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Abstract

With the explosion in the number of methods designed to analyze bulk and single-cell RNA-
seq data, there is a growing need for approaches that assess and compare these methods. The
usual technique is to compare methods on data simulated according to some theoretical model.
However, as real data often exhibit violations from theoretical models, this can result in un-
substantiated claims of a method’s performance. Rather than generate data from a theoretical
model, in this paper we develop methods to add signal to real RNA-seq datasets. Since the
resulting simulated data are not generated from an unrealistic theoretical model, they exhibit
realistic (annoying) attributes of real data. This lets RNA-seq methods developers assess their
procedures in non-ideal (model-violating) scenarios. Our procedures may be applied to both
single-cell and bulk RNA-seq. We show that our simulation method results in more realis-
tic datasets and can alter the conclusions of a differential expression analysis study. We also
demonstrate our approach by comparing various factor analysis techniques on RNA-seq datasets.
Our tools are available in the seqgendiff R package on the Comprehensive R Archive Net-
work: https://cran.r-project.org/package=seqgendiff.

1 Introduction

Due to its higher signal-to-noise ratio, larger range of detection, and its ability to measure a priori
unknown genes, RNA-seq has surpassed microarrays as the technology of choice to measure gene
expression [Wang et al., 2009]. With the advent of single-cell RNA-seq technologies, researchers now
even have the ability to explore expression variation at the individual cell level [Hwang et al., 2018].
This presents exciting opportunities for researchers to characterize the expression heterogeneity
between and within organisms, and has brought about a plentiful flow of new datasets. In the wake
of these new data, an explosion of methods has been developed to analyze them. In Sections 2.2,
2.3, 2.4, and 2.5 we provide a large (yet terribly incomplete) list of methods designed to analyze
RNA-seq data.

The typical pipeline to evaluate a method is to first simulate data according to some theoretical
model, then compare it to competing methods on these simulated data and show it to be superior
in some fashion. This way of evaluation can be useful to see how a method works in ideal scenarios.
However, real data rarely live in ideal scenarios. Real data often exhibit unwanted variation beyond
that assumed by a model [Leek et al., 2010]. Theoretical distributional assumptions are also difficult
to verify, and are sometimes mired in controversy [Svensson, 2019].
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In this paper, we propose an alternative approach. Rather than generate data with a prespec-
ified signal according to some modeling assumptions, we take a real RNA-seq dataset and add a
prespecified signal to it. The main advantage of our approach is that any unwanted variation in
the real data is maintained in the simulated data, and this unwanted variation need not be pre-
specified by the researcher. The way we add signal does carry assumptions, but they are flexible
(Supplementary Section S1.2). And we believe that this way of simulation, compared to simulating
under a theoretical model, allows researchers to more realistically evaluate their methods.

This manuscript essentially generalizes the simulation techniques proposed in Gerard and Stephens
[2017], Gerard and Stephens [2018], and Lu [2018]. These previous papers use binomial thinning
(the approach used in this paper) in the case where there are just two groups that are differen-
tially expressed (hereafter, the “two-group model”). These papers did not develop methods for
more complicated design scenarios, they did not present user-friendly software implementations for
their simulation techniques, and they did not justify their simulation techniques as broadly. Here,
we allow for arbitrary experimental designs, we release software for users to implement their own
simulations, and we justify our techniques using very flexible assumptions.

There has been some other previous work on “data-based” simulations in expression analyses.
Datasets resulting from data-based simulations (sometimes called “plasmodes” [Mehta et al., 2004])
have been used in microarray studies before the development of RNA-seq [Nettleton et al., 2007,
Gadbury et al., 2008]. All RNA-seq data-based simulation methods have so far operated in the
two-group (or finite-group) model, without any ability to simulate data from arbitrary experimental
designs. Rocke et al. [2015] and Sun and Stephens [2018] randomly shuffled group indicators in the
two-group model, resulting in completely null data, and methods can be evaluated on their ability
to control for type I error when the data are all null. Rigaill et al. [2016], in addition to generating
null data by randomly shuffling group labels, incorporate multiple datasets to create some non-
null genes within their simulated datasets. Benidt and Nettleton [2015] use a count-swapping
algorithm in the two-group model to create differentially expressed genes when one already has
two treatment groups. Kvam et al. [2012], Reeb and Steibel [2013], and van de Wiel et al. [2014]
create non-null genes by multiplying counts for all individuals in a group by the fold-change in
mean expression. Robinson and Storey [2014] uses a binomial distribution approach to uniformly
decrease the sequencing depth of an entire dataset (but not to add differentially expressed genes).
Concerning non-data-based methods, Vieth et al. [2017] and Zappia et al. [2017] use real RNA-
seq data to estimate the parameters in a data-generating model before simulating data from the
theoretical model using these estimated parameter values. Our work is the first to extend data-
based RNA-seq simulation beyond the finite-group model.

Our paper is organized as follows. We first list the goals and assumptions of our simulation
scheme (Section 2.1) before motivating it with four applications (Sections 2.2, 2.3, 2.4, and 2.5)
and describing our process of simulating RNA-seq in detail (Section 2.6). We then demonstrate
how our approach can more accurately preserve structure in a real dataset compared to simulating
a dataset from a theoretical model (Section 3.1). We show that this can alter the conclusions of
a differential expression analysis simulation study (Section 3.2). We then apply our simulation
approach by comparing five factor analysis methods using the GTEx data [GTEx Consortium,
2017] (Section 3.3). We finish with a discussion and conclusions (Sections 4 and 5).

We adopt the following notation. We denote matrices by bold uppercase letters (A), vectors
by bold lowercase letters (a), and scalars by non-bold letters (a or A). Indices typically run from
1 to their uppercase version, e.g. a = 1, 2, . . . , A. Where there is no chance for confusion, we let
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non-bold versions of letters represent the scalar elements of matrices and vectors. So aij is the
(i, j)th element of A, while ai is the ith element of a. We let 1A denote the A-vector of 1’s and
1A×B the A×B matrix of 1’s. The matrix transpose is denoted by Aᵀ.

