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Abstract

Since many genetic variants identified in genome-wide association studies (GWAS)
are associated with multiple, sometimes seemingly unrelated traits, one can improve
the statistical power of GWAS by testing the association of multiple traits simultane-
ously. While appealing, most existing methods focus on analyzing a relatively small
number of traits and may yield inflated Type I error rates when analyzing a large
number of traits. We introduce a new method called aMAT for multi-trait analysis of
GWAS summary statistics of an arbitrary number (e.g. hundreds) of traits. We first
conduct extensive simulations and demonstrate that aMAT yields well-controlled Type
I error rates and achieves robust statistical power when analyzing a large number of
traits. Next, we apply aMAT to summary statistics for a group of 58 volume-related
imaging phenotypes in UK Biobank. aMAT yields a genomic inflation factor of 1.04
and identifies 28 lead SNPs spanning in 24 distinct risk loci, 13 of which are missed by
any individual univariate GWAS. In comparison, the competing methods either yield
a suspicious genomic inflation factor or identify much fewer risk loci. Finally, four
additional groups of traits have been analyzed and provided similar conclusions.

Keywords: Adaptive test; deep phenotyping data; GWAS summary data; multivariate trait;
statistical power
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1 Introduction
Genome-wide association studies (GWAS) have identified thousands of genetic variants as-
sociated with an impressive number of complex traits and diseases [1] by analyzing a single
trait each time. However, the identified genetic variants explain only a small proportion
of the overall heritability, known as “missing heritability” problem [2]. On the other hand,
an interesting observation has been that many genetic variants are associated with multi-
ple, sometimes seemingly unrelated traits [3]. To improve statistical power and offer new
biological insights, several methods for multi-trait association test have been proposed [4–9].

While appealing, most existing multi-trait studies focus on analyzing a relatively small
number of phenotypes (say, less than ten) jointly. However, deep phenotyping data from
epidemiological studies and electronic health records are becoming rapidly available [10, 11].
For example, GWAS of 3,144 brain image-derived phenotypes (IDPs) have been carried out
to provide insights into the genetic architecture of the brain structure and function [11].
Thus, a method that can handle an arbitrary number of traits is urgently needed.

In this paper, we develop a method, adaptive multi-trait association test (aMAT), that
enables a joint analysis of an arbitrary number (e.g. hundreds) of traits. Compared with
many existing multi-trait association testing methods, aMAT has several compelling features
that make it potentially useful in many settings. First, by taking the potential singularity
of the trait correlation matrix into account, aMAT yields well-controlled Type I error rates
when analyzing a large number (e.g. hundreds) of traits. In contrast, many competing
methods may yield incorrect Type I error rates. Second, aMAT offers a general way that
combines different methods to achieve robust statistical power over a wide range of scenarios.
Because the uniformly most powerful test does not exist for multi-trait association testing
problems in general, aMAT first constructs a class of test such that one of them may have
good power for a given scenario. Then aMAT combines the testing results data-adaptively
to achieve robust power performance. Third, like many competing methods [8, 9], aMAT
can be applied to GWAS summary statistics (i.e. marginal association statistics), which are
often publicly available. Fourth, aMAT applies the cross-trait LD Score regression (LDSC)
[12] and thus captures all relevant sources of estimation error (including sampling variation,
population stratification, unknown sample overlap, and cryptic relatedness) on estimating
the correlation matrix. Finally, aMAT is computationally efficient even for hundreds of traits
because the p-value of aMAT can be calculated analytically. Through extensive simulations
and analysis of UK Biobank Image related phenotypes [11], we demonstrate that aMAT
maintains well-controlled Type I error rates and achieves greater power than competing
methods across a wide range of scenarios.
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2 Methods

2.1 New method: aMAT

We propose a new test called adaptive multi-trait association test (aMAT) for testing the
overall association between a single SNP with an arbitrary number of (potentially hundreds)
traits. For illustration, we focus on a particular SNP j and repeat the same procedure
for every SNP in the genome. Suppose we have its Z scores across p traits of interest,
Zj = (Z1j, Z2j, . . . , Zjp)

′. Let β = (β1, . . . , βp)
′ be the marginal effect sizes of the SNP j for

p traits. Without confusion, we may skip j to simplify the notation. Note that Z score is
either directly provided by a publicly available GWAS summary data or can be calculated
by Zsj = β̂sj/SEsj, where β̂sj is the estimated βsj and SEsj is its standard deviation for
trait s. We are interested in testing whether the SNP is associated with any traits, i.e.,
H0 : β = 0 vs H1 : βj ̸= 0 for at least one j ∈ {1, 2, . . . , p}. Note that testing multi-trait
effect (H0 : β = 0) is different from testing cross phenotype or pleiotropy effect [3], where
the null hypothesis is at most one of the βj, j = 1, . . . , p, is nonzero.

Under the null hypothesis H0 : β = 0, Z asymptotically follows a multivariate normal
distribution with mean zero and correlation matrix R = (rjk), i.e. Z ∼ N(0,R) [7–9]. Then
we construct our aMAT by the following three steps: estimating trait correlation matrix
R; constructing a class of multi-trait association tests; constructing an adaptive test called
aMAT to maintain robust power across different scenarios. In the following, we will describe
these three steps in detail.

