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Abstract

In the real world, complex dynamic scenes often arise from the composition of simpler parts. The visual
system exploits this structure by hierarchically decomposing dynamic scenes: when we see a person walking
on a train or an animal running in a herd, we recognize the individual’s movement as nested within
a reference frame that is itself moving. Despite its ubiquity, surprisingly little is understood about the
computations underlying hierarchical motion perception. To address this gap, we develop a novel class
of stimuli that grant tight control over statistical relations among object velocities in dynamic scenes. We
first demonstrate that structured motion stimuli benefit human multiple object tracking performance. This
performance advantage is well-explained by a Bayesian observer model that exploits hierarchical structure.
A second experiment, using a motion prediction task, reinforced this conclusion and provided fine-grained
information about how the visual system flexibly exploits motion structure.

The visual scenes our brains perceive in everyday life are filled with complex dynamics. Information
hitting the retina changes not only with every motion in the scene, but also with every head movement and
saccade. Noise, occlusions, and ambiguities further make visual information inherently unreliable. In order
to maintain stable, coherent percepts in the face of complex and unreliable inputs, our brains exploit the
spatially and temporally structured nature of the environment [1].

Motion structure refers to statistical relations of velocities. One form of structure common in natural
scenes is motion grouping: when a rigid object is set in motion, all of its visual features move coherently.
This structure allows us to infer the existence of objects based on the coherent motion of features—the Gestalt
grouping cue known as common fate [2]. Grouping based on common fate has been shown to influence our
ability to track objects [3–6], to search displays [7], and to store information in short-term memory [8].

However, the strict definition of common fate is too brittle to accommodate natural scenes in which visual
features do not move together rigidly and yet are still grouped together. In some cases this is because we
perceive objects as deforming non-rigidly. In other cases, we perceive objects that are hierarchically structured
[9–11]: the parts of an object move rigidly relative to a reference frame (the object), which itself could be a
rigidly moving part of another object, and so on. For example, we perceive the motion of hands relative to
the motion of arms, and the motion of arms relative to the motion of the torso (Fig. 1A,B). The entire body
may be moving relative to another reference frame (a train or escalator). The perception of hierarchically
organized motion suggests a powerful “divide-and-conquer” strategy for parsing complex dynamic scenes.

Recent work has formalized the representation and discovery of hierarchical motion structures [10].
However, we still know relatively little about if and how the visual system exploits this structure for visual
tasks like object tracking. We address this question in two experiments, one testing multiple object tracking
(MOT, [12]) and one testing multiple object trajectory prediction. A key innovation of these experiments is
the use of tightly controlled stimuli that isolate the signatures of hierarchical structure from other forms of
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Figure 1. Modular representation of hierarchical motion structure. (A) Observed velocity components of a running
human. The hands inherit motion from the arms, which inherit motion from the torso. (B) Corresponding nested hi-
erarchy of motion relations. Observed velocity is the sum of local motion components. (C) Motion graph describing
global motion with a strong (strength λglo) shared motion source (gray node) and weaker (strength λind) individual
motion sources (orange nodes). Here, the global motion source is not directly observed (i.e., latent) but introduces
correlations in the motion of observable objects (orange). (D) Two motion clusters (top) can be embedded into a deep
hierarchy by adding another latent motion source at the tree’s root (bottom). (E) Illustration of a stimulus of stochasti-
cally rotating dots with global motion structure. These are the class of stimuli used in the experiments.

motion structure. We show that a Bayesian observer model, when equipped with the appropriate structural
representation, can qualitatively explain human behavior across a variety of motion structures. In the MOT
task, we find that improvement of tracking performance for structured stimuli cannot be explained without
exploiting structure knowledge during inference, indicating that humans make use of motion structure
knowledge when perceiving dynamic scenes. In the prediction task, we uncover the employed motion
structure knowledge of our participants, finding that humans can flexibly recruit different motion relations
for scene parsing, including deep motion hierarchies which nest groups of objects within another moving
reference frame.

Results

Representation of motion structure
In this section, we introduce a representation of hierarchical motion structure. To motivate this representation,
consider a flock of birds. The velocities of individual animals in the flock are naturally described by the sum
of a global motion component, which is shared across all birds, and an individual component for each animal.
Only the aggregate motion is observed; the underlying motion components are latent variables that help us
organize our perception.

To formalize the idea of shared, latent motion components, we assume all velocities in a visual scene to
be driven by motion sources (nodes in the graph in Fig. 1C) that either represent observable objects (filled
nodes) or are latent (unfilled nodes). A motion source inherits velocity from a parent source when connected
by an edge, thus supporting tree-like hierarchies. Motion sources can be shared by multiple objects, and
the total velocity of an object is the sum of all inherited motions. In addition to the graph connectivity, each
motion source has a motion strength λ that determines the source’s contribution strength to the speed of
dependent observable objects. The simple “global motion” motif in Fig. 1C might, for example, to a first
order describe the motion structure underlying a flock of birds, where larger motion strengths are illustrated
by larger vertical distances (curly braces) between the motion sources.