2 Methods

2.1 Goals and Assumptions

We will now describe the goals and assumptions of our simulation method, which relies on a
researcher having access to a real RNA-seq dataset. Suppose a researcher has a matrix Y ∈ RG×N
of RNA-seq read-counts for G genes and N individuals. Also suppose a researcher has access to a
design matrix X1 ∈ RN×P1 with P1 variables. We assume the RNA-seq counts, Y , are generated
according to the following model:

ygn ∼ Poisson(2θgn), and

Θ = µ1ᵀ
N +B1X

ᵀ
1 +AZᵀ + Ω,

(1)

where

• µ ∈ RG is a vector of intercept terms for the genes,
• B1 ∈ RG×P1 is the corresponding coefficient matrix of X1,
• Z ∈ RN×K is a matrix of unobserved surrogate variables,
• A ∈ RG×K is the corresponding coefficient matrix of Z, and
• Ω ∈ RG×N represents all other unwanted variation not accommodated by the other terms in

the model,

where µ, B1, Z, A, and Ω are all unknown. Given the above data-generating process, suppose a
user provides the following (known) elements:

• X2 ∈ RN×P2 , a design matrix with fixed-rows (see note 3 below),
• B2 ∈ RG×P2 , the coefficient matrix corresponding to X2,
• X3 ∈ RN×P3 , a design matrix with rows that can be permuted (see note 3 below), and
• B3 ∈ RG×P3 , the coefficient matrix corresponding to X3.

Our goal is to generate a matrix Ỹ ∈ RG×N from Y such that

ỹgn ∼ Poisson(2θ̃gn), and

Θ̃ = µ̃1ᵀ
N +B1X

ᵀ
1 +B2X

ᵀ
2 +B3X

ᵀ
3Π

ᵀ +AZᵀ + Ω,
(2)

where

• Π ∈ RN×N is a random permutation matrix, whose distribution controls the level of associ-
ation between the columns of ΠX3 and the columns of Z, and

• µ̃ is a new vector of intercept terms for the genes.

We will provide the details on how to generate Ỹ from Y in Section 2.6. But we would like to
first provide some notes below, and then discuss the applications of being able to generate (2) from
(1).
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Note 1: For simplicity we use the Poisson distribution in the main text (equations (1) and (2)).
However, our approach is valid under much more general assumptions. In particular, we note
that if the counts were generated according to a negative binomial distribution, a zero-inflated
negative binomial distribution, or even a mixture of binomials and negative binomials, then
our simulation scheme still preserves the structure of the data (Supplementary Section S1.2).
However, even when our general modeling assumptions are violated, one can show (via the
law of total expectation) that if log2(E[Y ]) = Θ, then log2(E[Ỹ ]) = Θ̃, where we are taking
element-wise logarithms of E[Y ] and E[Ỹ ]. Thus, our procedure will produce the correct mean
log2-fold change in the new dataset, but the resulting mean/variance relationship might not
be as assumed.

Note 2: The Ω term in (1) and (2) represents the realistic and annoying features of the data.
In ideal situations, Ω = 0G×N . However, most datasets likely include non-zero Ω, and so
assessing a method’s ability to be robust in the presence of Ω, without the researcher having
to prespecify Ω, is the key strength of our simulation approach.

Note 3: As described below, we include both X2 and X3 in (2) to control different aspects of a
simulation study. One may control the level of association between the columns of X1 and
X2 as these are both observed and fixed by the user. The inclusion of X3 and Π allows us
to try to control the level of association between ΠX3 and Z.

Before we discuss obtaining (2) from (1), we point out four potential applications of this simulation
approach: (i) evaluating differential expression analyses (Section 2.2), (ii) evaluating confounder
adjustment approaches (Section 2.3), (iii) evaluating the effects of library size heterogeneity on dif-
ferential expression analyses (Section 2.4), and (iv) evaluating factor analysis methods (Section 2.5).

2.2 Application: Evaluating Differential Expression Analysis

One of the more common applications of RNA-seq data is estimating and testing for differences
in gene expression between two groups. Many packages and techniques exist to perform this task
[Robinson and Smyth, 2007b, Hardcastle and Kelly, 2010, Van De Wiel et al., 2012, Kharchenko
et al., 2014, Law et al., 2014, Love et al., 2014, Finak et al., 2015, Guo et al., 2015, Nabavi et al.,
2015, Delmans and Hemberg, 2016, Korthauer et al., 2016, Costa-Silva et al., 2017, Qiu et al., 2017,
Miao et al., 2018, Risso et al., 2018, Van den Berge et al., 2018, Wang and Nabavi, 2018, Wang
et al., 2019, among others], and so developing approaches and software to compare these different
software packages would be of great utility to the scientific community. Generating data from the
two-group model is a special case of (1) and (2), where

Θ = µ1ᵀ
N + Ω, (3)

Θ̃ = µ̃1ᵀ
N + bxᵀΠᵀ + Ω, (4)

and Πx ∈ RN contains a single indicator variable, indicating membership to one of two groups.
Researchers may specify b and x and evaluate a method’s ability to (i) estimate b and (ii) detect
which genes have non-zero bg.

In many settings, a researcher may want to specify the distribution of the bg’s. Our software
implementation allows for this. In addition, following Stephens [2016], we allow researchers to
specify the distribution of bg/s

α
g , where sg is the sample standard deviation of the gth row of

log2(Y + 0.5), and α is a user-specified constant. Allowing for α = 0 corresponds to the scenario
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of specifying the distribution of the effects, while allowing for α = 1 corresponds to specifying the
p-value prior of Wakefield [2009].

Though the two-group model is perhaps the most common scenario in differential expression
analysis, our method also allows for arbitrary design matrices. Such design matrices have applica-
tions in many types of expression experiments [Smyth, 2004, McCarthy et al., 2012, Van De Wiel
et al., 2012, Tang et al., 2015], and so the ability to simulate arbitrary designs gives researchers
another tool to evaluate their methods in more complicated scenarios.

2.3 Application: Evaluating Confounder Adjustment

Unobserved confounding / batch effects / surrogate variables / unwanted variation has been rec-
ognized as a serious impediment to scientific studies in the modern “omics” era [Leek et al., 2010].
As such, there is a large literature on accounting for unwanted variation, particularly in RNA-seq
studies [Leek and Storey, 2007, Carvalho et al., 2008, Kang et al., 2008a,b, Leek and Storey, 2008,
Stegle et al., 2008, Friguet et al., 2009, Kang et al., 2010, Listgarten et al., 2010, Stegle et al., 2010,
Wu and Aryee, 2010, Fusi et al., 2012, Gagnon-Bartsch and Speed, 2012, Stegle et al., 2012, Sun
et al., 2012, Gagnon-Bartsch et al., 2013, Mostafavi et al., 2013, Yang et al., 2013, Leek, 2014, Risso
et al., 2014, Perry and Pillai, 2015, Chen and Zhou, 2017, Gerard and Stephens, 2017, Lee et al.,
2017, Wang et al., 2017, Caye et al., 2018, Gerard and Stephens, 2018, Hung, 2018, McKennan and
Nicolae, 2018a,b, among others]. The glut of available methods indicates a need to realistically
compare these methods.

