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Abstract 

Our everyday experience shapes how we represent the structure of the world. Retrieval 

of these experiences from memory is fundamental for informing our future decisions. To 

uncover the fine-grained neurophysiological mechanisms that support such retrieval we 

studied participants who first experienced unique multi-component episodes, and 

subsequently completed cued memory retrieval of these whilst undergoing 

magnetoencephalography (MEG). Successful retrieval was supported by sequential 

replay of episodes, with a temporal compression factor greater than 60. This sequential 

replay was stronger in those participants with weaker overall memories. Replay 

direction, forward or backward, was dependent on whether a participant's goal was to 

retrieve elements of an episode that followed, or preceded, a retrieval cue. Our results 

demonstrate that memory-based decisions are supported by a rapid replay mechanism 

that flexibly shifts in direction. 
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Introduction 

Although a subject of intense study, the fine-grained mechanisms underlying how 

we retrieve episodes of experience are unknown (1). Understanding the underlying 

neurophysiological processes can throw light on how episodes are represented in 

memory and subsequently retrieved to guide behavior (2, 3). Here we investigate 

whether episodes of experience are represented in a way that yields compressed 

sequential replay during retrieval, whether replay supports successful retrieval, and 

whether replay is flexibly influenced by internal goals. 

Observations from animal studies have identified offline reactivation of 

sequences of hippocampal place cells that reflect past and future trajectories, thought to 

support memory consolidation, retrieval, and planning (4-6). Recently, animal studies 

have established a relationship between such replay strength and successful 

performance on spatial navigation tasks (4, 5). While untested, it is speculated that 

compressed replay might also support episodic memory retrieval in humans (7). 

Human neuroimaging studies provide evidence for cue-elicited reactivation of 

stimulus associations at retrieval (8-16). A limitation of these studies is their inability to 

probe mechanisms supporting structured and temporally compressed reactivation, i.e. 

replay that proceeds at a rate faster than the original experience. An important advance 

in recent human neuroimaging research has been the identification of rapid sequential 

replay of internal state representations (17, 18). Here, we leverage these same methods 

to ask whether sequential replay supports memory decisions in humans.  

We tested a hypothesis that episodic memory retrieval depends on rapid 

compressed replay of memory elements. Previous research demonstrating replay, 

which did not link replay to behavior, identified an approximately 40-50 ms lag between 

states (elements of a sequence) either during tasks involving lengthy planning periods 

or during rest periods (17, 18). Under similar conditions in rodents replay is known to 

occur preferentially during brief high-frequency sharp-wave ripple (SWR) events in the 

hippocampus (19-21). In contrast, slower theta-related sequence events are observed 

during active navigation and decision making in rodents (19, 20, 22, 23). Thus, during 
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memory retrieval, we expected that performance in the current experiment would be 

supported by replay events with a relatively longer lag between states.  

Replay direction, forward or backward, is known to be influenced by conditions 

such as active movement and reward receipt (18, 24, 25), potentially serving different 

computational functions (26). Consequently, we expected replay direction may change 

flexibly based on internal states or task demands. In our study we predicted replay 

would switch direction depending on whether the current goal was to retrieve memory 

components that followed a cued episode versus having to retrieve memory 

components that preceded a cued episode. Inspired by evidence from rodents we 

predicted that replay onset, irrespective of directionality, would be coupled to increased 

low-to-mid-frequency power in the medial temporal lobe (MTL; 18). Finally, we reasoned 

that the strength of encoding, as reflected in better memory performance, would relate 

to enhanced memory consolidation (1, 7). As greater experience is associated with less 

marked replay in rodents (23, 27), we expected a less dominant expression of replay in 

participants with near-ceiling memory performance. In these participants, theoretical 

considerations led us to predict performance could be supported by a form of clustered 

pattern completion for episode elements (9, 28, 29). 

We designed a novel episodic memory task and combined this with our recently-

developed MEG analytic methods (17, 18). In brief, on day 1 participants experienced 

temporally extended self-oriented episodes, where each single-exposure episode was 

composed of five discrete and unique picture stimuli assembled into a narrative story 

(Fig. 1a and Fig S1). Following overnight consolidation, we elicited cued retrieval of 

these episodes whilst at the same time obtaining MEG data to index fast neural 

dynamics supporting retrieval (Fig. 1b).  
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Fig. 1. Experimental design and decoding of the episode elements. (a) On day 1, in the 

episodic encoding phase we presented subjects with eight extended non-spatial 

episodes, with a single exposure per episode. Episodes contained five stimulus 

elements. The first four episode elements were selected from six distinct categories of 
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pictures. Participants were incentivised to encode the precise order of the episode 

elements. (b) On day 2, in the episodic memory test phase, participants were instructed 

to think about stimuli that followed a cued element from an individual episode, referred 

to as an ‘after’ condition trial. A test probe was then presented after 5.5 sec. The 

sequential order referred to any stimulus from the same episode that followed this cue; 

here, the depicted answer would be ‘correct’. By contrast, in a ‘before’ condition trial, 

participants were instructed to think about what elements preceded a presented cue 

picture, followed by a test probe. (c) Mean memory performance in the after and before 

conditions respectively. Purple dots represent individual data points for regular 

participants with sufficient incorrect response (error) trials free from MEG artifacts for 

accuracy analyses (after, n = 17; before, n = 18); the remaining very high performance 

participants are shown in orange (see also Fig. S1). (d) Classifier performance for 

episode element categories presented during the localizer phase, training and testing at 

all time points, showing good discrimination of the 6 categories used to compose the 

first four episode elements. In localizer trials, note that a word naming the upcoming 

stimulus appeared 2 s before the stimulus, contributing to above-chance classification at 

0 ms. (e) Peak classifier performance at 200 ms after stimulus onset in the localizer 

phase (see also Fig. S2). (f) Application of the trained classifier to cue onset in memory 

retrieval trials demonstrated above chance decoding of the current on-screen category 

during retrieval. (Error bars and shaded error margins represent standard error of the 

mean (SEM).) 

 

Results 

As a first step we confirmed that we could reliably identify neural patterns associated 

with individual episode elements, each drawn from one of six different stimulus 

categories. Note that the final element of each episode was not taken from a decoded 

category. A classifier trained on the localizer phase showed successful discrimination of 

the categories that made up the episodes with peak decoding at 200 ms after stimulus 

onset (Fig. 1d-e; Fig. S3), in line with previous reports (17, 18). This classifier 

generalized to the cued memory phase, showing significant across-phase classification 
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of cue category (peaking at 210 ms after the cue; compared versus chance at 200 ± 10 

ms (the peak timepoint in localizer phase) t(24) = 9.80, p < 0.001; Fig. 1f). 
To test our specific predictions of a replay mechanism underlying episodic 

retrieval, we looked for compressed sequential reactivation of episode elements during 

the retrieval period. In this analysis, we first derived measures of category evidence – 

representing potential reactivation of memory elements – at each timepoint by applying 

the trained classifiers to the retrieval period MEG data. We then tested for lagged cross-

correlations between episode element reactivations across the retrieval period, yielding 

a measure of ‘sequenceness’ in both forward and backward directions (17, 18) (Fig. S2; 
Methods). Following previous reports, to identify time lags showing potential 

sequenceness and examine the relationship to individual differences in memory 

performance, we tested for a difference between the forward and reverse direction 

components (17, 18). Our initial analyses focused on memory retrieval in the after 

condition, where participants are oriented to retrieve the episode in a forward sequential 

direction from the cue, as we expected that this condition would be easier and more 

naturalistic than the before condition. After identifying a time lag of interest, we 

examined both the relationship between sequenceness and individual differences in 

memory performance and finally the relationship between sequenceness and trial-by-

trial memory retrieval success. 

Our first sequenceness analysis was conducted to identify potential state-to-state 

time lags of interest and focused on correct trials, where we expected stronger 

sequenceness. In the after condition, we identified an overall dominance of reverse 

replay (backwards > forwards sequenceness) during correct trials, peaking between 

100-120 ms (Fig. 2a). This difference did not survive correction for number of tests 

across lags, so it should not be interpreted on its own. However, it provides a time 

window for replay analyses, and all further analyses use this time-window unless 

otherwise noted. Notably, this time-window for rapid online retrieval is at a longer state-

to-state time lag than the 40-50 ms lag found in other experiments reporting replay 

during extended planning or rest (17, 18). As in rodents, these resting replay events are 

associated with sharp-wave ripples in humans (18). However, rodents also show 

sequence events during ongoing behaviour that are slower and associated with ongoing 
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hippocampal theta rhythms (22, 23). Such online sequence events have not yet been 

identified in humans. 

