analysis was based on ~3 million nLFP events per array (see Supplementary Tables 1 & 2) with 

a correspondingly high number of avalanches allowing for the reconstruction of robust profiles 

even for long lifetimes, which are rare (>7Δt; c.f. Fig. 1). This in turn enabled us to identify 

temporal resolutions of the parabolic motif with high collapse quality and also allowed us to 

distinguish the modulating influence of γ–oscillations from profile variations due to reduced 

statistical power. We note that, by definition, avalanches start with the peak time of an nLFP, 

which synchronizes avalanches to the first oscillation peak on the array. 

We demonstrated that removal of γ–oscillations by filtering abolished the critical 

signature of the temporal avalanche profile. The resulting profile was similar to the semicircle 

motif with a scaling exponent of χ ≅ 1.5 reported for non-critical cascading models (see e.g. 

Ref.38). Following filtration of fast components, the variability in avalanche profile and 

corresponding changes in slope estimates were consequently found to shift to the scale of β–
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oscillations. We interpret these findings to mean that at the spatial scale of the microelectrode 

array (~400 μm interelectrode distance) and the temporal scale of γ–oscillations (5–10 ms), γ–

activity needs to be considered to fully capture the critical aspect of neuronal avalanches. 

Substantial coarse graining in space and time might be required to identify the contribution of 

lower frequency oscillations such as low-β and θ oscillations in order to identify potential 

contribution of those frequency bands to the temporal profile of avalanches. We found that slope 

estimates for temporal resolutions coarser than 30 ms (Fig. 3) were dominated by uncorrelated 

activity. This suggests that experimental techniques different from LFP recordings with high-

density microelectrode arrays might be required to identify the interdependence between critical 

dynamics and oscillations lower than 20 Hz. Nevertheless, our approach presented here might 

guide the analysis of avalanches found at lower temporal and spatial scales, for example, in 

human fMRI19. We note that scaling collapses have also been successfully employed to quantify 

the temporal organization of behavior72,73 at time scales of minutes to hours.  

Our identification of a symmetrical (in time), parabolic profile for neuronal avalanches in 

vivo supports results from simulations of critical neural networks35,56 and identifies constraints 

for other generative models proposed for avalanche dynamics37. Models fine-tuned to produce 

power laws for size and duration distributions via bi-stable dynamics combined with a locally 

expansive dynamical term39 or purely external uncorrelated driving38 reveal profiles that deviate 

from a symmetrical parabola. The parabolic profile also differentiates neuronal avalanches from 

stochastic processes with no memory, which typically display a semicircle motif74. Specific 

graph-theoretical constructs such as a hierarchical topology40 can also mimic scale-free size 

distributions but fail to produce an inverted parabola profile. Network and biophysical models 
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have demonstrated avalanches to emerge with oscillations at a particular E/I balance or topology; 

however, the corresponding avalanche profile was not reported66,75,76. Our findings are in line 

with models showing the coexistence of avalanches and neuronal oscillations at a continuous 

synchronization/desynchronization phase transition50,68. These models do not include 

transmission delays but exhibit exponents expected for a critical branching process. Less abstract 

analysis regarding the coexistence of critical and oscillatory dynamics must incorporate 

biologically relevant transmission delays to which neuronal oscillations are known to exhibit 

high sensitivity77,78.  

It is well accepted that limited predictability is one of the major disadvantages of critical 

systems79. Our findings support recent suggestions80 that the coexistence of oscillations with 

critical dynamics might allow the brain to combine functional benefits of criticality for 

information processing23-30,81 with temporal precision. Such precision might be important for 

behavioral outcomes or learning that have been typically studied in isolation from underlying 

scale-free fluctuations47-49.  

