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Abstract 

Purpose 

To describe and assess different deep learning-based methods for automated 

measurement of macaque corneal sub-basal nerves using in vivo confocal microscopy 

(IVCM). 

Methods 

The automated assessment of corneal nerve fiber length (CNFL) in IVCM images is of 

increasing clinical interest. These measurements are important biomarkers in a number 

of diseases including diabetes mellitus, human immunodeficiency virus, Parkinson’s 

disease and multiple sclerosis. Animal models of these and other diseases play an 

important role in understanding the disease processes as efforts toward developing new 

and effective therapeutics are made. And while automated methods exist for nerve fiber 

analysis in clinical data, differences in anatomy and image quality make the macaque 

data more challenging and has motivated the work reported here. 

 

Toward this goal, nerves in macaque corneal IVCM images were manually labelled 

using an ImageJ plugin (NeuronJ). Different deep convolutional neural network (CNN) 

architectures were evaluated for accuracy relative to the ground truth manual tracings. 

The best performing model was used on separately acquired macaque ICVM images to 

additionally compare inter-reader variability. 

Conclusions 

Deep learning-based segmentation of sub-basal nerves in IVCM images shows 

excellent correlation to manual segmentations in macaque data. The technique is 

indistinguishable across readers and paves the way for more widespread adoption of 

objective automated analysis of sub-basal nerves in IVCM. 

Translational Relevance 

Quantitative measurements of corneal sub-basal nerves are important biomarkers for 

disease screening and management. This work reports on different approaches that, in 

using deep learning-based techniques, leverage state of the art analysis methods to 

demonstrate performance akin to human graders. In application, the approach is robust, 

rapid and objective, offering utility to a variety of clinical studies using IVCM. 
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Introduction 

In vivo confocal microscopy of the cornea (IVCM) allows for non-invasive acquisition of 

two-dimensional images, enabling detailed corneal sensory nerve fiber assessment in 

both clinical and research settings. The cornea is the most innervated tissue in the 

body, rendering the clinical applications of this non-invasive imaging procedure 

widespread. These applications include sensory neuropathy, where quantitative 

measurements of corneal sub-basal nerves are important biomarkers for disease 

screening and management. Measures of corneal sub-basal plexus nerve fiber count, 

density and length have been reported as having clinical utility in diabetes1,2, human 

immunodeficiency virus3, Parkinson’s disease4, multiple sclerosis5, and a number of 

other systemic illnesses. These metrics, however, are time consuming, require 

expertise, and are subjective when done manually. Automation of these measures is 

therefore necessary and will facilitate standardized analyses across centers as 

researchers investigate new end points in wide ranging clinical applications. As noted 

by Dabbah6, this lack of standardized assessment of corneal sub-basal nerve fiber 

density is a major limitation to wider adoption in clinical settings. Furthermore, the lack 

of a commonly accepted robust automated analysis method that provides centralized 

processing limits large-scale multicenter trials. 

 

Several different approaches have been used to automate the task of nerve fiber tracing 

in IVCM. The challenging image conditions of noise, intensity hetereogeneity and low 

contrast features are compounded by the presence of dendritic, endothelial and 

inflammatory cells that have similar features to the nerves being delineated. Parissi7 

adopted a graph-traversal method that traces between seed-points, which is an 

excellent way to describe the path of a nerve as the method effects constraints on 

feasible deviations of the nerve’s path and also bridges regions where the nerve’s 

intensity diminishes given the confocal nature of the modality. Fundamental to the 

success of such an approach is the choice of start and end points of the graph as these 

must belong to the same nerve. The original method for seed point detection is 

described by Scarpa8, where the image is covered in a grid of evenly spaced line-rows 

and columns. Nerves are detected at the intersection of lines based on intensity, and a 

tracing approach is used to follow the nerve in a direction perpendicular to its highest 

gradient. A final classification uses fuzzy c-means. Dabbah6 put an emphasis on 

carefully constructed filter banks applied as a feature detector and enhancing the 

nerves in accordance to their localized and dominant direction. A final binary image of 

nerves is created using a global threshold and skeletonization of the result. This work 

has resulted in the freely available ACCMetrics tool, widely accepted as a standard in 

IVCM image analysis6,9,10,1,11,12. 
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More advanced machine learning techniques have been added to the processing 

pipeline for a more sophisticated final arbitration between nerve fiber and background. 

Guimarães13 added a pixel-by-pixel classifier to hysteresis thresholded images to create 

a binarized nerve map. The features that fed the classifier were intensity based and 

included edge magnitudes. Structure enhancement used log-Gabor filters, and the 

method facilitates fast processing of large datasets. Annunziata14 developed a 

curvilinear structure model employing a set of filter banks to perform feature detection in 

the image. The parameters of the filters were hand tuned on the data set reported in the 

analysis. Additionally, contextual information is added via learned filters and a final 

classification then takes both of these results to yield an estimate at each pixel of nerve 

and background. The approach is reliant on both manual tuning and supervised learning 

for the feature designs, parameters and finally the thresholding. The results using cross-

validation are impressive. 