To provide an initial test of the relationship between replay and episodic retrieval, 

we examined the relationship between replay strength in correct trials, averaged across 

the 100-120 ms time lags, and overall memory performance. We found that differential 

sequenceness was correlated with mean memory performance (100-120 ms lag; r = 

0.4254, p = 0.034; Fig. 2b). As sequenceness was on average negative – showing 

predominantly a reverse direction replay – this suggests that stronger reverse replay 

characterised individuals with weaker performance. This relationship between replay 

and memory strength is in line with the data from rodents showing stronger replay 

during initial versus late learning (23, 27).  

As an initial test of our prediction that internal goals – whether looking forward or 

backward in time through an experience – are important for retrieval and replay, we 

examined whether the relationship between replay and individual differences in 

performance changed from the after compared to the before condition. If a task goal 

affected replay, we would expect stronger forward sequenceness to be related to 

weaker performance. Indeed, in the before condition we found the degree of dominantly 

forward sequenceness negatively correlated with mean memory performance (100-120 

ms lag; r = -0.4077; p = 0.0431; Fig. 2c). This relationship differed significantly from that 

in the after condition (z = 2.411; p = 0.0159; two-tailed, conservatively using the test for 

dependent correlations), providing initial support for the prediction that retrieval 

orientation influences the characteristics of replay that supports behaviour. Importantly, 

the direction of the results in both the after and before conditions indicated that replay 

was stronger in participants with lower overall performance, such that replay plays less 

of a role in retrieval with near-ceiling levels of performance. 

We found no relationship between sequenceness and behavior in the shorter 40-

50 ms state-to-state time lag as identified in previous studies (Fig. S4). In an 

exploratory analysis that examined evidence for sequences of episode elements 

present in any of the other 7 episodes (but not present in the current episode), we found 

a numerically negative sequenceness effect at 40 ms, but again found no relationship to 

memory performance (Fig. S4). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/758185doi: bioRxiv preprint 

https://doi.org/10.1101/758185
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

 

 
 
Fig. 2. Mean sequenceness (replay) in the after condition and the relationship between 

sequenceness and performance in the after and before memory retrieval conditions 

respectively. (a) In the after condition, mean forward minus backwards sequenceness 

for correct memory trials (when participants accurately answered the memory question). 

On correct trials, a peak of reverse sequenceness was observed in lags from 100-120 

ms. This time window was used for subsequent analyses. (Shaded error margins 

represent SEM.) (b) In the after condition, stronger mean reverse sequenceness on 

correct trials negatively correlated with overall mean memory performance (percentage 

of correct trials). (As in Fig. 1c the data points for the regular performance participants 

are shown in purple; high performance participants are shown in orange.) (c) In the 

before condition, stronger forward sequenceness was related to lower performance. 

The results in the after and before conditions support a stronger role for replay in 

retrieving weaker memory traces. (*p < 0.01; **p < 0.01) 

 

 

We next utilised analytic techniques that simultaneously examined the influence 

of forward and backward sequenceness on memory performance. First, we examined 

the relationship between sequenceness and individual differences in performance, 

which confirmed the above results: weaker memory performance related to stronger 

reverse replay in the after condition, while weaker memory related to stronger forward 

replay in the before condition (see Supp. Results). 
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To examine the relationship between trial-by-trial sequenceness and accuracy, 

we used multilevel regression analyses. In these analyses we necessarily focus on a 

subgroup of participants, excluding the very high performing participants who have too 

few incorrect trials to support reliable estimates. Critically, we found that reverse 

sequenceness from 100-120 ms was positively related to trial-by-trial accuracy 

(multilevel regression on accuracy in n = 17 participants with sufficient incorrect trials; 

forward β = -0.1503 [-0.310 -0.001]; z = -1.912; p = 0.0504; reverse β 0.180 [0.020 

0.322]; z = 2.308; p = 0.0184; Fig. 3a). An example of a reverse sequence in the after 

condition for a single participant is shown in Fig. 3c. By contrast, in the before condition 

forward, but not reverse, sequenceness related positively to accuracy (regression in n = 

18 participants with sufficient incorrect trials; forward β = 0.148 [0.007 0.293]; z = 2.051; 

p = 0.0400; reverse β = -0.051 [-0.189 0.097]; z = -0.690; p = 0.486; Fig. 3A). An 

example of a forward sequence in the before condition for a single participant is shown 

in Fig. 3d. As above, we found no relationship between sequenceness at a 40-50 ms 

lag and behavior (Fig. S6); we also did not find any relationship between the 

sequenceness measure derived from the alternative 7 episodes and behavior at either 

40-50 or 100-120 ms lags (Fig. S6). 

Importantly, the relationship between 100-120 ms replay and successful memory 

retrieval was significantly affected by the after versus before goal condition (condition by 

forward replay β = -0.162 [-0.275 -0.057]; z = -2.929; p = 0.0016; condition by reverse 

replay β = 0.12926 [0.023 0.236]; z = 2.331; p = 0.0160; Fig. 3b; n = 15 participants 

with sufficient incorrect trials in both the after and before conditions). The relationship 

between sequenceness and successful memory retrieval in both the after and before 

condition provides a clear link between sequenceness and behavior. Further, taking the 

results of the individual difference analyses together with these trial-by-trial analyses, 

we establish a double dissociation between replay direction and a participant’s internal 

goal condition during retrieval. These findings demonstrate a flexibility in replay 

directionality that goes beyond previously reported effects of external events such as 

reward receipt (18, 25). 
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Fig. 3. Relationship between forward and backward sequenceness and memory 

retrieval, in the after and before conditions. (a) In the after condition (left), successful 

memory retrieval was supported by reverse sequenceness. In the before condition 

(right), retrieval was supported by forward sequenceness. (b) Interaction of replay 

direction (forward, backward) by condition (after, before) showing a stronger effect of 

forward replay on memory in the before condition and a stronger effect of backward 

replay on memory in the after condition. (The regular performance group in the 

combined sequenceness analysis included n = 15 participants common to the regular 
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performance group across the after and before conditions.) (c) Example of reverse 

sequenceness in the after condition. (d) Example of forward sequenceness in the 

before condition. (*p < 0.05; **p < 0.01; error bars represent standard error). 

 

 

Inspired by neurophysiological studies showing that the hippocampus is a source 

for replay events, we next examined whether replay event onset related to power 

increases within the medial temporal lobe (18). Candidate replay onsets were identified 

by locating sequential reactivation events showing a 110 ms lag, applying a stringent 

threshold to these events, and using beamforming analysis to localize broadband power 

changes related to replay event onsets. For reverse replay events (in the after 

condition), and for forward replay events (in the before condition), this analysis localized 

activity at replay onset to the right anterior MTL, encompassing the hippocampus and 

entorhinal cortex (after: z = 3.72, p <0.001 whole-brain FWE; before: z = 3.73, p < 0.001 

whole-brain FWE; Fig. 4a, c; Table S2), consistent with human fMRI results during rest 

in a cognitive paradigm (30). The increase in MTL power was selective to replay onset 

(Fig. 4d), in addition to a secondary peak in the after condition 1 lag later, at 110 ms. 

Replay onset also related to activity in two significant clusters in the right visual cortex in 

the after condition (Table S2; Fig. S7). Finally, we found evidence for increased power 

immediately preceding replay onset in the left anterior MTL in participants with lower 

performance (and stronger sequenceness; z = 3.82, p = 0.003 whole-brain FWE; Fig 
4b; Fig. S5).  

Replay onset was associated with broadband power increases of up to 50 Hz in 

both the after and before conditions (Fig. S8). However, we found no evidence for 

power increases in the high gamma frequency range that have been associated with 

replay events during rest (18) (Fig. S8). Interestingly, when looking at the relationship 

between time-frequency effects and accuracy, we found an increase in alpha frequency 

(8-12 Hz) during the retrieval period for correct versus incorrect trials (Fig. S8), a finding 

in the opposite direction of previous reports (14, 31). Notably, the alpha frequency range 

overlaps with the frequency expected from a 100-120 ms sequenceness lag.  
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Fig. 4. Beamforming analysis of power increases at the onset of sequenceness events. 