Estimating trait correlation matrix R Like MTAG [13], aMAT applies LD score regression
(LDSC) [12, 14] to estimate R (estimated one is denoted by R̂). Specifically, bivariate LDSC
[14] partitions the product of Z score from traits t and s as

E(ZtjZsj) = Cglj + rts,

where Cg is proportional to the genetic correlation between traits t and s; lj is the LD score
for SNP j, which can be estimated in a reference sample (e.g. 1000 Genomes Project data
with European ancestry [15]). When t = s, it reduces to the univariate LDSC for a single
trait [12]. Similar to MTAG [13], aMAT first runs a univariate LDSC [14] for each trait and
uses the estimated intercepts to construct the diagonal elements of R̂. Then bivariate LDSCs
[12] are applied for each pair of traits, and the estimated intercepts are used to construct
the off-diagonal elements of R̂. Note that R̂ is the same for all the SNPs across the genome
and thus only need to be estimated once.
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Of note, by using LDSC, aMAT considers estimation error, including population stratifi-
cation, cryptic relatedness, unknown sample overlap, and technical artifacts [13]. As demon-
strated previously [9], LDSC provides a more accurate estimate of R than a commonly used
approach that estimates R by sample correlation of genome-wide Z scores for each pair of
traits [7, 8]. Importantly, previous research [8, 9] has provided theoretical justification for
using trait correlation matrix R to conduct multi-trait association tests.

Constructing a class of MATs Given the estimated correlation matrix R̂, we construct a
class of multi-trait association tests (MATs) that hopefully each of them would be powerful
for a given scenario.

One popular method for testing β = 0 is the chi-squared test that uses the Z score vector
Z to construct its statistic as

Tχ2 = Z ′R̂−1Z,

where R̂−1 is the inverse of R̂. Note that Tχ2 follows a chi-squared distribution χ2
p with p

(equals to the number of traits) degrees of freedom under the null and thus the p-value of chi-
squared test can be calculated analytically. Many GWAS summary statistics-based methods
[8, 9] have been developed based on the above chi-squared test. Because most existing studies
only analyze less than ten (p < 10) traits jointly, R̂−1 is usually well-defined, leading to well-
controlled Type I error rates for chi-squared based tests. However, when analyzing hundreds
of traits or highly correlated traits jointly, R̂ is often near singular, leading to numerical
problems for R̂−1 and thus incorrect Type I error for chi-square based methods.

Here, we propose a modified pseudoinverse approach to address the near singular problem
of R̂. Specifically, we first apply the singular value decomposition (SVD) to R̂ as R̂ =

UΣU ′, where U is the singular vector and Σ is a diagonal matrix with ordered singular
values σi of R̂ in its diagonal. We next calculate a modified pseudoinverse of R̂ by

R̂+
γ = UΣ+

γ U
′,

where Σ+
γ is formed from Σ by taking the reciprocal of the largest k singular values σ1, . . . , σk,

and setting all other elements to zeros. We use a condition number threshold of σ1/σi < γ to
select the largest k singular values. This is analogous to the principal components analysis,
restricting the analysis to top k axes of the largest variation. We next construct a class of
multi-trait association tests (MATs) as:

TMAT(γ) = Z ′R̂+
γ Z.
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Similar to chi-squared test, TMAT(γ) follows a chi-squared distribution χ2
k with k degrees of

freedom under the null, where k is the number of singular values that meet σ1/σi < γ. Then
we can calculate the p-value for MAT(γ) analytically and denote by pMAT(γ).

Note that MAT(1) equals to a principal component (PC)-based association test called
ET [9]. MAT(50) corresponds to chi-squared test approximately when the trait correlation
matrix R is not near singular and can be viewed as a minor adaption of chi-squared test.

An adaptive test (aMAT) to maintain robust power In general, there is no uniformly most
powerful test; different tests will be powerful under different scenarios. Since the association
pattern varies between SNPs, the most optimal test will also change from SNP to SNP, but
it is unknown prior before conducting the test. For example, MAT(1) achieves high power
when the first principal component (PC) captures the majority association signals across p

traits we considered. In contrast, when most PCs have weak signals, MAT(1) will lose power
and MAT with larger γ will be more powerful. To maintain robust power over a wide range
of scenarios, we propose an adaptive test called aMAT. Specifically, aMAT uses the smallest
p-value from a class of MAT tests as the test statistics:

TaMAT = min
γ∈Γ

pMAT(γ),

where pMAT(γ) is the p-value of the MAT(γ) test and the default setting of Γ is Γ =

{1, 10, 30, 50}. It is worth noting that using the minimum p-value of multiple tests as test
statistics to maintain robust performance has been widely used in gene-based tests [16, 17],
pathway-based tests [18], and microbiome association analysis [19].