Typically, the form and strength of any unobserved confounding is not known. So one way to
assess different confounder adjustment methods would be to assume model (1) and add signal to
the data resulting in the following submodel of (2):

Θ̃ = µ̃1ᵀ
N +B1X

ᵀ
1 +B3X

ᵀ
3Π

ᵀ +AZᵀ + Ω. (5)

A researcher would then explore how close a method’s estimate of B3 is to the truth (assuming the
researcher may use both X1 and ΠX3 to obtain this estimate). The researcher can control the
correlation between the columns of ΠX3 and the columns of Z by specifying the distribution of Π
(as described in Section 2.6). Intuitively, the stronger the correlation between the columns of X3

and the columns of Z, the more difficult the confounder adjustment problem. This approach was
used in the two-group model in Gerard and Stephens [2017] and [2018], but not for general design
matrices.

2.4 Application: Evaluating Effects of Library Size Heterogeneity

“Library size” corresponds to the number of reads an individual sample contains. Adjusting for
library size is surprisingly subtle and difficult, and thus many techniques have been proposed to
perform this adjustment [Anders and Huber, 2010, Bullard et al., 2010, Robinson and Oshlack, 2010,
Langmead et al., 2010, Dillies et al., 2012]. The most commonly-used techniques can be viewed
as a form of confounder adjustment [Gerard and Stephens, 2017]. For most methods, this form of
confounder adjustment corresponds to setting one column of A in (1) to be 1G and estimating the
corresponding column in Z using some robust method that assumes that the majority of genes are
non-differentially expressed.

One way to evaluate the performance of a library size adjustment procedure is to see how effect
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size estimates change when the samples are thinned, changing the library size. First, assume we
are operating in the following submodel of (1):

Θ = µ1ᵀ
N +B1X

ᵀ
1 + 1Gz

ᵀ + Ω. (6)

A researcher may specify (i) additional signal and (ii) a further amount of thinning on each sample
by generating the following submodel of (2):

Θ̃ = µ̃1ᵀ
N +B1X

ᵀ
1 +B3X

ᵀ
3Π

ᵀ + 1Gx
ᵀ
2 + 1Gx

ᵀ
3Π

ᵀ + 1Gz
ᵀ + Ω (7)

= µ̃1ᵀ
N +B1X

ᵀ
1 +B3X

ᵀ
3Π

ᵀ + 1G(z + x2 + Πx3)
ᵀ + Ω. (8)

To evaluate the effectiveness of a library size adjustment procedure, researchers may observe the
effects on the estimates of B3 under various amounts of library thinning (controlled by altering x2

and x3).

2.5 Application: Evaluating Factor Analysis

Factor analysis is a fundamental technique in every statistician’s arsenal. Since its creation by
Spearman [Spearman, 1904], literally hundreds of factor analysis / matrix decomposition / matrix
factorization approaches have been developed, and new approaches are created each year to account
for new features of new data [Hotelling, 1933, Eckart and Young, 1936, Comon, 1994, Tipping and
Bishop, 1999, Lee and Seung, 1999, Hyvärinen and Oja, 2000, West, 2003, Zou et al., 2006, Hoff,
2007, Salakhutdinov and Mnih, 2008, Ghosh and Dunson, 2009, Witten et al., 2009, Engelhardt and
Stephens, 2010, Stegle et al., 2010, Mayrink and Lucas, 2013, Yang et al., 2014, Josse and Wager,
2016, Leung and Drton, 2016, Wang and Stephens, 2018, to name a very few]. For RNA-seq,
factor analysis methods have found applications in accounting for unwanted variation [Leek, 2014,
Risso et al., 2014], estimating cell-cycle state [Buettner et al., 2015, Scialdone et al., 2015], and
general quality assessments [Love et al., 2014]. Thus, techniques to realistically compare various
factor analysis methods would be of great use to the scientific community. We demonstrate in this
section how our simulation approaches can be used to evaluate factor analysis methods applied to
RNA-seq.

We suppose that the RNA-seq read-counts follow the following submodel of (1):

Θ = µ1ᵀ
N +AZᵀ + Ω. (9)

We then suppose that the researcher generates a modified dataset that follows the following sub-
model of (2):

Θ̃ = µ̃1ᵀ
N +B3X

ᵀ
3Π

ᵀ +AZᵀ + Ω. (10)

We assume that a researcher applies a factor analysis to (10) to estimate a low-rank matrix with
K + P3 factors. That is, the researcher fits the following model,

log2(E[Ỹ ]) = µ1ᵀ
N +LF ᵀ, (11)

with factor matrix F ∈ RN×(K+P3) and loading matrix L ∈ RG×(K+P3), obtaining estimates L̂
and F̂ . These estimates are obtained without using ΠX3. A researcher may evaluate their factor
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analysis by

1. Assessing if any of the columns of F̂ are close to the columns of ΠX3,
2. Assessing if any of the columns of L̂ are close to the columns of B3, and
3. Assessing if the column-space of ΠX3 is close to the column-space of F̂ , which would be an

important consideration in downstream regression analyses [Leek and Storey, 2007, e.g.].

In a factor analysis, the factors and loadings are only identifiable after imposing assumptions on
their structure (such as sparsity or orthogonality). Thus, researchers may vary the structure of
B3 and ΠX3 and observe the robustness of their factor analysis methods to violations of their
structural assumptions.

2.6 Generating Modified RNA-seq Data

We will now discuss the approach of obtaining (2) from (1). We will use the following well-known
fact of the Poisson distribution, which may be found in many elementary probability texts:

Lemma 1. If y ∼ Poisson(a) and ỹ|y ∼ Bin(y, b), then ỹ ∼ Poisson(ab).