(a) In the after condition, power in the right anterior MTL increased at onset of reverse 

sequenceness events (n = 25). (b) Power in the left MTL 10 ms before the onset of 

reverse sequenceness events correlated with performance, such that lower performing 

participants showed the strongest increase in power (Fig. S5). (c) In the before 

condition, power in the right anterior MTL increased at the onset of forward 

sequenceness events (n = 25). (d) Timecourse of power changes relative to replay 

onset in the anterior hippocampus in the after (cyan) and before (blue) conditions. 
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(Statistical maps thresholded at p < 0.001 uncorrected, for display; shaded error 

margins represent SEM.) 

 

 

Finally, as very high performing participants did not show a relationship between 

replay and performance, we examined whether retrieval for strongly encoded memories 

was based on clustered pattern completion. Across all participants, rapidly after cue 

onset we found evidence for significant reactivation of within-episode elements 

compared to other-episode elements, none of which were displayed on the screen 

(average across timepoints showing best classification of on-screen element (Fig. 1f): 
210 ±10 ms post-cue t(24) = 3.978, p < 0.001; Fig. 5a). A reactivation event from a single 

participant is shown in Fig. 5b.  

To examine the relationship between the cue-evoked reactivation effect and 

memory in very high performance participants, instead of a contrast of correct versus 

incorrect trials, we used a measure of mean performance for the episode cued on the 

current trial (a graded measure from 0 to 1). Cue-evoked reactivation from 200-250 ms 

positively related to performance on a given episode in very high performing participants 

(n = 10; β = 0.0798 [0.0368 0.1250]; t = 3.452; p < 0.001; Fig. 5c), an effect stronger in 

high compared to regular performance participants (regular β = -0.0442 [-0.1354 

0.0050]; t = -0.920; p = 0.3864; difference β = 0.1245 [0.003 0.243]; t = 2.029; p = 

0.0432; Fig. 5c). Additionally, although based on a very low number of trials, in the very 

high performing participants we found that incorrect trials were related to lower cue-

evoked reactivation as compared to correct trials (β = 2.470 [0.401 4.683]; t = 2.562; p = 

0.020). We found no significant relationship between cue-evoked responses and 

accuracy in regular performance participants (regular β = 0.638 [-0.322 1.596]; t = 1.30; 

p = 0.1712; difference β = 1.78198 [-0.390 3.972]; t = 1.572; p = 0.1264). Importantly, in 

regular performers, replay but not cue-evoked responses were related to performance: 

the trial-by-trial relationship between replay and accuracy in both the after and before 

conditions remained significant when including cue-evoked reactivation in the same 

model while effects for cue-evoked reactivation were not significant (Fig. S8). Finally, 

while we could also identify putative simultaneous reactivation events during the 
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subsequent retrieval period, we found no relationship between these events and 

performance in regular performers (Fig. S8), supporting the importance of sequential 

reactivation for successful episodic memory retrieval. 

 

 

 

Fig. 5. The relationship between cue-evoked reactivation and performance. (a) Across 

the after and before conditions, we found evidence for cue-evoked reactivation of the 

elements present in the episode, peaking 200-250 ms after cue onset. (Shaded error 

margins represent SEM.) (b) Example of cue-evoked reactivation of within-episode 

elements in a single trial in a single participant. (c) Cue-evoked reactivation related to 

mean performance in a given episode for the high performance participants, but not 

regular performance participants (group breakdown based on number of incorrect trials 

across both the after and before conditions; high n = 10; regular n = 15; error bars 

represent standard error.) 

 

Discussion 
 

During episodic memory retrieval in humans, we show that a rapid sequential replay of 

episode elements relates to individual differences in memory performance, trial-by-trial 

retrieval success, and increased power in the anterior MTL. Importantly, as is the case 

with real-life episodes outside of the lab, in our experiment memory episodes were only 
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experienced a single time. Our results combined indicate an important role for replay 

with an element-to-element lag of 100-120 ms in online memory retrieval, establishing a 

novel connection between replay and ongoing behaviour in humans that has only 

recently been demonstrated in animal research (4, 5, 27).  

Replay events spanned a temporal horizon of multiple seconds during retrieval, 

in contrast to a single instance of clustered pattern completion (9, 28). The latter was 

seen in very high performing participants alone, where there was a cue-evoked 

reactivation that closely resembled pattern completion. The absence of sequential 

replay in very high performing participants could reflect a difficulty in detection due to a 

sparse distribution or rapid decay of replay event frequency. Alternatively, when 

episodes are strongly encoded during the experience itself, different representations 

could begin to form, where order information is no longer represented by sequential 

replay but instead by clustered reactivation as we observed. A potentially related finding 

of a decreasing expression of replay with increasing experience has been reported in 

rodents (23, 27). Here we speculate that more strongly encoded and consolidated 

representations are enhanced by spontaneous reactivation and replay during post-

learning rest and sleep (6, 32-34) and that these representations may be differentially 

supported by cortical systems (28, 29, 35, 36). 

Replay in the current experiment showed an element-to-element lag of 

approximately 110 ms, representing a temporal compression factor of 60 to 150. This 

compression is in line with, or exceeds, the degree reported in offline place cell 

sequences in rodents (37, 38). Previous MEG research on replay in humans has 

reported a shorter 40-50 ms lag between replayed elements for very well-learned 

sequences (17, 18). These studies allowed for tens of seconds of planning or involved 

acquisition over minutes of rest; moreover, replay during rest was related to putative 

SWR events (18). This contrasts with our current experiment where there was a 

requirement for relatively rapid ‘online’ decisions. These different effects, influenced by 

task demands, parallel well-established results in animals. Here, slower theta-related 

sequence events are predominantly found during active navigation, while more 

compressed replay events are found during rest and sleep (including SWRs; 19, 20-23). 
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Individual episodes of experience are important building blocks for creating a 

representation of the structure of the world (2). Episodic representations that support 

replay are likely to be important for how we successfully navigate spatial, social, and 

abstract environments (3, 6, 39-43). In turn, memory closely interacts with decision 

making (e.g. 10, 42). The ability to reactivate episodes in a highly compressed manner 

provides a novel mechanism for very rapid retrieval and replay of previous experiences 

during choice (44-46), and our results reported here can motivate new directions of 

research into memory encoding, consolidation and decision making. Further, the flexible 

direction of episodic retrieval replay events that we identify may affect choice dynamics. 

We speculate that sequential replay flexibility and strength might serve as markers for 

impaired associative binding between memory elements caused by negative emotional 

events. Impaired, or pathologically disturbed, memory organization has a strong 

negative impact on well-being and behaviour, and future human research into memory 

replay may provide novel insights into memory disturbances seen in psychiatric 

disorders such as post-traumatic stress disorder and schizophrenia (47, 48).  
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Methods 
 

Twenty-eight healthy volunteers participated and completed both sessions of the 

experiment. Participants were recruited from the UCL Institute of Cognitive 

Neuroscience Subject Database. Data from three participants were excluded due to 

poor memory performance (described below) leaving data from 25 participants for 

analyses (14 female; mean age 24 (range 18-32). Participants were required to meet 

the following criteria: age between 18-35, fluent English speaker, normal or corrected-

to-normal vision, without current neurological or psychiatric disorders, no non-

removable metal, and no participation in an MRI scan in the two days preceding the 

MEG session. The study was approved by the University College London Research 

Ethics Committee (Approval ID Number: 9929/002). All participants provided written 

informed consent before the experiment. Participants were paid for their time, for their 

memory performance (up to £10 based on percent correct performance above chance), 

and a bonus for localizer phase target detection performance (up to £2). 

Participants were excluded from analysis if two of the following three criteria were 

met: (1) accuracy below 50 % on the cued retrieval task on the second day, (2) 

accuracy below 50 % in the episode component reordering task on the second day, and 

(3) indication on the post-experiment questionnaire that the participant had mentally 

reordered the episodes from their original day 1 order. In the current sample, no 

participants were excluded based on MEG decoding performance, specifically, the 

classification of the 6 categories in the MEG localizer phase data. 

 

Experimental Task 
 

We designed our memory experiment to investigate the neural processes supporting 

retrieval of episodic experiences where the original episodes were only experienced 

once, similar to many experiences outside the lab; this is in explicit contrast to 

paradigms with many repetitions of the same (sequence of) stimuli. Retrieval was also 

separated from encoding by approximately 24 hours, again to increase ecological 

validity. To allow for many unique episodes with multiple while at the same time 
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maintaining reasonable decoding performance, episodes were designed such that they 

were made up of elements from 6 different categories. On the first day, participants 

experienced 8 different temporally extended episodes with one exposure per episode in 

a testing room (Fig. 1a). Episodes were composed of 5 discrete picture elements and 

an accompanying story written in first-person perspective. On the following day, 

participants returned for the MEG scanning session where they completed a cued 

retrieval phase and a category localizer phase during the acquisition of MEG data (Fig. 
1b). Behavioral piloting in a separate sample of participants was used to optimize the 

design and ensure that memory retrieval performance on day 2 was both reliably above 

chance but below ceiling in the majority of participants. 