Intuitively, the p-value of aMAT can be calculated by a one layer Monte Carlo simulation
[16], which is generally time-consuming. Here, we apply a Gaussian copula approximation-
based method to calculate its p-value analytically as follows:

• First, we estimate the correlation matrix Ω of several component MAT(γ) test statistics
through a parametric bootstrap method under the null. Specifically, we first simulate
a new Z score vector Znull under the null. To consider potential singularity problems,
we apply singular value decomposition to the trait correlation matrix R = UDU ′ and
generate Znull by NUD1/2U ′, where N is p× 1 vector and each element is generated
by a standard normal distribution and D1/2 is formed by setting each negative element
of D to zero and taking the square root of each element. Then we apply each MAT(γ)
to the simulated Z score Znull and obtain its p-values. Under the null hypothesis,
the p-values of those MATs are uniformly distributed, and thus its inverse-normal
transformed values (qγ = qnorm(1− pMAT(γ))) follow normal distributions with mean
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zero marginally. We repeat this procedure for B times and then estimate the correlation
matrix of qγ by its sample correlations and denote it by Ω.

• Once learned Ω, we apply a Gaussian copula approximation for the joint distribution
of qγ for γ ∈ Γ. In other words, we assume qγ for γ ∈ Γ follows a joint multivariate
normal distribution. Then the p-value of aMAT (paMAT) can be calculated as

paMAT = 1− ΦM

[{
Φ−1(1− TaMAT), . . . ,Φ

−1(1− TaMAT)
}
|Γ|×1

;Ω
]
,

where ΦM denotes joint distribution function of a multivariate normal distribution, |Γ|
is the size of Γ.

In practice, the above procedure with B = 10, 000 provides a reliable estimate of Ω and
only needs to be run once for computing the p-values for all the SNPs across the whole
genome. Furthermore, Gaussian copula approximation-based method has been applied to
combine different gene-based tests for GWAS summary data and showed a good performance
[17].

2.2 Simulations

To speed up and simplify computations, we directly generated Z scores from its asymptotic
normal distribution, N(∆,R), which has been widely used by others [9, 13]. To evaluate the
performance with different type of trait correlation, we used two estimated trait correlation
matrices from the GWAS of brain image-derived phenotypes (IDPs) [11]: the trait matrix
for the group of Freesurfer volume IDPs, which included 58 volume related IDPs and was
denoted by Volume; and the trait matrix for the group of all the available Freesurfer IDPs,
which included 472 structural MRI related IDPs and was denoted by Freesurfer.

We set ∆ = 0 under the null and set ∆ ̸= 0 under the alternative. We simulated
500 million (5 × 108) Z score vectors under the null to evaluate Type I error rates with
different significance level α and simulated 10, 000 Z score vectors under the alternative
to evaluate statistical power under the genome-wide significance level 5 × 10−8. Under the
alternative, we considered a wide range of scenarios. For example, similar to [9], we generated
∆ =

∑k
j=1 cσjuj, where uj is the singular vector of the trait correlation matrix R, c is the

effect size and k is the largest integer that stratifies σ1/σk < γ. We varied γ and c to simulate
different scenarios. We also considered other situations such as ∆ = cuj and ∆ = c. To save
space, the majority simulation results were relegated to the supplementary.

First, we compared different testing methods in terms of Type I error rates and power
with the true trait correlation matrix R. Second, we evaluated the impact of estimation
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error on R. Specifically, we simulated Z-score vectors with the true trait correlation matrix
R and then conducted tests with the estimated trait correlation matrix R̂(s). Specifically,
similar to [13], we added independent normal noise with mean zero and variance s to each
element of the matrix R to simulate the estimated trait correlation matrix R̂(s). Based on
our real data analysis, the sampling variance is roughly 5× 10−5, and thus we varied s from
10−5 to 10−4 to evaluate the impact of estimation error on R̂.

We compared the performance of aMAT with the following popular tests: (i) the sum
of Z score vector (

∑p
j=1 Zj; denoted as SUM) [6]; (ii) the sum of squared Z score vector

(
∑p

j=1 Z
2
j ; denoted as SSU) [5, 20]; (iii) a standard chi-squared test; (iv) a modified chi-

squared test called Hom [8] that is powerful for the homogeneous effect situation; (v) a
PC-based association test [9], which equals to MAT(1). For chi-squared tests, we applied
generalized inverse. When the trait correlation matrix is near singular (focused here), two
popular tests Het [8] and AT [9] had some numerical problems and failed to provide p-values
and thus has been ignored in our simulations. The minP test [4] that takes the minimum
marginal p-values across p traits as test statistics is highly conservative and time-consuming
when p is high and thus has been only briefly discussed.

2.3 Analysis of UK Biobank brain imaging GWAS summary data

We reanalyzed GWAS summary data for thousands of image-derived phenotypes (IDPs)
with up to 8,428 UK Biobank individuals [11]. To uncover the genetic components of brain
structure and function, we conducted multi-trait association tests to detect the genetic as-
sociation between an individual SNP and a group of highly related IDPs. Following [11], we
analyzed five groups of IDPs with up to 472 IDPs per group.
Data pre-process and multi-trait association tests. We removed variants that were either non-
biallelic or strand ambiguous (SNPs with A/T or C/G alleles) and analyzed the remaining
9,971,805 SNPs. For each SNP, the summary Z score for a single IDP was calculated by
dividing the regression coefficient estimate by its standard deviation. Based on their Z

score, we applied LDSC to estimate the trait correlation matrix. For each group of IDPs,
we applied aMAT and many competing methods including SUM, SSU, MAT(1) (equals to
ET), Chi-squared, and Hom tests to test the overall association between a SNP and a group
of IDPs.
Result analyses. We used FUMA [21] v1.3.4c to identify independent genomic risk loci and
relevant SNPs in these loci. Via FUMA, We further obtained the functional consequences for
these SNPs by matching SNPs to some functional annotation databases, including CADD
scores [22], REgulomeDB scores [23], chromatin states [24, 25], and ANNOVAR categories
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[26].
For lead SNPs identified by aMAT, replication was tested in the independent ENIGMA

[27] sample. Specifically, we applied aMAT to the GWAS summary statistics of seven brain
subcortical volume related IDPs, including the volume of mean putamen, the volume of mean
thalamus, the volume of mean pallidum, the volume of mean caudate, Intracranial Volume,
the volume of mean amygdala, and the volume of mean accumbens. Then we evaluated the
replication rate by the two-tailed binomial test.