The separation of motion composition (graph connectivity) and motion strength (vertical node location)
gives rise to a flexible, modular representation of motion structure, covering many real-world scenes such as
independent motion, clustered motion or deep motion hierarchies. The graph in Fig. 1D (top), for example,
describes a faster orange and a slower green cluster of otherwise independently moving composed objects
(e.g., two non-interacting flocks of birds). A further global motion component, such as an observer moving
his head, would introduce another motion source at the root of the tree (see Fig. 1D bottom). This illustrates
how our motion representation can be used in a modular fashion to describe deep nested motion hierarchies.
In fact, any tree-like motion structure built in this way can be represented by a motion structure matrix L,
accommodating both composition and strengths (see Material and Methods), such that we will often refer to
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Figure 2. Use of motion structure knowledge
during multiple object tracking. (A) Tested mo-
tion conditions included independent (IND),
global (GLO), counter-rotating (CNT), and
counter-rotating deep hierarchical (CDH) mo-
tion. ?’s mark targets. Two different target
sets were tested for CDH motion. (B) Average
performance (number of correctly identified
targets) on different motion conditions by
human participants, the Bayesian observer
model using the correct motion structure, and
the Bayesian observer disregarding motion
relations (IND prior). Using motion structure
during inference is required to explain human
performance gains on motion-structured stim-
uli. (C) The Bayesian observer model consists
of a Kalman filter with motion structure prior L
(left) and a mental assignment of dot identities
(center). Perceptual and neural noise can lead
to ambiguous assignments and, ultimately,
errors in the reported target set (right). (D)
Scatter plot of the data in (B), one dot per par-
ticipant and motion condition. The observer
model explains human responses well only
when using motion knowledge during infer-
ence.

specific motion structures by their associated matrices L.
This modular representation enabled us to generate motion-structured visual stimuli, which isolated

the computational role of motion structure in dynamic visual scenes, and were thus particularly suited
for psychophysics experiments. Specifically, we strove to design stimuli in which all object properties and
statistical relations among objects were dominated by structure in velocities, while keeping other factors
like individual object velocities or spatial structure uninformative. To do so, we generated the velocities
of observable objects by random draws from a continuous time stochastic process (namely a multivariate
Ornstein-Uhlenbeck process [13]; see Material and Methods for details) that yielded smooth random trajectories
with the desired statistical motion relations imposed by a chosen motion structure L. In this process, motion
sources play the role of random forces which accelerate or decelerate any dependent object. For example,
the latent global source in Fig. 1C would induce correlations among the velocities of all observed objects.
The resulting trajectories are mathematically tractable and feature real-world properties, such as inertia
and friction, without making any assumptions about specific trajectory realizations. To further remove
any persistent spatial structure among objects, we put the stimulus on a circle (illustrated in Fig. 1E; see
Appendix for example video), making the locations of objects asymptotically independent. The mathematical
tractability of the trajectory-generating process was crucial for precise stimulus control. Knowing the exact
joint probability distribution across object velocities allowed us to vary velocity correlations induced by
motion structure while keeping the motion velocity statistics of individual objects unchanged, thus making
structure in velocities the dominant feature in the presented scenes.

Motion structure improves visual tracking performance
We first asked whether motion structure knowledge benefits humans in a multiple object tracking (MOT)
task [12]. Evidence exists that structure among objects, such as grouping [14], symmetry [6] or global
translation [4], impacts tracking performance, but hierarchical structure has not been investigated before.
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In the MOT task, K=7 dots rotated about a circle with 3 dots being initially marked as targets. After a few
seconds, all dots changed to identical appearance while dot motion continued for another 6 s. After that the
dot motion stopped, and participants had to re-identify the initially marked targets. We tested 20 participants
on four different blocked motion conditions of 30 trials each, with motion graphs shown in Fig. 2A (targets
marked by ?; see Appendix for example trial videos). Independent (IND) motion, the standard MOT task,
served as a baseline. In the global (GLO) condition, dot motion is composed of a dominating shared stochastic
motion source, as well as small individual per-dot motion sources to break emergent spatial patterns. In
counter-rotating (CNT) motion, the latent motion source affects dot velocities in opposite directions: similar
to gears, the force accelerating the dots k = 1,2,3 in one direction, accelerates dots k = 4,5,6,7 (three of
which are targets) in the reverse direction. The last motion condition is a counter-rotating deep hierarchy
(CDH) in which two 3-dot groups are driven by a counter-rotating motion source that shares a global motion
source with the 7th dot. This deep nested structure generates distinguishable velocity patterns that cannot be
approximated by any shallow (max. one latent source layer) motion structure. In the CDH condition, we
tested two different target sets (CDH1 and CDH2) to probe set-specific effects in tracking performance. We
measured participant performance as the average number of correctly identified targets within each condition.
Since the aim of the experiment was to test how humans can exploit motion structure knowledge rather than
learn it, at the beginning of each motion block, participants were explicitly presented with a diagram and
three demonstration trials of the motion structure that would be presented in the upcoming block. Overall
average stimulus speed was titrated on a per-participant basis to approximately reach a performance of 2.15
(midpoint between chance level (3×3/7) and perfect (3)) correctly identified dots in the IND condition. This
per-participant speed level was subsequently maintained for the rest of the experiment. During the following
data collection, the marginal motion statistics of individual dots were then held constant for each participant
across all conditions L and dots k such that conditions only differed in their dot velocity correlations, as
determined by L. A separate IND condition block (see left-most bar in Fig. 2B) that was not used to adjust the
stimulus speed confirmed the validity of the adjustment and marks the reference for performance changes in
motion-structured stimulus conditions. The performance on the four conditions with motion structure (GLO,
CNT, CDH1 and CDH2) are shown in Fig. 2B (left) next to the IND reference performance. The introduction
of structured motion significantly impacted dot tracking performance, (p≈ 1.03× 10−14, Greenhouse-Geisser
corrected repeated measures ANOVA) resulting in a significant performance boost in all motion conditions
(one-sided paired t-tests, p ≈ 1.2× 10−8, 2.4× 10−9, 7.9× 10−3, 2.6× 10−4, respectively). In conclusion,
motion structure clearly improved human tracking performance.