 

Episodic encoding session procedure 

 

On the first day, participants completed the episodic encoding phase. This phase 

presented eight episodes each composed of five unique sequential picture components. 

Episode components were accompanied with a text segment of a story to encourage 

the maintenance of the true episode order in memory. The story was written in first-

person perspective to better align with the perspective of veridical personal episodic 

memories. The first four elements of each episode were taken from 6 potential 

categories of stimuli: faces, buildings, body parts, objects, animals, and cars. The final 

element in each episode was not taken from these categories; instead, it represented a 

unique ending element. Participants were instructed to try to remember the order of the 

episodes and further instructed that a performance bonus would be tied to their 

performance on questions testing memory for the sequential order of the episode 

elements. A practice episode was presented first after which the participants were 

asked to type in the name of the 1st stimulus element presented in the episode, then the 

2nd, 3rd, 4th, and 5th elements.  

In each episode, participants were presented with the initial picture element 

along with the piece of story text shown below (Fig. 1a; Table S1). A grey screen 

background was used for all experimental phases. The stimulus faded in for 0.5 sec and 

was then presented with the story text for 2 sec. The text then disappeared and for the 
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remaining 2.5 sec, participants performed a target detection task, pressing the ‘1’ key 

whenever they saw a small grey square appear at any location over the stimulus (mean 

of 1 target per stimulus). The stimulus then faded out for 0.5 sec. Total stimulus duration 

including fade-in and fade-out was ~ 5.5 sec. A grey ‘bokeh’ image faded in as the 

stimulus faded out. After the stimulus disappeared, participants responded with the ‘up 

arrow’ key to a series of 1-3 arrow indicators (‘^ ^ ^’) in order to progress to the next 

element of the episode. If participants did not respond to an arrow within 6 sec, a 

warning appeared instructing the participant to respond faster. The mean inter-stimulus 

interval was 6.5 sec (1 sec for short duration episodes; 12 sec for long duration 

episodes). For the final component of the episode, a white square initially occluded the 

stimulus. Participants pressed the ‘space’ key to reveal the stimulus and story text. After 

the final component of the episode, a delay of 2 sec was followed by the text “Positive 

ending: you won +£1.00!” or “Negative ending: you lost - £0.50!” depending on whether 

the story ended in a positive or negative way. Participants were then presented with a 

probe requiring them to type in the name of a particular episode element (selected 

pseudo-randomly from elements 1-4). A 30 sec rest period followed each episode. After 

the completion of the 8 episodes, participants were instructed not to explicitly rehearse 

the episodes or to record the episodes in any way. 

Episodes were constructed from a pseudo-random combination of category 

elements in addition to a final component that was not taken from these categories. The 

stimuli consisted of 40 photographs taken from the internet and previous studies from 

our group in the following categories: human faces (6), buildings (6), body parts (5), 

objects (5), animals (5), automobiles (5), and eight final component pictures (4 negative 

and 4 positive). Brief story text connected the sequence of stimuli into a short story 

(Table S1). As noted above, half of the episodes were of a longer duration, achieved via 

manipulating the inter-stimulus-interval (1 sec or 12 sec). The story in half of the 

episodes ended in a positive element and half ended in a negative element (Table S1). 

The ordering of long versus short and positive versus non-positive episodes was 

pseudo-randomized in two counterbalance orders. 

After a 5 min break to decrease the potential influence of temporal proximity on 

performance for the last episodes, participants completed a short cued retrieval phase 
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that tested recall of the order of the elements presented in each episode. The memory 

test was brief to minimize additional exposure to the episode stimuli. Following a 

practice trial (using stimuli from the practice episode), participants completed 8 trials in 

the “after” condition and then 8 trials in the “before” condition. Each mini-block of 8 trials  

was preceded by text indicating the current condition. Participants were shown a picture 

cue and instructed to retrieve the associated episode in order to make a response about 

the sequential order of the subsequent answer stimulus. In the after condition, 

participants attempted to remember what came after (at any point) the cue in the same 

episode (Fig. 1b). For the example in Fig. 1, if the participant was cued with the bear 

and shown an answer stimulus of the SUV or sunny blue sky, the answer would be 

correct. If the answer was the man’s back, the harmonica, or a stimulus from any other 

episode, the answer would be incorrect. Answers were ‘correct’ for any position after the 

cue, not just immediately after. In the before condition, participants attempted to 

remember what came before (at any point) the cue in the same episode. In both 

conditions, when the answer picture was presented, participants were shown the 

response options “Correct” and “Incorrect” in text below the picture. Cues in this 

memory test were only taken from the second state 2 (of 5 total episode states) in the 

after condition or the fourth state in the before condition. The answer on half of the trials 

was correct. 

On each cued retrieval trial, the cue picture was presented in full opacity for 0.5 

sec and then faded to 0 % opacity across the remaining 5 sec of the retrieval period 

(Fig. 1). Then the answer picture was presented. The answer text indicated the 

mapping between key responses and answers, e.g. “Correct (1)” and “Incorrect (2)”; the 

left and right text locations were randomly selected on each trial. There was no time 

constraint on the answer period. After the answer was recorded, following a brief 0.1 

sec pause, a 2-level confidence scale (“High” and “Low”) was presented, with the left 

and right location of options randomized. After a 0.1 sec pause, a fixation period of 

mean 1.5 sec followed (randomly sampled from the values [1.0, 1.5, 2.0]). 

 

MEG session procedure 
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Participants returned for the MEG scan on the following day. After initial setup in the 

MEG room, participants were reminded of the instructions for the cued memory phase 

and completed 4 practice questions (based on the practice episode from the previous 

day). During scanning, the memory response period was time-constrained. This limit 

was added to encourage participants to retrieve as much information from memory as 

possible during the cue period, to facilitate later MEG analysis of neural processes 

underlying successful retrieval. Participants were instructed to try to retrieve the 

episodes as well as possible during the presentation of the cue picture and that in this 

way, they could respond faster (and avoid missed responses) when the answer 

appeared. Participants were also reminded of the performance bonus based on memory 

accuracy. 

As described above for the memory test on the first day, on each cued retrieval 

trial, the cue picture was presented in full opacity for 0.5 sec and then faded to 0 % 

opacity across the remaining 5 sec of the retrieval period (Fig. 1). The gradual fade of 

the cue across the retrieval period was designed to avoid any sharp stimulus offset 

effects which could negatively affect MEG decoding. Then the answer stimulus was 

displayed. The text indicating the key response, e.g. “Correct (1)” and “Incorrect (2)”, 

was randomly presented on the left and right of the screen. If a response was not made 

in this time period, the warning “Please try to respond more quickly!” was presented for 

2 sec. The answer picture was presented for 1-3 sec with the duration based on the 

recent rate of missed trials in the past 20 trials. If participants made no response on 

more than 14 % of recent trials, the answer period was increased in duration by 0.25 

sec (with a ceiling of 3 sec). If participants made no response on less than 5 % of recent 

trials, the answer period was decreased in duration by 0.25 sec (with a floor of 1 sec). 

After the answer period, following a brief 0.1 sec pause, a 2-level confidence scale 

(“High” and “Low”) was presented, with the left and right location of options randomized. 

If a response was not made in time, the warning “Please try to respond more quickly!” 

was presented for 2 sec. After a 0.1 sec pause, a fixation period of mean 1.5 sec 

followed (randomly sampled from the values [1.0, 1.5, 2.0]). 

In each of 5 blocks in the cued retrieval phase, the trials in the after and before 

conditions were separated into mini-blocks of 10-12 trials. Each mini-block was 
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preceded by an instruction screen: “Next: What picture came after (before)?” along with 

the instruction to press the ‘1’ key to continue. At the mid-point of each block, 

participants were given a 30 sec pause, followed by a reminder of the current condition 

and an instruction to press the ‘1’ key to continue. Each of the five blocks of cued 

retrieval included 43 trials and lasted for approximately 8 minutes. Brief rest breaks 

were inserted between blocks. In the cued retrieval phase, we collected ~ 27 trials per 

episode and ~ 43 trials per state (episode positions 1 to 5) for a total of 215 trials. All 

trials with a cue from state 1 were after condition trials. All trials with a cue from state 5 

were before condition trials. Trials with a cue from state 3 were composed of equal 

numbers of after and before condition trials, while trials with a cue from state 2 and state 

4 were a weighted mixture of after and before condition trials. The presented answer 

was correct on ~ 39 % of trials. On ~ 9 % of trials, a ‘lure’ answer was presented that 

was from the same episode but in the incorrect direction as the current condition. For 

example, in an after condition trial where the cue was from state 3, a picture from that 

episode in state 1 was presented as the answer. Trials were presented in a pseudo-

random order with the constraint that no episode was queried on sequential trials. 