In the case when Π is drawn uniformly from the space of permutation matrices, we have the
simplified procedure described in Procedure 1. The validity of Procedure 1 follows directly from the
modeling assumptions in (1) and Lemma 1. Since ygn ∼ Poisson(2θgn) and ỹgn|ygn ∼ Bin(ygn, 2

qgn),
we have that ỹgn ∼ Poisson(2θgn+qgn). If we set θ̃gn = θgn + qgn, then we have

Θ̃ = Θ +Q (12)

= (µ1ᵀ
N +B1X

ᵀ
1 +AZᵀ + Ω) + (B2X

ᵀ
2 +B3X

ᵀ
3Π

ᵀ − e1ᵀ
N ) (13)

= (µ− e)1ᵀ
N +B1X

ᵀ
1 +B2X

ᵀ
2 +B3X

ᵀ
3Π

ᵀ +AZᵀ + Ω (14)

= µ̃1ᵀ
N +B1X

ᵀ
1 +B2X

ᵀ
2 +B3X

ᵀ
3Π

ᵀ +AZᵀ + Ω. (15)

Equation (13) follows from the definition of Θ from (1) and the definition of Q from Step 4 of
Procedure 1. Equation (15) follows by setting µ̃ to be µ− e.

Procedure 1 Basic procedure to generate (2) from (1) when the permuted design matrix (ΠX3)
is independent of the surrogate variables.

Input: Y , X2, X3, B2, B3.
1: Draw Π uniformly from the space of N ×N permutation matrices.
2: Let Λ = B2X

ᵀ
2 +B3X

ᵀ
3Π

ᵀ.
3: Let e ∈ RG contain the row-wise maximums of Λ. Thus, eg = max(λg1, . . . , λgN ).
4: Let Q = Λ− e1ᵀ

N .
5: Draw ỹgn|ygn ∼ Bin(ygn, 2

qgn).
Output: Ỹ , Π.

There are two main reasons to subtract the row-wise maximum from each row in Step 4 of
Procedure 1: (i) this ensures that the binomial probabilities (2qgn) are always between 0 and 1,
and (ii) this allows for minimal count-thinning while still obtaining our goal of (2). That is, the
binomial probabilities will all be between 0 and 1, but they will be as close to 1 as possible while
still yielding (2), thereby reducing the amount of discarded counts.
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The main disadvantage to Procedure 1 is that the surrogate variables (Z) will be independent
of the user-specified covariates (ΠX3). To allow the user to control the level of association between
the surrogate variables and the user-provided variables, we propose using Procedure 2 to choose Π,
rather than drawing Π uniformly from the space of permutation matrices. In brief, the user specifies
a “target correlation” matrix, R ∈ RP3×K , where rik is what the user desires to be the correlation
between the ith column of ΠX3 and the kth column of Z. We then estimate the surrogate
variables either using a factor analysis (such as the truncated singular value decomposition) or
surrogate variable analysis [Leek and Storey, 2007, 2008]. We then draw a new random matrix
U ∈ RN×P3 from a conditional normal distribution assuming that each row of U and Z is jointly
normal with covariance matrix (16), thus the correlation between the columns of U and Z will be
approximately R. We then match the rows of X3 with the rows of U using the pair-wise matching
algorithm of Hansen and Klopfer [2006], though our software provides other options to match pairs
via either the Gale-Shapley algorithm [Gale and Shapley, 1962] or the Hungarian algorithm [Kuhn,
1955]. This ensures that ΠX3 is as close to U as possible. We denote the permutation matrix that
matches the rows of X3 with the rows of U by Π.

Procedure 2 Procedure to draw a permutation matrix such that the surrogate variables are
correlated with the permuted design matrix.

Input: Y , X1, X3, R, and K.
1: Let A ∈ RP3×P3 be the empirical correlation matrix between the columns of X3.
2: Adjust R by Procedure 3.
3: Estimate Z ∈ RG×K in one of two ways:

i. By surrogate variable analysis [Leek and Storey, 2007, 2008, Leek, 2014], using (1N ,X1) as
the design matrix and 1N as the null design matrix.

ii. By a factor analysis on the residuals of a regression of log2(Y + 0.5) on (1N ,X1).
Call the centered and scaled estimates of the surrogate variables (so that the columns each have
mean 0 and variance 1) Ẑ.

4: Draw the rows of U ∈ RN×P3 from a conditional normal distribution, assuming the nth rows
of U and Ẑ are jointly N(0P3+K ,Σ), where

Σ =

(
A R
Rᵀ IK

)
(16)

5: Match the rows of the centered and scaled matrix X3 with the rows of the centered and scaled
matrix U by pair-matching [Hansen and Klopfer, 2006] using Euclidean distance. Call the
resulting permutation matrix Π, such that row i of ΠX3 matches with row i of U .

Output: Π.

The resulting covariance matrix (16) used in Procedure 2 is not guaranteed to be positive semi-
definite. Rather than demand the user specify an appropriate target correlation matrix (which
might be in general difficult for the typical user), we modify the target correlation matrix using Pro-
cedure 3 to iteratively shrink R until the Schur complement condition for positive semi-definiteness
[Zhang, 2006] is satisfied.

Procedure 2 is a compromise between letting the user specify the full design matrix X3 and
letting the user specify the correlation between the columns of ΠX3 and Z. A user might want to
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Procedure 3 Procedure to scale the target correlation matrix so that the overall correlation matrix
is positive semi-definite.

Input: A, R, and ε ∈ (0, 1].
1: Let ` be the smallest eigenvalue of A−RRᵀ.
2: Set τ = 1.
3: while ` < 0 do
4: τ ← max(τ − ε, 0).
5: Let ` be the smallest eigenvalue of A− τRRᵀ.
6: end while

Output:
√
τR.

specify the correlation between ΠX3 and Z to evaluate factor analyses in the presence of correlated
factors (Section 2.5), or to evaluate how well confounder adjustment approaches cope in the presence
of correlated confounders (Section 2.3). In the simple case whenX3 and Ẑ are drawn from a normal
distribution, Procedure 2 will permute the rows of X3 so that ΠX3 and Ẑ consistently has the
correct correlation structure (Theorem 1). However, for general design matrices this will not be the
case. Procedure 4 (implemented in our software) provides a Monte Carlo algorithm to estimate the
true correlation given the target correlation. Basically, the estimator approximates the expected
value (conditional on Ẑ) of the Pearson correlations between the columns of ΠX3 and the columns
of Ẑ. We justify this in an intuitive way by the law of total expectation. Consider x a single
column of ΠX3 with empirical mean and standard deviation of x̄ and sx. Similarly consider z a
single column of Ẑ with empirical mean and standard deviation of z̄ and sz. Then

cor(xn, zn) ≈ E

[
N∑
n=1

(xn − x̄)(zn − z̄)
sxsz

]
= E

[
E

[
N∑
n=1

(xn − x̄)(zn − z̄)
sxsz

|z

]]
. (17)

The estimator in Procedure 4 is a Monte Carlo approximation to the internal expectation in (17).
We explore this correlation estimator through simulation in Supplementary Section S2.1.