The precise profile of neuronal avalanches might be a suitable biomarker for pathological 

brain dynamics. In human preterm infants suffering from anoxia, asymmetric avalanche profiles 

in ongoing EEG activity became symmetrical upon recovery41,42, which is supported by our 

demonstration of a symmetrical profile during normal activity. Furthermore, γ–activity has been 

identified as a key marker in disease states such as schizophrenia82. Our demonstration that γ–

activity and avalanche profiles are non-linearly related supports the idea that mental disorders 

such as schizophrenia might indicate deviations from critical brain dynamics83.  
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METHODS 

Animal procedure. All animal procedures were conducted in accordance with NIH guidelines 

and were approved by the Animal Care and User Committee of the National Institute of Mental 

Health (Animal Study Protocol LSN-11). Three adult nonhuman primates (Macaca mulatta; 1 

male, 2 females; 7–8 years old) received two chronic implantations of high-density 96-

microelectrode arrays (Blackrock Microsystems; 4×4 mm2; 400 µm interelectrode distance; 10

×10 grid with corner grounds). To direct recordings towards superficial cortical layer II/III, 

electrode shanks of 0.6 mm length were used in prefrontal cortex (PF; n = 4), and shanks of 1 

mm length were used in premotor cortex (PM; n = 2). During recording sessions, monkeys sat 

head-fixed and alert in a monkey chair with no behavioral task given. Portions of this dataset 

have been analyzed previously55,84.  

 

Electrophysiological recordings and preprocessing. Simultaneous and continuous extracellular 

recordings were obtained for 12–60 min per recording session (2 kHz sampling frequency), 

filtered between 1–100 Hz (6th-order Butterworth filter) to obtain the LFP and notch-filtered (60 

Hz) to reduce line noise. Arrays on average contained 85 ± 8 functional electrodes that exhibited 

64 ± 50 µV of spontaneous LFP fluctuations (s.d.). About 7 ± 3% of time periods were removed 

from functional electrodes due to artifacts introduced by e.g. vocalization, chewing, sudden 

movements. These artifacts were identified by threshold crossing (s.d. > 7) and excised (±0.25 s). 

Electrode LFPs were z-transformed and recording sessions for each array were combined for 

further analysis. The current study represents a combined 22 hr of ongoing cortical LFP activity 

(for details see Supplementary Table 1).  
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Power spectrum analysis. Single electrode periodograms (Mathworks; pwelch) were averaged 

for each array and displayed in double-logarithmic coordinates. The power of prominent γ– 

oscillations was quantified for each electrode by subtracting a full-spectrum power-matched 1/f 

fit from the original periodogram and dividing the area under the resulting curve from fpeak ± 1 

Hz by the integral over the range fpeak ± 5 Hz.  

 

Avalanche definition. For each electrode in the array, absolute peak amplitude and time of 

negative LFP threshold crossings (–2 s.d.) were extracted at Δt = 0.5 ms and combined into a 

matrix, i.e. raster, with rows representing electrodes and columns representing time steps. 

Continuous amplitude rasters were converted to binary rasters by setting amplitude values to 1 

and rasters at reduced temporal resolutions were obtained by concatenating columns. A 

population time vector was obtained by summing nLFPs in the raster for each time step, and 

avalanches were defined as spatiotemporal continuous activity in the population vector bracketed 

by at least one time-bin with no activity. The size of an avalanche, S, was defined as the number 

of nLFPs participating. Multiple nLFPs at an electrode during an avalanche are rare55 and were 

counted in size estimates. Avalanche lifetime, L, was defined as the number of successive time 

bins, n, spanned by an avalanche in multiples of temporal resolution Δt. Avalanche duration, T, 

was expressed in absolute time as T = L×Δt. Scale invariance of S, L and T was visualized by 

plotting probability distributions P(S), P(L), and P(T) in log-log coordinates.  
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Statistical tests and slope estimates. The maximum-likelihood ratio (LLR) was calculated to test 

potential power law distributions against the alternatives of exponential distributions if not stated 

otherwise52. As a control, we also tested against log-normal distributions. Significance of the 

LLR was determined according to previously published methods51,52 and confirmed LLR results. 