The cued retrieval phase was followed by a functional localizer to derive 

participant-specific sensor patterns that discriminated each of the 6 categories that 

made up the episodes by repeatedly presenting each of the 32 unique stimuli. The 

localizer design followed a design used previously (Kurth-Nelson et al. 2016; Liu et al. 

2019). Participants were instructed to read a word shown on the screen, pay attention to 

the picture that followed, and respond if any grey square targets appeared 

superimposed over the picture. The instructions were followed by 4 practice trials. 

In a localizer trial, participants were presented with a brief name corresponding to 

one of the pictures, presented in text on the center of the screen for 2 sec. Participants 

were instructed to imagine the corresponding picture. The text then disappeared and 

the named picture appeared on the screen for 0.75 sec. During picture presentation, 

participants performed a target detection task, responding with a ‘1’ button press if the 

picture contained a small grey square. Targets were rare events, appearing on 15.4 % 

of trials. A mean 0.75 sec fixation ITI followed (range 0.25 – 1.25) during which 

responses were still recorded. If performance on the target detection task fell below 
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70 % correct (across missed responses and false alarms), a warning was presented: 

“Please improve your detection of the grey squares!” Finally, as in the cued retrieval 

phase, a mid-block rest of 30 sec was inserted during each block. After each localizer 

block, participants were shown yellow ‘stars’ on the screen, ranging from 0-4, 

depending on their target detection accuracy in the preceding block.  

The stimulus pictures were presented in a pseudo-random order, with the 

constraint that no category repeat in subsequent trials. Each picture from a given 

category was presented an equivalent number of times, with 78 repetitions per picture 

category. The localizer was presented in 5 blocks, with 94 trials in the first four blocks 

and 92 trials in the last block for a total of 468 trials. 

Following scanning, the participants completed a post-experiment questionnaire 

that assessed memory strategy and potential mental reordering of the episodes, and 

also asked participants to try to write down a brief version of each story. The re-ordering 

question asked “Did you change the order of the stories to make your own story order? 

1= never, 5=always”. Participants who responded with a 4 or 5 were considered for 

exclusion, in conjunction with performance on the memory and sequence memory test. 

We observed a negative correlation in the full group (prior to exclusions) between 

response to this question and memory performance in the MEG session. 

Finally, participants completed a computerized sequence memory test where 

they attempted to place the stimuli from a given episode in the correct order. In this 

phase, the stimuli from an episode were presented in a random order on the left side of 

the computer screen. Participants then moved each stimulus from the left side (starting 

from the top) into one of 5 empty boxes spread from the left to the right across the 

screen. Stimuli were moved using the left and right arrow keys; the space bar confirmed 

placement. Accuracy was measured as the mean rate of correct replacement across 

each location across all episodes. 

 

MEG acquisition  
 

The participants were scanned while sitting upright inside an MEG scanner located at 

the Wellcome Centre for Human Neuroimaging at UCL. A whole-head axial gradiometer 
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MEG system (CTF Omega, VSM MedTech) recorded data continuously at 600 samples 

per second, utilizing 273 channels (2 original channels of the 275 channels are not 

operational). Three head position indicator coils were used to locate the position of 

participant's head in the three-dimensional space with respect to the MEG sensor array. 

They were placed on the three fiducial points: the nasion and left and right pre-auricular 

areas. The coils generate a small magnetic field which is used to localize the head and 

enable continuous movement tracking. We also used an Eyelink eye-tracking system to 

monitor participant's eye movements and blinks. The task was projected onto a screen 

suspended in front of the participants. The participants responded during the task using 

a 4-button response pad to provide their answers (Current Designs), responding with 

self-selected digits to the first and second buttons. 

 

MEG Pre-processing  
 

MEG data were processed using MATLAB packages SPM12 (Wellcome Trust Centre 

for Neuroimaging) and FieldTrip. The CTF data were imported using OSL (the OHBA 

Software Library, from OHBA Analysis Group, OHBA, Oxford, UK) and down-sampled 

from 600 Hz to 100 Hz (yielding 10 ms per sample) for improved signal to noise ratio 

and to conserve processing time. Slow drift was removed by applying a first order IIR 

high-pass filter at 0.5 Hz. 

Preprocessing was conducted separately for each block. An initial preprocessing 

step in OSL identified potential bad channels whose characteristics fell outside the 

normal distribution of values for all sensors. Then independent component analysis 

(FastICA, http://research.ics.aalto.fi/ica/fastica) was used to decompose the sensor data 

for each session into 150 temporally independent components and associated sensor 

topographies. Artifact components were classified by automated inspection of the 

combined spatial topography, time course, kurtosis of the time course, and frequency 

spectrum for all components. For example, eye-blink artifacts exhibited high kurtosis 

(>20), a repeated pattern in the time course and consistent spatial topographies. Mains 

interference had extremely low kurtosis and a frequency spectrum dominated by 50 Hz 

line noise. Artifacts were then rejected by subtracting them out of the data. All 
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subsequent analyses were performed directly on the filtered, cleaned MEG signal, in 

units of femtotesla. 

In the cued retrieval blocks, an 8.5 second epoch was extracted for potential 

analysis for each trial, encompassing 500 ms preceding cue onset and continuing past 

the answer response. In the analyses below, we analyzed the first two-thirds of the cued 

retrieval period. Given the speeded response demands to the answer stimulus, the end 

of the period would involve increasing response preparation that may decrease the 

ability to detect sequenceness events. We also excluded the initial 160 ms following cue 

presentation to allow time for early stimulus processing. Thus, our retrieval period 

analysis window focused on 160 - 3667 ms of the full 5500 ms period. In the localizer 

blocks, a 4.5 second epoch was extracted for potential analysis for each trial, 

encompassing 500 ms preceding text onset through the end of the picture presentation 

period. In both the retrieval and localizer blocks, preceding the analysis steps below, we 

further excluded time periods within individual channels that exhibited extreme outlier 

events (determined by values > 7x  the mean absolute deviation). 

 

MEG data decoding and cross-validation  
 

Lasso-regularized logistic regression models were trained for each category. Methods 

followed previous studies (Kurth-Nelson et al. 2016 ; Liu et al. 2019). Only the sensors 

that were not rejected across all scanning sessions in the preprocessing step were used 

to train the decoding models. A trained model k consisted of a single vector with length 

of good sensors n consisting of 1 slope coefficient for each of the sensors together with 

an intercept coefficient. Decoding models were trained on MEG data elicited by direct 

presentations of the visual stimuli. 

For each category we trained one binomial classifier. Positive examples for the 

classifier were trials on which that category was presented. Negative examples 

consisted of two kinds of data: trials when another category was presented, and data 

from the fixation period before the text pre-cue appeared. The null data were included to 

reduce the correlation between different classifiers – enabling all classifiers to report low 

probabilities simultaneously. Prediction accuracy was estimated by treating the highest 
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probability output among all classifiers as the predicted category. Sensor distributions of 

beta estimates are shown in Fig. S2 and prediction performance of classifiers trained on 

200 ms on left-out trials in functional localizer task are shown in Fig. S3. 

 

Sequenceness measure 
 

The decoding models described above allowed us to measure spontaneous reactivation 

of task-related representations during memory retrieval. We next defined a 

‘sequenceness’ measure, which describes the degree to which these representations 

were reactivated in a well-defined sequential order (Kurth-Nelson et al. 2016; Liu et al. 

2019). Here we utilized an updated general linear model approach (Liu et al. 2019). This 

analysis approach is illustrated in Fig. S2. 

First, we applied each of the six category decoding models to the cued retrieval 

period MEG data. This yielded six timeseries of reactivation probabilities for each trial, 

each with length N, where N is the number of time samples included in the retrieval 

period analysis window. Below, we use the term “stimulus” for simplicity to refer to the 

category-level information. 