In the end, we filtered genome-wide significant SNPs obtained by aMAT based on its
functional annotations and then mapped them to genes by the following three strategies (via
FUMA): positional mapping, eQTL mapping, and chromatin interaction mapping.

2.4 Availability of data and materials

The UK Biobank summary data is available in the http://big.stats.ox.ac.uk. The
LDSC software and its required LD scores are available in the https://github.com/bulik/
ldsc. The software for our proposed method aMAT is available at https://github.
com/ChongWu-Biostat/aMAT. Supplementary files available at https://figshare.com/
articles/aMAT_supplementary/9764519.

3 Results

3.1 aMAT yields well-controlled Type I error rates

Table 1 shows the Type I error rates of different multi-trait methods with the Freesurfer trait
correlation matrix. Note that the Freesurfer group contained 472 IDPs and 27 eigenvalue
values of the trait correlation matrix were smaller than 0.01 (Supplementary Figure S1). As
expected, chi-squared and Hom tests yielded inflated Type I error rates due to near singular
correlation matrix that need to be inverted for their test statistics. Also, SSU yielded inflated
Type I error rates. However, aMAT(50), which can be viewed as a minor adaption of Hom
test, yielded well-controlled Type I error rates. Importantly, our proposed methods MAT and
aMAT yielded well controlled Type I error rates at different significance levels α. All methods
yielded well-controlled Type I error rates under simulations with Volume trait correlation
matrix and thus were relegated to Supplementary (Supplementary Table S1).
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α 5× 10−2 1× 10−2 1× 10−4 1× 10−6 5× 10−7 5× 10−8

SUM 5.0× 10−2 1.0× 10−2 1.0× 10−4 9.8× 10−7 5.0× 10−7 4.0× 10−8

SSU 4.6× 10−2 1.0× 10−2 1.7× 10−4 3.7× 10−6 2.0× 10−6 3.4× 10−7

Chi-squared 4.7× 10−2 1.0× 10−2 1.7× 10−4 4.5× 10−6 2.7× 10−6 5.4× 10−7

Hom 5.6× 10−1 4.5× 10−1 2.5× 10−1 1.5× 10−1 1.4× 10−1 1.1× 10−1

MAT(1) 5.0× 10−2 1.0× 10−2 1.0× 10−4 1.0× 10−6 5.7× 10−7 5.0× 10−8

MAT(10) 5.0× 10−2 1.0× 10−2 1.0× 10−4 9.8× 10−7 5.1× 10−7 4.8× 10−8

MAT(30) 5.0× 10−2 1.0× 10−2 9.9× 10−5 1.0× 10−6 5.4× 10−7 6.0× 10−8

MAT(50) 5.0× 10−2 1.0× 10−2 1.0× 10−4 1.0× 10−6 5.3× 10−7 6.4× 10−8

aMAT 4.7× 10−2 9.4× 10−3 9.7× 10−5 1.2× 10−6 6.3× 10−7 6.4× 10−8

Table 1: Type I error rates of different methods with the Freesurfer trait correla-
tion matrix. We simulated 50 million (5 × 108) replications under the null and estimated
Type I error rates as the proportions of p-values less than significance level α.
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Figure 1: Empirical power comparison with true Volume trait correlation matrix.
Under the alternative, we generated ∆ =

∑k
j=1 cσjuj, where uj is the singular vector of the

Volume correlation matrix R, c is the effect size and k is the largest integer that stratifies
σ1/σk < γ. We further estimated empirical power as the proportions of p-values less than
significance level 5× 10−8.
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3.2 aMAT offers robust statistical power

Figure 1 shows the empirical power of different methods with true Volume trait correlation
matrix R. When the first principal component (PC) was informative, as expected, the
MAT(1) performed best. However, MAT(1) was sensitive to the signal distribution and
yielded much lower power when the top PC has weak or no signal (Supplementary Figure
S2). Perhaps because the Volume trait correlation matrix was near singular, the minP test
was very conservative and the power was almost zero for the situations considered here. Hom
test [8] was powerful for the homogeneous effect situation and the power was close to zero
as the effect was heterogeneous. SUM and SSU tests ignored the relationships among traits
and were less powerful than MAT tests. Because there is no uniformly optimal test for a
composite alternative H1 : β ̸= 0, different NAT tests achieved high power under different
scenarios. However, aMAT maintained a robust and high power across a wide range of
scenarios by combining the results from a class of MAT tests.