Procedure 4 Monte Carlo procedure to estimate the true correlation matrix given the target
correlation matrix.
Input: Z, X3, Σ, and B ∈ N.

1: for b in 1, 2, . . . , B do
2: Draw U as in Step 4 of Procedure 2.
3: Derive Π as in Step 5 of Procedure 2.
4: Set Rb ∈ RP3×K to be the Pearson correlation matrix between the columns of ΠX3 and Z.
5: end for
6: Set R̂ = (R1 + · · ·+RB)/B.

Output: R̂.
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3 Results

3.1 Features of Real Data

Real data exhibit characteristics that are difficult to capture by simulations. In this section, we
demonstrate how our binomial thinning approach maintains these features, while simulating from
a theoretical model results in unrealistic simulated RNA-seq data.

We took the GTEx muscle data [GTEx Consortium, 2017], and filtered out all genes with a
mean read-depth of less than 10 reads. This resulted in a dataset containing 18,204 genes and 564
individuals. We then randomly assigned half of the individuals to one group and half to the other
group, and used our seqgendiff software to add a N(0, 0.82) log2-fold-change between groups to
25% of the genes. We similarly used the powsimR software [Vieth et al., 2017] to generate data
according to a theoretical negative binomial model (with parameters estimated from the GTEx
muscle data), again by adding a N(0, 0.82) log2-fold-change between the two groups in 25% of the
genes. The results below are from one simulation, but the results are robust and consistent across
many datasets. The reader is encouraged to change the random seed in our code to explore the
robustness of our conclusions.

0
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Index

S
in
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Dataset

GTEx

powersimR

seqgendiff

Figure 1: Scree plots for the GTEx dataset (black), powsimR dataset (orange), and the seqgendiff
dataset (blue). The singular values for the GTEx and seqgendiff datasets are almost identical.

The structure of the powsimR dataset is very different from that observed in the seqgendiff and
GTEx datasets. There seems to be more zeros in the powsimR dataset than in the seqgendiff and
GTEx datasets (Supplementary Figure S2), even though we simulated the powsimR dataset under
the negative binomial setting and not the zero-inflated negative binomial setting. Scree plots of the
three datasets show that there are a lot more small factors influencing variation in the seqgendiff

and GTEx datasets than in the powsimR dataset (Figure 1). The main source of variation in
the powsimR dataset comes from the group membership, while other (unwanted) effects dominate
the variation in the seqgendiff dataset (Figure 2). It is only the fourth principle component in
the seqgendiff dataset that seems to capture the group membership (Supplementary Figure S3).
Though this unwanted variation exists, with such a large sample size voom-limma can accurately
estimate the effects (Supplementary Figure S4). The voom plots (visualizing the mean-variance
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Figure 2: First and second principle components for the GTEx dataset (left), the powsimR dataset
(center), and the seqgendiff dataset (right).

trend [Law et al., 2014]) are about the same in the GTEx and seqgendiff data, but the distribution
of the square-root standard deviations appears more symmetric in the powsimR dataset (Figure 3).
There is also an uncharacteristic hook in the mean-variance trend in the powsimR dataset for low-
counts. These visualizations indicate that seqgendiff can generate more realistic datasets for
RNA-seq simulation.

3.2 Effects on Differential Expression Analysis Simulations

The differences in real versus simulated data (as discussed in Section 3.1) have real implications
when evaluating methods in simulation studies. To demonstrate this, we used the GTEx muscle
data to simulate RNA-seq data from the two-group model as in Section 3.1. We did this for N = 10
individuals, G = 10,000 genes, setting 90% of the genes to be null, and generating the log2-fold
change from a N(0, 0.82) distribution for the non-null genes. We simulated 500 datasets this way
using both seqgendiff and powsimR. Each replication, we applied DESeq2 [Love et al., 2014],
edgeR [Robinson et al., 2009], and voom-limma [Law et al., 2014] to the simulated datasets. We
evaluated the methods based on (i) false discovery proportion when using Benjamini-Hochberg
[Benjamini and Hochberg, 1995] to control false discovery rate at the 0.05 level, (ii) power to detect
non-null effects based on a 0.05 false discovery rate control threshold, and (iii) mean squared error
of the estimates.

We wanted to make sure that the datasets generated from powsimR and seqgendiff were
comparable, so we measured the proportion of variance explained (PVE) by the group membership
for each gene, which we define as

V (Πx3b3g)/V (log2(ỹg + 0.5)), (18)

where b3g is log2-fold change for gene g, ỹg ∈ RN is the gth row of Ỹ , and V (·) returns the
empirical variance of a vector. When we looked at the median (over the non-null genes) PVE
across the datasets, the seqgendiff datasets and powsimR datasets had the same median PVE on
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Figure 3: Voom plots [Law et al., 2014] visualizing the mean-variance trend in RNA-seq datasets.
The voom plots are visually similar for the GTEx and seqgendiff datasets. The powsimR dataset
has an uncharacteristic hook near the low counts in its voom plot.
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average, though there was higher variability in the median PVE among the seqgendiff datasets
(Supplementary Figure S5).
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Figure 4: Boxplots of false discovery proportion (FDP) (y-axis) for various differential expres-
sion analysis methods (x-axis) when applied on different simulated datasets (color). Benjamini-
Hochberg was used to control for false discovery rate at the 0.05 level (horizontal dashed line).

Boxplots of the false discovery proportion for each method in each dataset can be found in
Figure 4. Both the powsimR and seqgendiff datasets indicate that only voom-limma can control
false discovery rate adequately at the nominal level. However, the results based on the seqgendiff

datasets indicate that there is a lot more variability in false discovery proportion than indicated
by the powsimR datasets. In particular, it does not seem uncommon for seqgendiff to generate
datasets with false discovery proportions well above the nominal rate. If a researcher were using
only the theoretical datasets generated by powsimR, they would be overly confident in the methods’
abilities to control false discovery proportion. Supplementary Figure S6 also indicates that methods
generally have much more variable power between the seqgendiff datasets than between the
powsimR datasets. Interestingly, the seqgendiff datasets indicate that methods tend to have
smaller mean squared error than indicated by the powsimR datasets (Supplementary Figure S7).