We then used a linear model to ask whether particular sequences of stimulus 

activations appeared above chance in these timeseries. For each stimulus i, at each 

possible time lag ∆𝑡, we estimated a separate linear model:  

    

				Y% = X(∆𝑡) ∗ β%(∆𝑡)  

 

The predictors X(∆𝑡) were time-lagged copies of the six reactivation timeseries. The 

model predicted Y%, the reactivation of stimulus i. The linear model had N rows, with 

each row a time sample. We estimated β%(∆𝑡), a vector of coefficients that described the 

degree to which stimulus i’s reactivation was predicted by activation of each other 

stimulus at time lag ∆𝑡. By repeating this procedure for each stimulus i, we obtained 

β%(∆𝑡), a 6x6 matrix that can be viewed as an empirical transition matrix between the six 

stimuli (categories) at lag ∆𝑡. 

 Specifically: 
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        Y% = ∑ X-(∆𝑡)β%-(∆𝑡).
-/0   

 

Where X-(∆𝑡) are time-lagged copies of Y-, s is the number of states, and therefore: 

                  Y%(𝑡) = ∑ Y-(𝑡 − ∆𝑡)β%-(∆𝑡).
-/0   

 

The matrix β%(∆𝑡) is obtained by solving the following set of equations for each stimulus 

i, up to state s. 

Y%/0(𝑡) =2Y-(𝑡 − ∆𝑡)β%-(∆𝑡)
.

-/0

 

 

Y%/3(𝑡) =2Y-(𝑡 − ∆𝑡)β%-(∆𝑡)
.

-/0

 

 

Y%/.(𝑡) =2Y-(𝑡 − ∆𝑡)β%-(∆𝑡)
.

-/0

 

 

We next asked whether the β%(∆𝑡) was consistent with a specified 6x6 transition matrix 

by taking the Frobenius inner product between these two matrices (the sum of element-

wise products of the two matrices). This resulted in a single number 𝑍∆5, which 

pertained to lag ∆𝑡. Finally, differential forward – backward sequenceness was defined 

as 𝑍6∆5 −	𝑍7∆5. In our initial analyses and individual differences analyses, we used the 

difference between correlations in the forward (𝑍6∆5)	and backward (𝑍7∆5)	direction in 

order to remove common autocorrelation which would otherwise add significant 

variance. In the analyses testing for a relationship between sequenceness and trial-by-

trial accuracy, we entered the separate forward (𝑍6∆5)	and backward (𝑍7∆5) 

sequenceness measures into the regression analyses. As our analysis was on trial-

based data and not rest, we did not need to control for alpha rhythm (Liu et al. 2019). 
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The transition matrix was defined as the stimulus (category) order in each 

episode. Our primary results focus on comparisons of sequenceness on correct versus 

incorrect retrieval trials; as such, we do not conduct comparisons to a null value. Here, 

as category orders were pseudo-randomly shuffled across episodes, we did not conduct 

permutation tests. To ensure that the results were not overfit to the regularization 

parameter of the logistic regression, all results were obtained with the lasso 

regularization parameter that yielded the strongest mean decoding in the localizer (l1 = 

0.002). The decoding models used to evaluate sequenceness were trained on 

functional localizer data taken from 200 ms following stimulus onset. The 200 ms time 

point exhibited the strongest decoding accuracy during the localizer; notably, this time 

point of category decoding was also consistent with the individual stimulus decoding 

findings of Kurth-Nelson et al. (2016) and Liu et al. (2019). 

 
Identifying Replay Onsets 
 
Replay onsets were defined as moments when a strong reactivation of a stimulus was 

followed by a strong reactivation of the next (or preceding) stimulus in the sequence 

from an episode (Liu et al. 2019). Specifically, we first found the stimulus-to-stimulus 

time lag ∆𝑡 at which there was maximum evidence for sequenceness (as described 

above), time shifted the reactivation matrix X up to this time lag ∆𝑡, obtaining X(∆𝑡). We 

then multiplied X by the transition matrix P, corresponding to the unscrambled 

sequences: X × P. Next, we elementwise multiplied X(∆𝑡) by X × P. The resulting 

matrix had a column for each stimulus, and a row for each time point in the cue period 

for each trial. We then summed over columns to obtain a long vector R, with each 

element indicating the strength of replay at a given moment in time. Finally, we 

thresholded R at its 95th percentile to only include high-magnitude putative replay onset 

events. We also imposed a constraint that a replay onset event had 100 ms of 

preceding replay-free time.  

Specifically: 

        𝑃𝑟𝑜𝑗 = 𝑋(∆𝑡) 
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Matrix Proj is obtained by time shifting the reactivation matrix X to time lag ∆𝑡. 

 

        𝑂𝑟𝑖𝑔 = 𝑋 × 𝑃 

 

Matrix Orig is obtained by matrix multiplication between reactivation matrix X and 

transition matrix P. 

 

    				𝑅5 = 	∑ 𝑂𝑟𝑖𝑔5% ∗ 	𝑃𝑟𝑜𝑗5%.
%  

 

Vector R is obtained by elementwise multiplication between matrix Orig and Proj, and 

then summing over columns. 

 

Cue-triggered reactivation analyses 
 

In the cued retrieval period, we tested for cue-triggered reactivation of episode 

elements. This analysis compared evidence for categories present in a cued episode 

versus categories not present in a cued episode. The analysis utilized the raw classifier 

evidence vectors (n categories by t trial timepoints) to investigate differential activity 

near the peak stimulus response at ~ 200 ms. For each episode, the within-episode 

categories that were not presented as a cue were averaged to derive a measure of 

reactivation of within-episode elements. In the after condition, there were 3 within-

episode categories; in before condition, trials where the cue came from state 5 had 4 

categories entered into the within-episode analysis. The 2 categories that were not 

members of the cued episode were averaged to derive a measure of other-episode 

reactivation. The timepoints showing the strongest difference between these two 

measures were averaged for each trial to derive trial-by-trial reactivation measures 

representing relative within- versus other-element activity. These values were 

subsequently entered into multilevel regression analyses. We examined a relationship 

between the trial-by-trial reactivation measure and mean episode accuracy: the average 

performance across trials for the episode cued on a given trial. We also examined the 

relationship to trial-by-trial accuracy, but this analysis was under-powered in the very 
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high performing participants. The reactivation analyses collapsed across the after and 

before conditions. 

 

Time-frequency analyses 
 

A frequency decomposition (wavelet transformation) was computed for the memory 

retrieval period in every trial. We examined whether the log power for correct versus 

incorrect trials was related to accuracy. The analysis focused on alpha (8-12 Hz), as 

previous research has found alpha decreases predictive of successful memory retrieval 

(14, 31). Statistical comparison focused on the first two-thirds of the retrieval period, 

excluding the first 600 ms after the cue to allow for an initial cue-evoked alpha peak to 

return approximately to baseline. Results are displayed in Fig. S8. 

 

Zero-lag correlation analysis 
 
In a supplemental analysis, we examined the relationship between reactivation of 

within-episode elements compared to other-episode elements with a zero time lag. This 

measure was a basic correlation between the time series of category evidence: the 

average of 3 correlations for the within-episode elements and 2 correlations for the 

other-episode elements. We did not find a greater correlation between within-episode 

elements than between other-episode elements. Through thresholding of the category 

evidence time series, we found that correlations were driven by increases in evidence 

and that these increases were brief (Fig. S9). However, we found no relationship 

between the correlation of within-episode elements across the retrieval period and 

behavior (Fig. S9). 

 
Multilevel modelling 
 
We conducted all pre-processing of behavioral and MEG data for multilevel modelling in 

Matlab. Multilevel models were implemented in R, following previous procedures (49). 

We used a multi-level logistic regression model (glmer, in the lmer4 package) to predict 
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correct memory responses. A correct response in the cued retrieval phase was an 

answer stimulus correctly identified as coming after the cue in a given episode, an 

answer stimulus correctly rejected as coming after the cue in a given episode, etc. All 

missed response trials (where no response was recorded within the response time 

window) were excluded from analysis.  

In the main sequenceness analyses, we fit separate intercept, forward 

sequenceness, and backward sequenceness effects for each participant. In the model, 

we also included control variables representing performance in neighboring trials. These 

variables were included because we found that performance 1 and 2 trials in the past 

and performance 1 and 2 trials in the future was positively related to current trial 

performance, an effect similar to what we have observed in previous memory studies. In 

analyses of continuous variables such as mean correct performance for the episode 

cued on the current trial, we used multi-level regression (lmer).  

For all models, to ensure convergence, models were run using the bobyqa 

optimizer set to 106 iterations. We estimated confidence intervals using the 

confint.merMod function and p-values using the bootMer function (both from the lmer4 

package) using 2500 iterations. All reported p-values are two-tailed. 