We considered several additional settings, including varying the way of selecting infor-
mative singular vectors and generating ∆, the trait correlation matrix, and the generating
distribution for ∆ (Supplementary Figures S3–S9). Across all simulation settings, a test
achieved high power under one situation but might lose power substantially under another
situation. In contrast, aMAT achieved a robust statistical power under all simulations con-
sidered.

3.3 aMAT is robust to the estimation error of trait correlation
matrix

In the previous two subsections, we assumed R was known. However, the trait correlation
matrix R is unknown, and we have to estimate the trait correlation matrix to construct test
statistics. To evaluate the impact of estimation error on R, we simulated Z-score vectors from
its asymptotic normal distribution N(∆,R) and compared different testing methods with
the estimated trait correlation matrix R̂(s), which was constructed by adding independent
normal noise with mean zero and variance s to each element of R.

Table 2 shows the Type I error rates of different methods with the estimated Volume
trait correlation matrix R̂(10−4). Note that standard Chi-squared test and Hom test yielded
controlled (slightly conservative) Type I error rates with the true Volume trait correlation
matrix R (Supplementary Table S1). However, when small estimation errors were considered,
both the Chi-squared test and Hom test yielded inflated Type I error rates. Because both
the Chi-squared test and Hom test construct test statistics with the inverse of the estimated
trait correlation matrix R̂(s), small estimation error on R̂(s) may lead to a relatively large
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deviation for small eigenvalues, leading to inflated Type I error rates. In contrast, both MAT
and aMAT yielded well-controlled Type I error rates since only several largest eigenvalues
of the estimated correlation matrix have been used.

α 0.05 0.01 1× 10−4 1× 10−6 5× 10−7 5× 10−8

SUM 5.0× 10−2 1.0× 10−2 1.0× 10−4 1.0× 10−6 5.0× 10−7 4.7× 10−8

SSU 4.6× 10−2 1.0× 10−2 1.9× 10−4 4.1× 10−6 2.4× 10−6 3.9× 10−7

Chi-squared 6.4× 10−2 2.8× 10−2 1.1× 10−2 7.4× 10−3 7.1× 10−3 6.2× 10−3

Hom 1.7× 10−1 9.9× 10−2 5.0× 10−2 3.6× 10−2 3.4× 10−2 3.1× 10−2

MAT(1) 5.0× 10−2 1.0× 10−2 1.0× 10−4 1.0× 10−6 5.2× 10−7 4.9× 10−8

MAT(10) 5.0× 10−2 1.0× 10−2 9.9× 10−5 1.0× 10−6 5.0× 10−7 5.7× 10−8

MAT(30) 5.0× 10−2 1.0× 10−2 1.0× 10−4 1.0× 10−6 5.2× 10−7 4.5× 10−8

MAT(50) 5.0× 10−2 1.0× 10−2 9.9× 10−5 1.0× 10−6 5.0× 10−7 4.5× 10−8

aMAT 4.7× 10−2 9.4× 10−3 9.9× 10−5 1.2× 10−6 6.4× 10−7 4.7× 10−8

Table 2: Type I error rates for different methods with the estimated Volume trait
correlation matrix R̂(10−4). We simulated 50 million (5×108) replications with true Vol-
ume trait correlation matrix R under the null and constructed test statistics with R̂(10−4).
Type I error rates were estimated as the proportions of p-values less than significance level
α.

We next evaluated the impact of estimation errors on the statistical power. Figure 2 shows
that the empirical power of MAT and aMAT with either true (R) or estimated ( ˆR(10−4))
trait correlation matrix were almost the same. As expected, the estimation errors have little
impact on the power of MAT and aMAT.

In the end, we considered several additional settings with different estimation error
strength (s = 10−5 or s = 5 × 10−5) and with the estimated Freesurf trait correlation
matrix. The results were similar to those in Table 2 and Figure 2, thus were relegated to
the Supplementary (Supplementary Tables S2–S6 and Figures S10–S14).

3.4 Application to a UK Biobank brain imaging GWAS summary
data

For our empirical application of aMAT, we built on a recent study by UK Biobank of thou-
sands of image-derived phenotypes (IDPs) [11]. Similar to [11], we analyzed five groups of
IDPs that are strongly genetically related (Methods). We mainly focused on the results of
our proposed method aMAT and compared some competing methods at the end. Figure 3
illustrates the estimated trait correlation matrix for each group of IDPs, showing that many
IDPs within each group are highly correlated.
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Figure 2: Empirical power comparison between true and estimated Volume trait
correlation matrix. Under the alternative, we generated ∆ =