 

It can be seen that, in general, methods have evolved around being based on carefully 

designed filter banks acting as feature extractors with a final classification step. The 

best example of this is the ACCMetrics tool, which, being developed using human 

subject clinical data, offers a solution to the analysis of human corneal nerves acquired 

within a clinical environment. The methods, as implemented, should not, therefore, be 

expected to work “out of the box” on macaque data. As macaque models are used in a 

variety of diseases characterized by corneal sensory nerve fiber loss15,16,17,18, we have 

developed and characterized a novel approach for automated analysis of nerve fibers, 

leveraging more recent technologies in the world of computer vision and machine 

learning to process macaque IVCM images that are inherently of lower quality than 

human ICVM images. 

 

Recent advances and superior levels of performance seen in the use of deep 

convolutional neural networks (CNNs) has resulted in their widespread adoption for a 

variety of image recognition tasks19,20. The deep-learning paradigm is to learn both the 

feature extraction (filters) and classifier using CNNs with supervised learning. The 

CNNs are capable of building rich, layered (deep) representations of the data which are 

then classified through additional layers of representation and learned associations. The 

following reports on using deep learning-based architectures for the automated tracing 

of corneal nerve fibers in IVCM images of macaque corneas. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/758433doi: bioRxiv preprint 

https://doi.org/10.1101/758433


Materials and Methods 

Data 

All data reported on in this study are derived from archived IVCM images acquired from 

anesthetized macaques using the Heidelberg HRTIII outfitted with the Rostock corneal 

module. In all cases, each image covered a field of view of 400μm by 400μm over 384 

by 384 pixels. Using this information, the total lengths (mm) of the tracings can be 

converted to a measure of nerve length per image (mm/mm^2). This follows the 

convention of Dabbah9 in reporting the corneal nerve fiber length (CNFL), defined as 

the sum of the length of all nerves per image. For ground-truthing, sub-basal nerves 

were traced by experienced readers using the ImageJ plugin, NeuronJ21. Importantly, 

this is done at the pixel level, that is, the results of the labelling are images with each 

pixel labeled as belonging to either nerve or background. 

Methods 

Based on the manually labelled data, a supervised deep-learning approach to semantic 

segmentation was used to associate the input images to this ground truth. This is done 

by presenting the network the image data and labels to create the pixel-wise 

associations. Categorical cross-entropy was used as the loss function that is minimized 

using backpropagation. The output of a trained network is then a nerve probability map 

where pixels are in the range 0, indicating no nerve data, to 1, just nerve data. 

Pre-Processing and Post-Processing 

Prior to presentation to the network a pre-processing step is used to account for 

differing background illumination across the image (Figure 1). This effect is all the more 

pronounced in macaque images given the increased curvature of the cornea in the 

macaques resulting in a faster roll-off of image intensities toward the periphery of the 

image than seen in human clinical data. Background illumination is first estimated by 

opening the image using grayscale morphology and a large structuring element, here a 

circle with a radius of 4μm (10 pixels). It then subtracts that result from the original 

image to reduce the changing background intensity. This is known as top hat filtering, 

where in this case, the brighter structures smaller than the structuring element are 

preserved. 
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Figure 1 - The pre-processing effects a simply flat-fielding of the image by estimating the background overall intensity 
using morphological opening (middle image) and subtracts that from the input image (left). The resulting image, on 

the right, has more even contrast across the field of view. 

 

Post-processing is applied to the network’s output to threshold the probabilistic output, 

in the range 0 to 1, and return a final, binary result. Hysteresis thresholding with a lower 

value of 0.125 and an upper value of 0.275 are used for all cases in this study. The 

binary image is then skeletonized22 and components of less than 35 pixels are removed 

from consideration. 

The combination of illumination correction on the front end and hysteresis thresholding 

on the back end work well in this application where the confocal nature of the imaging 

system mean that nerve fibers can come in and out of view (focus); that is, one must be 

locally sensitive and adaptive to the imaging conditions. The overall processing pipeline 

is illustrated in Figure 2, with the free parameters of the method being as given above; 

in the case of the flat-fielding, it is simply the size of the morphological structuring 

elements used to create the background image, and for post-processing it is the 

thresholds and the minimum individual component size. While the training stage can 

take hours, the final analysis takes, on average, two seconds per image. 