 
MEG Source Reconstruction  
 

All source reconstruction was performed in SPM12 and FieldTrip utilizing OAT. Forward 

models were generated on the basis of a single shell using superposition of basis 

functions that approximately corresponded to the plane tangential to the MEG sensor 

array. 

Linearly constrained minimum variance beamforming (50) was used to 

reconstruct the epoched MEG data to a grid in MNI space, sampled with a grid step of 5 

mm. The sensor covariance matrix for beamforming was estimated using data in 

broadband power across all frequencies. The baseline activity was the mean power 

activity averaged over -100 ms to -50 ms relative to replay onset. All non-artifactual 

trials were baseline corrected at source level. We looked at the main effect of the 
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initialization of replay. This analysis was conducted separately to investigate backward 

replay events in the after condition and forward replay events in the before condition. 

The statistical significance of clusters identified in the beamforming analysis was 

calculated using SPM12. An initial cluster-forming threshold of p < 0.001 was applied 

and regions exceeding p < 0.05 whole-brain family-wise-error corrected (FWE) at the 

cluster level are reported. The timepoint preceding replay onset (- 10 ms) was 

additionally investigated to explore whether individual differences in memory 

performance related to differential MTL power preceding replay onset. 

 

Individual differences 
 

We tested for a relationship between MEG measures of sequenceness and mean 

memory performance in the after and before conditions. For sequenceness, we used 

differential (forward-backward) sequenceness given the strong decaying autocorrelation 

evident in the raw forward and backward sequenceness estimates (Kurth-Nelson et al. 

2016; Liu et al. 2019). In a supplemental analysis, we estimated the relationship 

between replay and memory performance using a regression, separately entering 

forward and backward sequenceness as predictor variables. These analyses used 

Pearson correlations, reporting two-tailed p-values. A statistical comparison of the 

correlations between of sequenceness and behavior in the after condition and the 

before condition was conducted using a test for the difference between two dependent 

correlations. This test is conservative, as the performance measures in the after 

condition and the before condition were not identical, while the test assumes full 

dependence. 

 

Data and materials availability 
 
Complete behavioral data will be publicly available on the Open Science Framework. 

The full MEG dataset will be publicly available on openneuro.org. 
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Supplemental Results 
 

Replay and individual differences in memory performance 

 

The primary analysis of the relationship between sequenceness and individual 

differences in memory performance utilized the differential sequenceness measure (fwd 

– bkw sequenceness; Fig. 2c-d). This measure provides a summary of the overall 

evidence for sequenceness and finds that the same sequenceness direction is 

important as the trial-by-trial analysis of accuracy. However, given the specific 

relationship between backwards versus forwards sequenceness in the trial-by-trial 

analysis of accuracy, we verified that the individual difference relationship was also 

selective. In the after condition, we found that reverse sequenceness was negatively 

related to average performance (fwd t(23) = 2.265, p = 0.0337; bkw t(23) = -2.9111, p = 

0.0081). In the before condition, we found that forward sequenceness was related to 

average performance (fwd t(23) = -2.2419, p = 0.0354; bkw t(23) = 1.0456, p = 0.3071). 

Results from both the after and before conditions show stronger sequenceness in lower-

performing participants (reverse sequenceness in the after condition; forward 

sequenceness in the before condition). These analyses give qualitatively similar results 

as those reported in the main analysis which used differential forward-backward 

sequenceness. 

 
 
Supplementary Figures and Tables 
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Figure S1. Memory performance as a function of episode length and whether the 

episode ended in a positive or negative element and performance on final episode re-

ordering test. (a and b) Memory did not differ in the after condition by length (t(24) = -

1.389; p = 0.178) or the before condition by length (t(24) = 0.661; p = 0.515). (c and d) 

Memory did not differ in the after condition by end valence (t(24) = -0.068; p = 0.946) or 

the before condition by end valence (t(24) = 0.1478; p=0.88). Given the null behavioral 

differences, primary MEG analysis collapsed across these variables. (e) Performance 

on the post-scan episode sequence memory re-ordering test (n=24 participants with 

sequence test data). Individual scores were the average of accurate placements of each 

element within each episode. (Error bars represent SEM.) 
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Figure S2. Sequenceness analysis schematic and classifier sensor weighting. (a) 

Classifiers were trained on the 6 categories that made up the episodes. The mean 

weighting (approximate importance) of each sensor for a given category, minus the 

mean across all other categories, for illustration only. (Anterior = top; posterior = 

bottom.) (b). Mean sensor weighting across all categories. (c) Illustration of how the 

trained classifiers are applied to the MEG data timeseries for each cued retrieval period, 

where state 1 - 4 represents episode components 1-4 from Fig. 1a. (d) The 

sequenceness analysis detects systematic time shifts (T) in category evidence. A 

forward sequence illustration is shown on the left; a backward sequence illustration is 

shown on the right. 
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Figure S3. Illustration of localizer performance for the six stimulus categories that made 

up the first 4 components of episodes (face, building, body part, object, animal, and 

car). The peak response at approximately 200 ms in each plot represents the results for 

training on a given category of stimuli at the 200 ms time point and testing on the same 

category. Other lines indicate performance for training on the correct category and 

testing on alternate categories. Dashed line indicates classifier baseline performance 

estimated by shuffling labels. (Shaded error margins represent SEM.) 
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Figure S4. Differential sequenceness for the current episode and across all other 

episodes in the after and before conditions. (a) Differential sequenceness (forward - 

backward) in the after condition for regular performance participants as in Fig. 2a, here 

showing the subset of n = 17 participants with sufficient incorrect trials. (b) Differential 

sequenceness (forward - backward) in the before condition for regular performance 

participants (subset of n = 18 participants with sufficient incorrect trials in the before 

condition). (c) Differential sequenceness for all other episodes (excluding the current 

episode) in the after condition for all participants (n=25). (d) Differential sequenceness 

for all other episodes in the before condition for all participants (n=25). (Shaded error 

margins represent SEM.) 
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Figure S5. No significant relationship between sequenceness and trial-by-trial behavior 

at other time lags and in the other episode sequenceness analysis. (a) In the after 

condition, mean replay strength (forward-backward) with a 40-50 ms lag did not relate to 

overall mean memory performance (percentage of correct trials). As in Fig. 1c the data 

points for the regular performance participants are shown in purple; high performance 

participants are shown in orange. (c) As in panel a, here for the before condition. (c) In 

the after condition, 40-50 ms sequenceness for other episode transitions (excluding the 

current episode) did not relate to mean memory performance. (d) As in panel c, here for 

the before condition. (e) As in panel c, here for a 100-120 ms lag. (f) As in panel e, here 

for the before condition. 
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Figure S6. No significant relationship between sequenceness and behavior at other 

time lags and in the other episode sequenceness analysis. (a) In the after condition, 

trial-by-trial memory retrieval success did not relate to forward or backward replay. (b) 

In the after condition, 40-50 ms sequenceness for other episode transitions (excluding 

the current episode) did not relate to mean memory performance. (c) As in panel c, here 

showing the results for the other episode sequenceness measure for a 100-120 ms lag. 

(Error bars represent standard error.) 
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Figure S7. Additional beamforming results in the after condition. (a) Power in the right 

anterior hippocampus increased 10 ms before replay onset in participants with lower 

memory performance. Data are for visualization purposes only and represent the peak 

coordinate as in Fig. 4b. High performance participants in orange; regular performance 

participants in purple. (b) Power in the right visual cortex at replay onset in the after 

condition, displaying a different view of the whole-brain results shown in a coronal 

section in Fig. 4a. (Statistical maps thresholded at p < 0.001 uncorrected, for display.) 
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Figure S8. Time-frequency analysis of replay onsets and the relationship between 

memory accuracy and alpha power (8-12 Hz). (a) Time-frequency analysis showing 

power increases at replay onset in the after condition using the primary downsampled 

(100 Hz) data which yields frequencies up to ~ 50 Hz. 0 ms represents the onset of 

putative replay events. (Average across all n=25 participants in correct trials.) (b) Time-

frequency analysis as in panel A, here in the before condition. (c) Time-frequency 

analysis of high frequencies in the after condition, showing power increases at replay 

onset in the after condition using data that was not downsampled (600 Hz). (d) Time-

frequency analysis of high frequencies as in panel C, here in the before condition. (e) 

Time-frequency difference between correct and incorrect trials across frequencies up to 

~50 Hz in the after and before conditions (n = 15 participants with enough incorrect 

trials in both the after and before conditions). (f) Extracted timecourse of power in alpha 