3.3 Evaluating Factor Analyses

As we hope we have made clear, there are many approaches to differential expression analysis
(Section 2.2), confounder adjustment (Section 2.3), library size adjustment (Section 2.4), and factor
analysis (Section 2.5). We believe it to be beyond the scope of this work to exhaustively evaluate all
of these methods — especially since new methods are being developed each year. Rather, we hope
our simulation procedures will be used by the research community to more realistically evaluate
and benchmark their approaches to RNA-seq data analysis.

However, as a final highlight to the utility of our simulation approaches, we demonstrate these
simulation techniques in one application: evaluating factor analysis methods in RNA-seq (Sec-
tion 2.5). We have chosen to highlight this particular application because it uses the more general
simulation techniques beyond the two-group model, which were first demonstrated in [Gerard and
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Stephens, 2017].
We chose to focus on the following methods based on (i) previous use in expression studies,

(ii) software availability, (iii) popularity, and (iv) ease of use.

1. Principle component analysis (PCA) [Hotelling, 1933],
2. Sparse singular value decomposition (SSVD) [Yang et al., 2014],
3. Independent component analysis (ICA) [Hyvärinen and Oja, 2000],
4. Factors and loadings by adaptive shrinkage (flash), an empirical Bayes matrix factorization

approach proposed in [Wang and Stephens, 2018], and
5. Probabilistic estimation of expression residuals (PEER) [Stegle et al., 2010], a Bayesian fac-

tor analysis used in the popular PEER software to adjust for hidden confounders in gene
expression studies.

All factor analysis methods were applied to the log2-counts after adding half a pseudo-count. To
simulate RNA-seq data, we took the muscle GTEx data [GTEx Consortium, 2017] and removed all
genes with less than an average of 10 reads per sample. Each replicate, we added a rank-1 term.
That is we assumed model (9) for the muscle GTEx data, then generated RNA-seq data such that

Θ̃ = µ1ᵀ
N + b3x

ᵀ
3Π

ᵀ +AZᵀ + Ω, (19)

where we simulated the components of x3 and the non-zero components of b3 from independent
normal distributions. We varied the following parameters of the simulation study:

1. The sample size: N ∈ {10, 20, 40}
2. The signal strength: the standard deviation of the loadings (the b3g’s) was set to one of
{0.4, 0.8}, with higher standard deviations corresponding to higher signal. These values were
chosen to have the median PVE vary greatly between the two settings (Supplementary Figure
S8),

3. The sparsity: the proportion of loadings (the b3g’s) that are 0 was set to one of {0, 0.9}, and
4. The target correlations of the added factor with the first unobserved factor: r ∈ {0, 0.5}.

This resulted in 24 unique simulation parameter settings. We also used 1000 genes each replication.
For each setting, we ran 100 replications of generating data from model (19), and fitting the factors
with the five methods under study assuming model (11) after we estimated the number of hidden
factors using parallel analysis [Buja and Eyuboglu, 1992].

We chose three metrics to evaluate the performance of the different factor analysis methods:

1. The minimum mean squared error between Πx3 and the columns of F̂ . To account for scale
and sign unidentifiability, the estimated factors and the added factor were all scaled to have an
`2-norm of 1 prior to calculating the mean squared error. This measure is meant to evaluate
if any of the estimated factors corresponds to the added factor.

2. The minimum mean squared error between b3 and the columns of L̂. We again accounted
for scale and sign unidentifiability by calculating the mean squared error after scaling the
estimated and true loadings to have an `2-norm of 1.

3. The angle between Πx3 and its projection onto the column space of F̂ . This measure is
meant to evaluate if the estimated factor matrix includes Πx3 among its unidentified factors.

The results are presented in Supplementary Figures S9-S14. Based on these figures, we have the
following conclusions:
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1. PEER performs very poorly when either the sparsity is high or when there are few samples.
It also performs less well when the factors are correlated. A possible explanation is that
PEER assumes a normal distribution on the factors and loadings, which is violated in the
high-sparsity regime and is observed in the low-sparsity regime. Though, this does not explain
its poor performance in small sample size settings.

2. SSVD estimates the loadings very poorly in low-sparsity regimes. This is to be as expected
as SSVD assumes sparsity on the loadings. Surprisingly, though, it outperforms PCA in high
sparsity regimes only when both the sample size and signal are also large.

3. ICA performs very poorly in low sparsity regimes. This is to be as expected as the normal
distributions placed on the factors and loadings are a worst-case scenario for ICA. However,
there is no scenario where ICA performs significantly better than PCA.

4. flash performs adequately in all scenarios and performs best in high-sparsity and high-signal
regimes.

5. PCA performs adequately in most scenarios, and is only truly outperformed in high sparsity
high signal regimes.

Based on these initial explorations, we would recommend users not use PEER, SSVD, or ICA and
instead try either PCA or flash.

4 Discussion

We have focused on a log-linear model because of the large number of applications this generates
(Sections 2.2, 2.3, 2.4, and 2.5). This linearity (on the log-link scale) is represented by the structure
of the Q matrix in Procedure 1. However, it is possible to replace Q by any arbitrary G×N matrix
that has non-positive entries. This might be useful for simulations that study adjusting for non-
linear effects, such as bias due to GC content [Risso et al., 2011], as it allows you to introduce
non-linear effects into an RNA-seq dataset. However, these non-linear effects would still be present
only on the log-scale.

Our simulation procedures may be applicable beyond evaluating competing methods. Vieth
et al. [2017] used their simulation software to estimate power given the sample size in a differential
expression analysis, and thus to develop sample size suggestions. Our simulation methods may be
used similarly. Given a large RNA-seq dataset (such as the GTEx data used in this paper), one
can repeatedly down-sample the number of individuals in the dataset and explore how sample size
affects the power of a differential expression analysis.

Similarly, Robinson and Storey [2014] already demonstrated that binomial thinning may be
used for sequencing depth suggestions. That is, a researcher may repeatedly thin the libraries
of the samples in an large RNA-seq dataset and explore the effects on power, thereby providing
sequencing depth suggestions. Unlike Robinson and Storey [2014], which does this subsampling
uniformly over all counts, we allow researchers to explore the effects of heterogeneous subsampling
(as in Section 2.4). This might be useful if, say, researchers have more individuals in one group than
in another and so wish to explore if they can sequence the larger group to a lower depth without
affecting power.