 

 
Figure 2 - The input image (a) is pre-processed to compensate for variation in the background illumination (b). The 
segmentation, performed using deep learning, generates a probability image that assigns a score between 0 and 1 to 
each pixel (c) depicting a pixel-wise nerve classification. The final post-processing step is to binarize and skeletonize 

that result (d). 

Neural Network Architectures 

Three similar architectures for semantic segmentation were assessed, where candidate 

architectures were limited to networks that learned image to image mappings as a per-
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pixel classification. Common to the three architectures studied are encoding and 

decoding processing paths used to generate a final segmentation. Experiments involved 

altering the depth of the networks and also the optimization parameters, such as 

learning rate, decay and method as discussed in more detail below. 

 

The first architecture is the autoencoder network23, as previously reported on24. We also 

looked at the U-net25, which is basically an auto-encoder network with additional 

connections across the encoding and decoding paths. The third is an extension of this 

method that adds skip connections within the encoding and decoding paths. This latter 

approach does this using residual branches that, in alleviating the vanishing gradient 

problem, facilitates deeper networks to be trained26. Performance is gauged using the 

coefficient of determination (R2) to assess strength of correlation between manual and 

automated results, as well as Bland-Altman analysis. 

Deep Learning and Cross Validation 

The different deep learning architectures were evaluated using 5-fold cross validation 

(CV), a standard approach for splitting train and test steps. The aforementioned pre- 

and post-processing steps were fixed for each as these admit to minimal 

parameterization as previously reported27. And while these parameters could also be 

learned using the CV paradigm, they were simple enough to tune manually once and 

left alone for all experiments. 

 

In application of the CV, folds were chosen such that a single subject did not appear in 

both the training and test sets. For each fold, the training sets were additionally 

randomly split at each epoch into 90% training and 10% validation thereby allowing us 

to gauge how well the model’s learning was proceeding and when it should stop. This 

common practice is key in being able to decide on the optimizer used, batch sizes, as 

well as other hyper-parameters such as learning rate and learning decay as, in general, 

the loss value should decrease in a progressive way. 

 

Results for all subjects and folds were pooled and compared to results using other 

architectures and hyper-parameters. For each of these experiments, a final correlation 

score between lengths reported by the manual tracings and those from the automated 

approach allowed us to rank the performance of the different implementations to derive 

the best model for each of the architectures used. 

Cross Validation Data and Results 

This dataset comprised 58 IVCM images taken from 22 different macaques. To 

embellish the data, augmentation was used during the learning process. Summary 
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correlations between the manual tracing and the automated approaches are given in 

Table 2 below, where we have included the result using ACCMetrics, the clinical tool 

applied to macaque data. Overall, the best performing architecture was the U-Net. Its 

configuration is given in Figure 4, where the optimizer used is the ADAM28 over 650 

epochs; with the learning rate initialized at 10-3, dropping 5-4 every 10 epochs; a batch 

size of 8; and a drop-out rate of 0.2. 

 

 

Architecture 5-Fold CV R2 Number of trainable 
parameters 

Autoencoder 0.733 1,330,498 

U-Net 0.859 487,730 

U-Net with Residual 
Branches 

0.731 516,578 

ACC Metrics 0.718 N/A 

Table 1 - Cross validation performance for the macaque data (N=58 from 22 subjects). 

 
Figure 3 - Correlations for the best performing U-Net result to the manual result for the macaque data using 5-fold CV 
(left). The limits of agreement show no systematic differences as the manual count increases or decreases. The 
reproducibility coefficient (RPC), 1.96*SD, is 3.8mm/mm2 (mean difference is 0.3mm/mm2). 
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Figure 4 – The best performing U-Net architecture used in these analyses. For the given input image, it outputs two 
images giving the probability score, at each pixel, of belonging to one of the two classes. The final softmax layer 
ensures these are normalized and can thus be interpreted as probabilities. 

Comparison Across Readers 

The U-Net model that performed best in the macaque data CV analysis (Figure 3) was 

then trained on all folds; i.e., all 22 macaques in the data set. We then applied this 

model to a new population of 13 macaques that were being used in animal models of 

disease. In this instance, three readers were used to independently trace a total 46 

images taken from these 13 subject macaques. This allows us to first see how well the 

best performing model can generalize to truly unseen data, and also to understand in 

such an applied environment how well it performs with respect to expert readers. 

Example manual and automated segmentation results are given in Figure 5. 

 

In addition to the coefficient of correlation, intraclass correlation coefficients (ICCs) from 

two-way ANOVA analysis were derived to compare all readers and algorithm. The 

results are shown in Table 2 and all scores are good to excellent. Comparing average 

correlation scores for each reader relative to all other readers including the U-Net, yields 

R2s of: 0.79 (R1), 0.71 (R2), 0.81 (R3) and 0.80 (U-Net). By this metric, the automated 

method cannot be distinguished from the expert readers. This is confirmed by the ICC 

scores, where the score across all four observers is 0.84, which is exactly the same as 

the average U-Net ICC score across individual readers. It is worth noting here that the 
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manual tracings that were used to train the network on the previously acquired data 

were from reader 1. 