(8 – 12 Hz) for correct (green) and incorrect (red) trials. Bracketed line indicates the 

time period of interest for statistical comparison. (g) Difference between correct and 

incorrect trials from the end of the cue-induced alpha peak at 600 ms to 3670 ms (t(14) = 

2.95, p = 0.015; error bars and error margin represent SEM). These results are in the 

opposite direction of previous findings which instead report alpha decreases associated 

with successful memory retrieval (14, 31). (Error bars and shaded error margins 

represent SEM.) 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/758185doi: bioRxiv preprint 

https://doi.org/10.1101/758185
http://creativecommons.org/licenses/by-nc-nd/4.0/


 49 

 

t(14) = 2.95, p = 0.011

Fig. S8
a After: replay onset time-frequency Before: replay onset time-frequency

ms from replay onset

b

ms from replay onset

After: replay onset high frequency Before: replay onset high frequencydc

Lo
g 

po
w

er

Lo
g 

po
w

er
Lo

g 
po

w
er

Lo
g 

po
w

er

ms from replay onset ms from replay onset

e fTime-frequency: correct-incorrect 8-12 Hz: correct-incorrect

Time from cue onset(s)Time from cue onset (s)

Fr
eq

ue
nc

y 
(H

z)

Lo
g 

po
w

er
 (8

-1
2 

H
z)

g

 Correct  Incorrect

Lo
g 

po
w

er
 (8

-1
2 

H
z)

8-12 Hz and accuracy

Lo
g 

po
w

er

| | | | | | |

Fr
eq

ue
nc

y 
(H

z)

Fr
eq

ue
nc

y 
(H

z)

*

Fr
eq

ue
nc

y 
(H

z)

Fr
eq

ue
nc

y 
(H

z)

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/758185doi: bioRxiv preprint 

https://doi.org/10.1101/758185
http://creativecommons.org/licenses/by-nc-nd/4.0/


 50 

Figure S9. Relationship between accuracy, cue-evoked reactivation, and zero-lag 

correlation between within-episode category evidence during the retrieval period.  

(a-b) Cue-evoked reactivation of within-episode elements minus other-episode 

elements from 200-250 ms in the after condition (a) and before condition (b), included in 

the regression model with forward and backward sequenceness. The effect of cue-

evoked reactivation is non-significant (after: 0.878 ± 0.682; z = 1.287, p = 0.198; before: 

0.578 ± 0.714; z = 0.809, p = 0.418); the effects for sequenceness are unaffected. (c-d) 

The correlation between evidence for within-episode categories minus the correlation 

between all other pairings (zero-lag correlation) across the 160 ms – 3667 ms cue 

period of analysis (c) is not related to trial-to-trial accuracy in very high or regular 

performance participants: High performance (-0.534 ± 0.644; z = -0.829, p = 0.407); 

regular performance (-0.093 ± 0.354; z = -0.263, p = 0.792). (d) The correlation 

between within-episode category evidence is driven by high-magnitude events (>= 95 % 

of mean), and activity for these events peaks and falls rapidly. The purple line 

represents the mean across participants in the after condition. (Error bars represent 

SEM.) (e-f) The zero-lag correlation between evidence for within-episode categories 

minus the correlation between all other pairings included in the regression model with 

forward and backward sequenceness in the after condition (e) and in the before 

condition (f). The effect of clustered reactivation is non-significant (after: 0.137 ± 0.463; 

z = 0.296, p = 0.767; before: -0.721 ± 0.494; z = -1.460, p = 0.144); the effects for 

sequenceness are unaffected. (Error bars represent standard error.) 
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Table S1. Story text example used in the episodic memory encoding phase on the first 

day. The stimuli for the first 4 components were taken from the categories: face, 

building, body party, object, animal, and car. The alternative counterbalance order 

changed component 5 across episodes from positive to negative. 
 
 

Episode Component 1 Component 2 Component 3 Component 4 Component 5 

1 I had a big 
elephant 

and guided it to 
the barn 

a freckled 
woman was 
waiting there 

and cleaned it 
with a toothbrush 

then we all had 
birthday cake. 

2 A man facing 
away 

played a 
harmonica 

while we 
watched a bear 

try to open an 
SUV 

after which we 
enjoyed the sunny 
day. 

3 
I was sitting 
outside the 
stone house 

trying to fix a 
computer mouse 

when a sports 
car pulled up 

and a young 
Asian man 

gave me a pile of 
gold coins for my 
work. 

4 I found the 
key I needed 

to get into the 
warm cabin an Asian woman massaged my 

sore shoulder 

and we celebrated 
her graduation with 
balloons. 

5 I was playing 
with a girl 

outside her big 
white mansion 

when a turtle 
appeared 

and walked over 
her feet 

but we had to hide 
from the 
thunderstorm. 

6 I called for a 
taxi 

to give my tired 
knees a rest 

and rode with a 
guy in my class 

to go look at a 
deer 

but then I had to go 
study for an exam. 

7 I was using 
scissors 

to trim the man's 
beard 

then we took a 
mini car 

to the pastel 
hotel 

but I slipped and fell 
on some marbles. 

8 At the 
greenhouse 

my friend 
pressed her 
hand to the 
glass 

then I saw a 
pickup truck 
drive by 

and noticed a 
horse getting 
groomed outside 

but then we had to 
drag out the trash.  
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Table 2. Multilevel modeling results for the interaction between sequenceness and 
episode length (long, short) or episode end valence (positive, negative). 
 
 

After condition: Length 

Variable coef. ste z-stat p-value 
Intercept 0.8262 0.1172 7.053 <0.0001 
SeqFwd -0.1498 0.0792 -1.892 0.052 
SeqBkw 0.1877 0.0782 2.403 0.012* 
Length -0.106 0.0712 -1.278 0.1528 

SeqFwd X Length 0.0065 0.0781 0.083 0.9096 
SeqBkw X Length 0.0125 0.0778 0.161 0.876 

Before condition: Length 

Intercept 0.9295 0.1172 7.934 <0.0001 
SeqFwd 0.1484 0.0728 2.038 0.0392* 
SeqBkw -0.0628 0.0739 -0.850 0.3872 
Length 0.0811 0.0711 1.142 0.2600 

SeqFwd x Length -0.0811 0.0722 -1.124 0.2744 
SeqBkw X Length 0.0429 0.074 0.580 0.5536 

After condition: End valence 

Intercept 0.8477 0.1202 7.054 <0.0001 
SeqFwd -0.1416 0.0785 -1.804 0.0728 
SeqBkw 0.1741 0.0786 2.214 0.0304* 
Reward 0.0081 0.0761 0.107 0.8968 

SeqFwd X Valence 0.1131 0.0785 1.440 0.1352 
SeqBkw X Valence -0.1966 0.0792 -2.483 0.0096* 

Before condition: End valence 

Intercept 0.9235 0.1167 7.912 <0.0001 
SeqFwd 0.1451 0.0730 1.987 0.0520 
SeqBkw -0.0557 0.0742 -0.751 0.4352 
Reward 0.0340 0.0827 0.411 0.6809 

SeqFwd X Valence -0.0006 0.0726 -0.008 0.9968 
SeqBkw X Valence 0.0014 0.0740 0.018 0.9952 
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Table S3. Whole-brain beamforming MEG results for replay onset in the after and 

before conditions. Clusters significant whole-brain FWE-corrected after an initial 

threshold of p < 0.001 to provide interpretable clusters. 

 

Contrast Regions Cluster 
size x y z Peak z 

stat 

After 
backward 

replay onset 

L Lingual Gyrus 
5495 

-14 -86 -4 
4.69 L Lingual Gyrus -22 -70 2 

L Middle Occipital Gyrus -32 -84 6 
R Calcarine Sulcus 

1198 
26 -58 20 

3.9 R Parietal Lobe 36 -60 32 
R Calcarine Sulcus 28 -46 4 
R Anterior Hippocampus 

2151 
20 -10 -18 

3.72 R Ventral Thalamus 4 -20 -6 
R Anterior Hippocampus 20 -2 -22 

Before 
forward 

replay onset 

R Midbrain 
1707 

2 -32 -18 
3.73 R Parahippocampal Gyrus 14 0 -34 

R Entorhinal Cortex 14 -2 -24 
After 

backward       
-10 ms & 

performance 

L Entorhinal Cortex 
1046 

-22 -8 -32 
3.82 L Entorhinal Cortex -18 -16 -26 

L Anterior Hippocampus -34 -12 -24 
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