In this manuscript, we have discussed our simulation techniques in the context of RNA-seq.
However, our techniques would also be applicable to the comparative analysis of metagenomics
methods [Jonsson et al., 2016]. Instead of quantifying gene expression, metagenomics quantifies
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gene abundances within metagenomes. Our simulation techniques could be applied in this context
by taking a real metagenomics dataset and adding signal to it by binomial thinning.

5 Conclusions

We developed a procedure to add a known amount of signal to any real RNA-seq dataset. We only
assume that this signal comes in the form of a generalized linear model with a log-link function from
a very flexible distribution. We demonstrated how real data contain features that are not captured
by simulated data, and that this can cause important differences in the results of a simulation study.
We highlighted our simulation approach by comparing a few popular factor analysis methods. We
found that PCA and flash had the most robust performances across a wide range of simulation
settings.

Availability of data and materials

The simulation methods discussed in this paper are implemented in the seqgendiff R package,
available on the Comprehensive R Archive Network: https://cran.r-project.org/package=

seqgendiff. All code to reproduce the simulation and analysis results is available on GitHub: https:
//github.com/dcgerard/reproduce_fasims.

The datasets analyzed during the current study are available in the GTEx portal: https:

//gtexportal.org.
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S1 Theoretical Considerations

S1.1 Target Correlation

Theorem 1. Let (ui, zi) be iid jointly standard normal with correlation ρ for i = 1, 2, . . . , n. Let
wj be iid standard normal for j = 1, 2, . . . , n. Suppose we match the wj’s onto the ui’s by order
statistics, resulting in (wi, ui) pairs such that the rank of wi is the same as the rank of ui. Then
cor(wi, zi) →

n→∞
ρ.

Proof. For a fixed proportion p, we note that u(dnpe) and w(dnpe) converge in probability to the
theoretical p-quantile of the standard normal distribution [Arnold et al., 1992, e.g.]. Since the
order statistics converge to the same values, and we match by order statistics, this implies that

ui − wi
P→ 0. Thus, by Slutsky’s theorem, we have that uizi − wizi

P→ 0.
We note that |uizi − wizi| ≤ |uizi| + |wizi|, by the triangle inequality. The term on the right

has finite expectation as (using Cauchy-Schwarz)

E[|uizi|+ |wizi|] ≤ E[u2i ]
1/2 E[z2i ]1/2 + E[w2

i ]
1/2 E[z2i ]1/2 = 2. (20)

Thus, by the Lebesgue dominated convergence theorem, we have E[|uizi − wizi|] → 0. Since
−|uizi−wizi| ≤ uizi−wizi ≤ |uizi−wizi|, this implies that E[uizi]−E[wizi]→ 0, and the theorem
is proved.

To place the results of Theorem 1 in context of the matching in Procedure 2, note that the ui’s
are the elements of U , the zi’s are the elements of Ẑ, the wi’s are the elements of X3, ρ is the target
correlation between the one column in X3 and the one column in Ẑ, and Π is the permutation
matrix that results in the matching of the wi’s and the ui’s.

The results of Theorem 1 can be generalized to non-standard normal distributions by appealing
to the weak law of large numbers and Slutsky’s theorem.

S1.2 Generalizing the Poisson Assumption

For simplicity, we stated a Poisson distribution as the modeling assumption in (1). However, our
methods are equally valid under more general conditions. We begin by showing how our methods are
valid when using the negative binomial distribution, which is perhaps the most common distribution
used to analyze RNA-seq counts [Robinson and Smyth, 2007a,b, Love et al., 2014]. To see this, we
prove the following simple lemma which, though less well-known than Lemma 1, can still be found
in some elementary texts (or at least a version of the following lemma) [exercise 4.32 of Casella and
Berger, 2002, e.g.].

Lemma 2. Suppose y ∼ NB(µ, φ), where we are using the parameterization such that E[y] = µ
and var(y) = µ(1 + µφ). Also suppose that ỹ|y ∼ Bin(y, p). Then ỹ ∼ NB(pµ, φ).

Proof. Using the hierarchical characterization of the negative binomial distribution, we have that

λ ∼ Gamma(1/φ, µφ) (21)

y|λ ∼ Poisson(λ), (22)
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where 1/φ is the shape parameter and µφ is the scale parameter. This implies that ỹ|λ ∼
Poisson(pλ). But pλ ∼ Gamma(1/φ, pµφ) by elementary properties of the gamma distribution.
Hence, by the hierarchical characterization of the negative binomial distribution, we have that
ỹ ∼ NB(pµ, φ).

The zero-inflated negative binomial distribution is sometimes used to model single-cell RNA-
seq data as it can account for the abundance of zeros observed in such data [Miao et al., 2018,
Risso et al., 2018, Eraslan et al., 2019]. A random variable y is distributed zero-inflated negative
binomial, denoted y ∼ ZINB(π, µ, φ), if it is generated by the following hierarchical process:

z ∼ Bern(1− π), (23)

y|z = 0 ∼ δ0 (24)

y|z = 1 ∼ NB(µ, φ), (25)

where δ0 is the degenerate distribution with a point-mass at 0. In words, the counts are either 0
with probability π or follow a negative binomial distribution with probability 1− π. Our methods
are equally valid in the zero-inflated negative binomial case.

Lemma 3. Suppose y ∼ ZINB(π, µ, φ) and ỹ|y ∼ Bin(y, p). Then ỹ ∼ ZINB(π, pµ, φ).

Proof. It’s sufficient to note that

ỹ|z = 0 ∼ δ0, and (26)

ỹ|z = 1 ∼ NB(pµ, φ). (27)

Finally, our simulation methods preserve the count distribution in the rich class of distributions
which are mixtures of binomial and negative binomial distributions (some examples within this
class of distributions are plotted in Supplementary Figure S1).