∑k
j=1 cσjuj, where uj is the

singular vector of the true Volume correlation matrix R, c is the effect size and k is the largest
integer that stratifies σ1/σk < γ. We simulated 10,000 replications with R and constructed
test statistics with R̂(10−4). We further estimated empirical power as the proportions of p-
values less than significance level 5× 10−8. MAT(1), MAT(10), MAT(30), MAT(50), aMAT
represent the results with R̂(10−4), while MAT(1)-t, MAT(10)-t, MAT(30)-t, MAT(50)-t,
aMAT-t represent the results with R.
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Figure 3: The estimated trait correlation matrix for different groups of IDPs.
The subfigure (a) was for T1 FAST region of interests (ROIs) group, which contained 138
IDPs, and subfigure (b) was for Freesurf group, which contained 472 IDPs. Note that the
trait correlation estimated here was the correlation of the raw phenotypes conditional on the
covariates (e.g., confoundings), which was different from the raw trait correlation provided
by Elliott et al. (2018) [11].
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aMAT results. We applied aMAT to the GWAS summary statistics from the UK Biobank
[11]. To be concrete, we mainly focus on the results of analyzing the group of 58 Freesurfer
volume IDPs. The aMAT results had a genomic inflation factor of 1.04 (Supplementary
Figure S15). Among 9,971,805 SNPs to be tested, aMAT identified 801 significant SNPs, 453
of which were ignored by any individual IDP tests at the 5× 10−8 genome-wide significance
level. These 801 GWAS variants were represented by 28 lead SNPs, located in 24 distinct
risk loci (Table 3 and Figure 4). Among these 28 lead SNPs, 13 SNPs (46.4%) were missed
by any individual IDP tests at the 5 × 10−8 genome-wide significance level. These results
indicate that conducting aMAT test made it possible to uncover significant SNPs and loci
that were ignored by an individual IDP test.

Figure 4: Multi-trait analysis for the Volume group. Manhattan plot displays the
association results of aMAT per variant ordered by their genomic position on the x axis and
showing the strength with the − log10(p) on the y axis.

Replication of aMAT-identified loci. To test the lead SNPs for replication, we compared
aMAT result for the volume group with those obtained by the ENIGMA consortium [27].
Specifically, we obtained GWAS summary statistics of seven subcortical volumes in up to
13,171 subjects. We then applied aMAT to the group of seven subcortical volumes from the
ENIGMA, denoted by ENIGMA group. The aMAT had a genomic inflation factor of 1.06
and identified 927 genome-wide significant SNPs.

We next tested replication of the 28 lead SNPs in 24 distinct risk loci, 13 of which showed
nominally significant association results (P < 0.05) for the same SNPs within the same locus
(two-tailed binomial test P = 2.24× 10−10). Importantly, four loci (rs73123652, rs77956314,
rs10129414, and rs1187159) showed genome-wide significant association results (P < 5 ×
10−8) for the same SNPs in the ENIGMA data (two-tailed binomial test P = 6.25× 10−30).
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Locus SNP CHR BP A1 A2 MAF aMAT P Nearest Gene
1 rs72688340 1 47983839 G A 0.171 2.5× 10−9 AL356458.1
2 rs6665134 1 180949628 C A 0.401 1.7× 10−10 STX6
3 rs476557 1 215140251 A C 0.475 4.3× 10−8 RP11-323K10.1
4 rs1504 2 37066018 T G 0.447 1.4× 10−8 AC007382.1
5 rs13070564 3 190629975 G T 0.383 8.8× 10−13 GMNC
6 rs10031823 4 103125031 T C 0.395 1.3× 10−8 SLC39A8
6 rs34333163 4 103283117 A G 0.075 4.4× 10−16 SLC39A8
7 rs1922930 6 1364691 A C 0.118 3.8× 10−8 RP4-668J24.2
8 rs77126132 7 54966738 G A 0.089 1.8× 10−8 SNORA73
9 rs2707521 7 120940436 C T 0.377 2.2× 10−16 CPED1
10 rs2974298 8 42376477 T C 0.493 2.5× 10−9 SLC20A2
11 rs10217651 9 118923652 A G 0.386 1.7× 10−14 PAPPA
11 rs35565319 9 119065043 C T 0.072 6.7× 10−16 PAPPA
11 rs7030607 9 119245183 G A 0.36 6.7× 10−9 ASTN2
12 rs12783517 10 21878407 C T 0.299 1.3× 10−8 MLLT10
13 rs4962692 10 126424823 G A 0.414 2.7× 10−10 FAM53B
14 rs1187159 11 92009792 T C 0.413 5.1× 10−11 NDUFB11P1
15 rs73123652 12 65874956 T C 0.106 1.1× 10−12 MSRB3
16 rs4301837 12 102336310 T C 0.496 6.9× 10−9 DRAM1
16 rs17797222 12 102913946 A G 0.224 3.6× 10−13 RP11-210L7.1
17 rs12146713 12 106476805 T C 0.093 3.2× 10−9 NUAK1
18 rs77956314 12 117323367 T C 0.083 1.2× 10−9 HRK
19 rs10129414 14 56193272 G A 0.438 2.0× 10−9 RP11-813I20.2
20 rs2464469 15 58362025 G A 0.412 2.1× 10−13 ALDH1A2
21 rs13330163 16 70660243 A G 0.453 3.0× 10−12 IL34
22 rs12920553 16 87227046 G T 0.418 3.5× 10−10 C16orf95
23 rs6121038 20 30254773 T G 0.291 5.2× 10−10 BCL2L1
24 rs1004764 22 38474852 G A 0.377 4.2× 10−9 SLC16A8