Estimations of initial slope were based on linear regression of log-converted data 

excluding higher cut-off effects. For α, we used the range of S = 1 to 40, which excludes the 

distribution cut-off close to the total number of functional electrodes on the array (n ≥ 70). Initial 

slopes β of P(L) and χ of ⟨S⟩(L) were estimated from L = 1–5. 

The estimate for χslope for shuffled data was based on phase-shuffling the original time 

series at sampling frequency in the Fast Fourier domain followed by a retransformation and 

performing avalanche analysis on the reconstructed time series. 

An ANOVA with Tukey’s post hoc correction was used to test for class differences if not 

stated otherwise. 

 

Collapse of the temporal profile of avalanches. Avalanches were grouped by L in multiples of Δt 

and averaged to obtain the average temporal profile for a given lifetime, ⟨S⟩(t, L). Normalized to 

dimensionless time units, t/L, amplitudes were then rescaled via Equation 1. 

⟨S⟩�𝑡𝑡
𝐿𝐿
�~ L χ−1  𝓕𝓕�𝑡𝑡

𝐿𝐿
�     (1) 

The profile collapse function, shown in Equation 1, relates the mean profile for each lifetime L, 

⟨S⟩(t/L), with a characteristic temporal motif 𝓕𝓕(t/L), and scaling factor, Lχ-1, which is 

independent of L according to Equation 1. To perform a shape collapse, we plotted ⟨S⟩(t, L) from 
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L-1 through L+1 for Lmin = 3Δt (to reduce finite size effects in shape caused by too few data 

points) through L = Lmax chosen based on the strength of our data set (>1,000 avalanches per L). 

The collapse error, ΔF, was quantified via a normalized mean squared error (NMSE) of height-

normalized individual profiles to the combined normalized average of all collapsed profiles, 

𝓕𝓕(t/L). Minimized collapse error was calculated by scanning through χ = 0.5 to 3 at resolution of 

0.001 to find the collapse in avalanche waveform associated with the smallest ΔF via χcollapse. A 

value of ΔF > 1 was considered a failure in collapse. 

 

Parabolic fit. For the parabolic fit we used the approach by Laurson32 as follows: 

y =  A · 𝑡𝑡
𝑇𝑇
�1 − 𝑡𝑡

𝑇𝑇
�
𝛾𝛾−0.5

      (2) 

The parabolic fit error, Δparab, was quantified via a normalized mean squared error (NMSE) of 

individual profiles to an amplitude-matched parabola which was coarse-grained to match L. 

Comparison to a semicircle fit was conducted in the same manner to obtain Δsemi using:  

y =  A · �1 − �𝑡𝑡 𝑇𝑇� �
2
      (3) 

 

LFP waveforms. To trace the oscillation origin of deviations from the parabolic shape motif, 

temporal profiles of neuronal avalanches were compared to their underlying LFP waveforms 

with sampling frequency of 2 kHz. Waveforms were grouped by L and averaged. Single 

electrode averages were used to calculate the array average. 
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Limit estimate of χcollapse. To estimate χcollapse at temporal resolutions affected by γ–oscillations, 

we classified ongoing 1 s segments of ongoing activity according to their γ–intensity. We first 

bandpass filtered each LFP recording from 20-40 Hz to isolate the presence of 30 Hz gamma 

bursts. Next, the Hilbert transform was taken and squared to acquire the corresponding γ–

intensity time series for each electrode on the array. We then stepped through each recording in 1 

second increments, labeling each segment with the maximum intensity observed at any electrode 

during that second. Time segments were regrouped as a function of peak γ–intensity into quintile 

classes. We then stitched together the new regrouped time series for each class across recordings 

and performed a full analysis on each quintile. The average intensity within each class was used 

to quantify the effect of γ–activity on the scaling exponent χcollapse, and results were averaged 

across monkeys and cortical areas. 
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