Lemma 4. Let π0, π1, . . . πM and τ1, τ2, . . . , τL be non-negative mixing proportions such that

M∑
m=0

πm +

L∑
`=1

τ` = 1. (28)

Suppose that y has a PMF which is a mixture of binomial and negative binomial PMF’s

f(y) = π0δ0(y) +

M∑
m=1

πm NB(y|µm, φm) +

L∑
`=1

τ` Bin(y| ν`
n`
, n`), (29)

where NB(y|µm, φm) is the negative binomial PMF with mean µm and dispersion φm, and Bin(y| ν`n`
, n`)

is the binomial PMF with mean ν` and success probability ν`/n`. Suppose that ỹ|y ∼ Bin(y, p). Then

E[ỹ] = pE[y], and (30)

f(ỹ) = π0δ0(ỹ) +

M∑
m=1

πm NB(ỹ|pµm, φm) +

L∑
`=1

τ` Bin(ỹ|pν`
n`
, n`). (31)
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Proof. Equation (30) is just a consequence of the law of total expectation. To prove (31), note that
if y ∼ NB(µm, φm) then ỹ ∼ NB(pµm, φm) and if y ∼ Bin(ν`/n`, n`) then ỹ ∼ Bin(pν`/n`, n`). The
proof follows by conditioning on the latent mixing group.

S2 Additional Simulations

S2.1 Correlation Estimator

We explored the effects of changing the target correlation on the true correlation. We varied the
sample size, N ∈ {6, 10, 20}, and the target correlations between z and the two columns in ΠX3,
r ∈ {(0, 0), (0.5, 0), (0.9, 0), (0.5, 0.5)}. Under each unique combination of simulation parameter
settings, we iterative drew z ∈ RN from a standard normal. We also drew X3 ∈ RN×2 according
to two schemes:

1. Normal: Each element of X3 is independently drawn from a standard normal distribution,
and

2. Indicator: The first column of X3 consists of (1, 0, 1, 0, . . . , 1, 0)ᵀ, and the second column of
X3 consists of (1ᵀ

N/2,0
ᵀ
N/2)

ᵀ.

Each replicate, we used Procedure 4 to estimate the correlation between ΠX3 and z. We did this
for a total of 100 replications for each combination of simulation parameters.

The results are presented in Supplementary Figure S15. Because we are approximating the
expected (conditional on z) Pearson correlation between the columns of ΠX3 and z, the true cor-
relations between ΠX3 and z are approximately the mean of the estimates over the 100 replications
(see (17)). From Supplementary Figure S15, we note that the true correlation is generally closer to
0 than the target correlation. When the sample size is 20, there seems to be very little variability
in the correlation estimates.
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S3 Supplementary Figures
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Figure S1: Some distributions in the class of mixtures of binomial and negative binomial distribu-
tions, demonstrating the flexibility of this class. The mean was set to 10 for all mixing components.
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Figure S2: Frequency polygons for the log2 counts for the dataset simulated by seqgendiff (blue),
the dataset simulated by powsimR (orange), and the GTEx muscle dataset (black). The seqgendiff
and GTEx count distributions are almost exactly the same.
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Figure S3: First principle component (x-axis) versus the fourth principle component (y-axis) in the
seqgendiff dataset. The fourth principle component seems capture group membership.
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Figure S4: True coefficient values (x-axis) versus their corresponding estimates (y-axis) in the
seqgendiff dataset. Estimates were obtained using the voom-limma pipeline [Smyth, 2004, Law
et al., 2014].
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Figure S5: Median (across non-null genes) proportion of variance explained (18) (y-axis) for datasets
generated by powsimR or seqgendiff (x-axis). The two sets of simulated datasets have the same
expected median PVE, though the median PVE is more variable among the seqgendiff datasets.
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Figure S6: Boxplots of power (y-axis) for various differential expression analysis methods (x-axis)
when applied on different simulated datasets (color).
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Figure S7: Boxplots of mean squared error (y-axis) for various differential expression analysis
methods (x-axis) when applied on different simulated datasets (color).
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Figure S8: Median proportion of variance explained (18) for the genes with non-zero loadings (y-
axis) stratified by the sample size (x-axis) from the simulation study in Section 3.3. The facets
index the different standard deviations of the loadings.
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Figure S9: Angle (log10-scale) between the added factor and its projection onto the column space
of the estimated factors (y-axis), stratified by sample size (x-axis), factor analysis method (color),
signal strength (column facets), and sparsity of the loadings (row facets). The target correlation
between the added factor and the first unobserved factor was set to 0. A smaller angle is better.
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Figure S10: Angle (log10-scale) between the added factor and its projection onto the column space
of the estimated factors (y-axis), stratified by sample size (x-axis), factor analysis method (color),
signal strength (column facets), and sparsity of the loadings (row facets). The target correlation
between the added factor and the first unobserved factor was set to 0.5. A smaller angle is better.
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Figure S11: Minimum mean squared error between the added factor and the estimated factors
(y-axis), stratified by sample size (x-axis), factor analysis method (color), signal strength (column
facets), and of the loadings sparsity (row facets). Before calculating the MSE, all factors were scaled
to have `2-norm of 1. The target correlation between the added factor and the first unobserved
factor was set to 0. A smaller minimum MSE is better.
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Figure S12: Minimum mean squared error between the added factor and the estimated factors
(y-axis), stratified by sample size (x-axis), factor analysis method (color), signal strength (column
facets), and sparsity of the loadings (row facets). Before calculating the MSE, all factors were scaled
to have `2-norm of 1. The target correlation between the added factor and the first unobserved
factor was set to 0.5. A smaller minimum MSE is better.
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Figure S13: Minimum mean squared error between the added loading and the estimated loadings
(y-axis), stratified by the sample size (x-axis), the factor analysis method (color), signal strength
(column facets), and sparsity of the loadings (row facets). Before calculating the MSE, all loadings
were scaled to have `2-norm of 1. The target correlation between the added factor and the first
unobserved factor was set to 0. A smaller minimum MSE is better.
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Figure S14: Minimum mean squared error between the added loading and the estimated loadings
(y-axis), stratified by the sample size (x-axis), the factor analysis method (color), signal strength
(column facets), and sparsity of the loadings (row facets). Before calculating the MSE, all loadings
were scaled to have `2-norm of 1. The target correlation between the added factor and the first
unobserved factor was set to 0.5. A smaller minimum MSE is better.
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Figure S15: Boxplots of the Monte Carlo correlation estimator from Procedure 4 (y-axis), stratified
by sample size (x-axis), the type of design matrix (column facets), the target correlations (row
facets), and the column of the design matrix (color). Horizontal dashed lines are the two target
correlations. The mean of the correlation estimates is approximately the true correlation.
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