Table 3: Summary statistics of significantly associated regions identified by aMAT
in the multi-trait analysis of a group of volume related IDPs. Independent lead
SNPs are defined by r2 < 0.1 and distinct loci are > 250kb apart. SNP, CHR, BP, A1,
A2 are the lead SNP, chromosome, position, effect allele, and non-effect allele, respectively.
The MAF is the minor allele frequency and obtained from the 1000 genomes reference panel
(Phase 3). aMAT P is the p-value for the aMAT test. The bolded SNPs correspond to the
novel SNPs that were ignored by any individual IDP tests at the genome-wide significance
level 5× 10−8.
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Perhaps because seven brain subcortical volume IDPs reported in ENIGMA consortium
only represent a subset of the Volume group (which contains 58 IDPs), 15 out of 28 lead
SNPs are not replicated. To validation this argument, we reran multi-trait analyses for the
group of 14 (including both left and right) subcortical volume as determined by Freesurfer.
We identified 11 independent loci after LD clumping. Among these 11 loci, nine showed
nominally significant association results (P < 0.05) for the same SNPs (two-tailed binomial
test P = 9.80 × 10−11). Again, the same four loci (rs10502971, rs1187160, rs12302173, and
rs8017172) showed genome-wide significant association results (P < 5× 10−8) for the same
SNPs within the same locus (two-tailed binomial test P = 6.25× 10−30).

Functional annotation of genetic variants. We applied Functional Mapping and An-
notation (FUMA) [21] (Methods) to link the associated variants to functional annotation.
Functional annotation of all genome=wide significant SNPs (excluding the one not available
in FUMA database, n = 772) in the associated loci showed that SNPs were mostly (90.8%)
located in intronic/intergenic areas (Supplementary Table S7 and Figure 5b). Those relevant
SNPs were also enriched for chromatin states 4 (33.2%) and 5 (40.0%), indicating effects on
active transcription (Figure 5a). Importantly, six SNPs were exonic non-synonymous that
lead to a probably deleterious change in the sequence of the encoded protein (Supplementary
Table S8). Five genome-wide significant SNPs (rs10507144, rs3789362, rs4646626, rs6680541,
and rs2845871) had a high observed probability of a deleterious variant effect (CADD score
[22] ≥ 20). Overall, these results suggest that most GWAS relevant SNPs are located in
non-coding regions despite some non-synonymous variants have been found.

Next, we linked the significantly associated variants to genes via three gene-mapping
strategies used in FUMA (Methods). Figure 5d shows the Venn diagram of the number of
mapped genes by three mapping strategies. Positional, eQTL, and chromatin interaction
gene mapping strategies linked SNPs to 54, 50, and 76 genes, respectively. This resulted in
133 unique mapped genes (Supplementary Table S9), 13 of which were identified by all three
mapping strategies (Supplementary Table S10).

The locus on chromosome 20 (rs6121038) is particularly notable. Many genes in this
locus such as FOXS1, MYLK2, TPX2, BCL2L1, and COX412 might interact physically or
through eQTL, as indicated by chromatin interaction data in mesenchymal stem cell line
and eQTL data (Figure 5c). Therefore, those genes might affect volume related IDPs via a
similar biological mechanism.

Six genes (STX6, EGFR, SMIM19, METTL10, LEMD3, and MYLK2) are of particular
interest as they are implicated via eQTL mapping in the brain related tissues. By searching
GWAS catalog [1], we found that three out of six (METTL10, LEMD3, and MYLK2) genes
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Figure 5: Functional annotation and implications of aMAT results. a and b, Distri-
bution of (a) functional effects and (b) minimum chromatin state across 127 tissue/cell types
for variants in aMAT identified genomic risk loci. c, Zoomed-in Circos plot of chromosome
20. Circos plots show implicated genes by either chromatin interaction (colored orange) or
eQTLs (colored green) or both (colored red). The dark blue areas are genomic risk loci
identified by aMAT. Chromatin interactions and eQTL associations are colored orange and
green, respectively. The most outer layer shows a Manhattan plot, displaying − log10(p) for
SNPs with p < 0.05. d, Venn diagram of number of linked genes by three different strategies.
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were reported to be associated with volume related IDPs. For example, METTL10 was
associated with mean platelet volume [28], total hippocampal volume [29], and dentate
gyrus granule cell layer volume [29]. STX6 was identified by all three mapping strategies
and contained a significant SNP (rs3789362) with CADD score higher than 20. STX6 was
reported to be associated with progressive supranuclear palsy (PSP) [30, 31] and the volume
of many brain regions, including cerebellum, thalamus, putamen, pallidum, hippocampus,
and brainstem, were significantly reduced in PSP compared to control subjects [32]. Future
studies might thus consider the potential role of STX6 in PSP.

Overall, the identified genes were enriched in many GWAS catalog reported volume-
related gene sets, including dentate gyrus granule cell layer volume (P = 1.46 × 10−13),
hippocampal subfield CA4 volume (P = 1.46×10−13), and hippocampal subfield CA3 volume
(P = 5.96× 10−12) (Supplementary Figure S16). We further performed gene-set analysis for
tissue expression and biological pathways via FUMA. Two related tissues (Brain Cerebellar
Hemisphere and Brain Cerebellum) were nominally associated with Volume IDPs group when
only correcting the number of tissues being tested (Figure S17).

Results for analyzing other IDP groups. We further applied aMAT to four additional
IDP groups, including 206 region area related IDPs (denoted by Area), 208 region thickness
related IDPs (denoted by Thickness), 472 Freesurfer structural MRI related IDPs (denoted
by Freesurfer), and 138 T1 ROIs related IDPs (denoted by ROIs). In total, we identified 84
independent risk loci and 97 lead SNPs, 59 of which were ignored ignored by any individual
IDP tests at the genome-wide significance level (Table 4, Supplementary Tables S11–S14,
and Supplementary Figures S18–S21).