 

Reader R1 R2 R3 

R2 0.69 (0.84)   

R3 0.82 (0.87) 0.75 (0.80)  

U-Net 0.85 (0.85) 0.69 (0.75) 0.85 (0.92) 

Table 2 - R2 correlations and intraclass correlation coefficients across all readers (ICCs are given in parenthesis). The 
higher the value, the more the agreement, overall, between the two readers. The ICC score across all readers was 
0.84. 

 

 
Figure 5 - Example macaque data used during the inter-reader evaluation study. The images in the first column (a) 
are input images; the second column shows their manual tracings (b); the third column images are the probability 
images from the output of the neural network (c); and the final column gives those images thresholded and 
skeletonized (d). 

Comparison to the Average Reader 

A final comparison looked at the correlation of two different methods to the average 

reader. These are: 

● The U-Net model trained on 58 macaque images from 22 subjects applied to the 

new macaque data of 46 images (Figure 6). The LOA about the mean are given 

by the reproducibility coefficient (RPC) of 4mm/mm2. 

● ACCMetrics applied to the new macaque data of 46 images (Figure 7). The RPC 

here increases to 4.5mm/mm2. 
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For both cases, the LOA are narrow, and the correlations are strong, with the U-Net 

being at 0.85 and ACCMetrics at 0.70. 

 

 

 

 
Figure 6 - The above applies the best performing U-Net architecture using all of the macaque data (58 images) from 
the CV experiments. This is then applied to 46 images from 13 new subject macaques. This is our best performing 
method for the analysis of macaque data. The reproducibility coefficient (RPC), 1.96*SD, is 4mm/mm2 (mean 
difference is 1.5mm/mm2). 

 
Figure 7 - The above applies ACCMetrics to 43 of the 46 macaque images (three images did not process). Note that 
ACCMetrics was developed using clinical data, so the performance is expected to degrade using this data set. The 
reproducibility coefficient (RPC), 1.96*SD, is 4.5mm/mm2 (mean difference is -4.5mm/mm2). 
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Discussion 

There is wide-spread interest in using in vivo basal-nerve density assessment as a 

biomarker gauging corneal sensory nerve fiber loss. This is because of its relevance in 

a number of neuropathies and also systemic diseases. With such interest comes the 

need to automate the analysis, which, ahead of clinical adoption, also requires a 

validation of the accuracy of the approach. This study reports on a means of automating 

the analysis, here leveraging state of the art segmentation methods based on deep 

CNNs. It also presents an effort to validate the approach as applicable for use with 

macaque data. The method presented extends our original methods that were applied 

originally to ex vivo studies of immunstained corneal whole mounts27. Its extension to in 

vivo data and CCM imaging using deep learning was motivated by the research being 

done on animal models, but the work is clinically relevant if the reported performance 

extends to the use of clinically acquired data from human subjects. Furthermore, given 

a robust segmentation, derivative measures such as fractal density29 and tortuosity14 

may also be investigated as biomarkers. 

 

While comparison is made to ACCMetrics - a validated approach to clinical analysis of 

CCM images - it should here be emphasized that this software has not been developed 

for non-human analysis. This is an important difference as firstly the anatomy is different 

with a known increase in curvature of the cornea in the macaques and, in our review, 

macaque nerves may be generally thinner. We use ACCMetrics as a reference only, as 

it would be unfair to expect it to match the levels of performance reported in the 

literature when applied to macaque data. With that said, the performance is still good, 

has strong correlation to the manual readers, and fairly narrow limits of agreement in 

the Bland-Altman analysis. This serves, therefore, to speak to the overall robustness of 

the implementation. It also forewarns that, to apply our technique to clinical data, we will 

have to re-train the algorithm using just clinical data, as might be expected. 

 

To conclude, the method we report on shows significant utility, here in the case of 

challenging macaque data. In conjunction with simple pre- and post-processing, 

excellent correlation with manual readings was achieved. In a comparison across 

readers, we have shown that the algorithm is indistinguishable from manual tracings. 

Lastly it should be noted that, while IVCM is currently the modality of choice, translation 

to other modalities should only require retraining of the neural network. There is, for 

example, increasing interest in the use of optical coherence tomography (OCT), the 

imaging standard of care in ophthalmology, for corneal nerve imaging30. If such a 

scenario evolves, this would make clinical adoption all the more likely in the future given 

the proliferation of devices and the ease of acquisition.  
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