IDPs Sig SNPs Loci Lead SNPs Novel SNPs
Area 206 2264 25 28 19
Thickness 208 39 2 2 0
Freesurf 472 2820 23 29 15
ROIs 138 2721 34 38 25

Table 4: Summary statistics of aMAT for analyzing four additional IDP groups.
IDPs, Sig SNPs, Loci, Lead SNPs are the number of IDPs in the group, number of genome-
wide significant SNPs identified by aMAT, number of independent risk loci, number of lead
SNPs in the identified risk loci, respectively. Novel SNPs is the number of lead SNPs that
were ignored by any individual GWAS at genome-wide significance level (5× 10−8).

Comparison to other Multi-trait association tests We compared aMAT to many com-
peting methods. First, aMAT had a good genomic inflation factor in general (from 0.967
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to 1.097) (Supplementary Table S15). In comparison, Chi-squared test and Hom test had
a unstable genomic inflation factor. For example, Chi-squared test had a genomic inflation
factor of 0.338 for analyzing the Volume IDP group, while Hom test had a genomic infla-
tion factor of 3.102 for analyzing the Freesurf IDP group and 0.755 for analyzing the Area
IDP group. SUM had a very good genomic inflation factor and SSU had a slightly inflated
genomic inflation factor (between 1.186 and 1.250).

Next, we compared the statistical power of different tests that have a good genomic
inflation factor. Supplementary Figure S22 shows the Venn diagram for the numbers of
the significant SNPs and associated loci identified by the tests at the 5 × 10−8 genome-
wide significance level for analyzing the Volume IDP group. Among 9,971,805 SNPs to be
tests, aMAT, MAT(50), MAT(1), and SUM identified 801, 671, 3, and 25 significant SNPs,
respectively. Importantly, aMAT, MAT(50), MAT(1), and SUM detected 453, 347, 0, and
18 significant and novel SNPs, respectively; a significant and novel SNP is defined as one
that is not detected by any individual IDP tests at the 5 × 10−8 genome-wide significance
level. We further compared the results at the risk region level; a risk region is defined by
LDetect [33]. aMAT detected 23 risk regions, while MAT(1) and SUM identified 1 and 3
risk regions, respectively. Note that each test detected some risk regions that other tests
failed to detect. For example, aMAT identified 5 risk regions that were ignored by competing
methods. This illustrates that each test can be more powerful than the others under certain
situations because there is no most uniformly most powerful test in general. Importantly,
our proposed adaptive test aMAT detect more SNPs and loci than competing methods,
demonstrating its robust performance. For analyzing other IDP groups, we obtained similar
results (Supplementary Figure S23–S26).

4 Discussion
We have introduced aMAT, a multi-trait method for conducting a joint analysis of GWAS
summary statistics for an arbitrary number of traits. Both our simulation and real data
results confirmed that aMAT could yield well-controlled Type I error rates and achieve
robust statistical power across a wide range of scenarios. In our empirical application to the
Volume group (of 58 volume related IDPs), we identified 28 lead SNPs located in 24 distinct
risk loci, 13 of which were missed by any individual IDP tests at the genome-wide significance
level 5 × 10−8. These identified lead SNPs can be well replicated by an independent study
[27]. Importantly, by integrating functional annotation via FUMA, we found most GWAS
relevant SNPs are located in non-coding regions, and the linked genes are over-enriched in
volume related gene sets. The proposed method aMAT are implemented in R, which is
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publicly available at https://github.com/ChongWu-Biostat/aMAT.
Our proposed method aMAT is a multi-trait method that aims to test the overall asso-

ciation between a SNP and an arbitrary number of traits. In other words, we are interested
in testing whether the SNP is associated with none of the traits or not. Multi-trait analysis
is different from cross phenotype or pleiotropy effect analysis [3], where the null hypothesis
is at most one trait is associated with the SNP. Of note, the proposed adaptive test aMAT
is a general framework and can be easily extended to incorporate other multi-trait methods
such as MTAG [13], N-GWAMA [34], and HIPOn [35]. To be specific, we can treat any other
powerful tests as an individual MTA test and then apply aMAT to combine its results to fur-
ther improve the power. However, since most methods are originally designed for analyzing
a few phenotypes jointly and ignore the singularity problems of the trait correlation matrix,
some minor adaption and strict evaluation might be needed. We leave it to our future work.

We conclude with several limitations of our proposed method aMAT. First, because there
is no uniformly most powerful test, aMAT first constructs a class of multi-trait association
tests (MAT) with different γs such that hopefully at least one of them would be powerful
for a given scenario. Then aMAT combines the results data-adaptively. Even though the
default setting Γ = {1, 10, 30, 50} performs good in both simulations and real data analyses
and the testing result seems robust to the choice of Γ set (Supplementary Figure S27), we
do not know the optimal choice of Γ and leave it to future research. Second, aMAT applies
LDSC to estimate trait correlation matrix and therefore inherit both benefits and limitations
from LDSC. For example, the univariate LDSC intercept, which was used for estimating the
diagonal elements of the trait correlation matrix, can be biased for a trait with a large sample
size and a high (SNP) heritability [36].
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