The computational origin of MOT performance gains
The observed boost in tracking performance for structured stimuli could simply be a byproduct of dot
velocity correlations, that is, an intrinsic stimulus property, rather than the result of using motion structure
knowledge by the observer. For instance, dots with positively correlated velocities might have less proximity
events during a trial, making their confusion less likely [15]. To distinguish the contribution of employed
motion structure knowledge from stimulus-intrinsic factors, we extended a Bayesian MOT observer model by
Vul and colleagues [16] to incorporate motion structure priors L. The deliberately simple model (illustrated
in Fig. 2C) includes only the core components required to perform the MOT task, making it a minimalistic,
normative model of motion-structured MOT performance (see Material and Methods for details). Similar
to Vul et al. [16], visible dot locations xt in individual video frames are subject to perceptual and neural
noise σobs while being integrated with mental estimates of location zt and velocity vt via a multi-dimensional
Kalman filter (Fig. 2C left). To capture structured motion, we extended this Kalman filter to incorporate
the motion structure matrix L as a Bayesian prior distribution of how dot velocities are expected to evolve
over time. A global (GLO) motion prior, for example, would favor positively correlated dot trajectories.
The Kalman filter alone, however, assumes that every observed dot location is labeled by the dot’s identity,
making dot confusions, and therefore imperfect dot tracking, impossible. To produce such confusion, we
needed to additionally model the mental assignment of dot identities to the visually identically looking dots
on the screen (Fig. 2C center, cf. [16]), which is the psychophysical counterpart to the binding problem [17] in
neuroscience. Errors in this mental assignment can lead to imperfect re-identification of the target dots at
the end of an MOT trial, and arise when dots come close [18] or even cross: uncertainty in internal location
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Figure 3. Revealing human motion priors in a multiple object prediction task. (A) Illustration of the stimuli. The high-
lighted green and red dot disappeared after 5 s. Participants had to predict their location at the end of the trial. Dots
were color-coded to indicate their role in the motion structure. Here, a global (GLO) stimulus condition is illustrated. (B)
Tested motion conditions included global (GLO), clustered (CLU) and counter-rotating deep hierarchical (CDH) motion.
(C) Top: putative motion priors tested for explaining human responses via a Bayesian observer model, ordered by their
complexity (see main text for description). Each cell shows per-participant log-likelihood model fit ratio for a particular
motion prior, compared to the correct prior underlying the stimulus (indicated by gray background). Negative values
indicate that the participant’s behavior was better explained by the correct motion prior. One dot per participant, stimu-
lus condition and putative motion prior. Horizontal lines show mean log-likelihood ratios across participants. Humans
flexibly employed correctly structured motion priors. ∗’s indicate significance of paired t-tests (p 0.05, 0.01, 10−3 and
10−4 respectively).

estimates zt can render multiple mental assignments possible, as exemplified in Fig. 2C (right).
We presented the observer model with the exact same trials that had been shown to human participants.

The single free parameter of the model, σobs, was adjusted to match average human performance in the
baseline IND motion condition, and was subsequently fixed to predict performance in all other conditions.
This resulted in a remarkable qualitative match between human performance and the minimalistic observer
model’s predictions (Fig. 2B left vs. center; see Appendix for a discussion of the quantitative mismatch in the
GLO condition).

To distinguish if the performance gain for structured motion stimuli was simply due to stimulus-intrinsic
factors, we repeated the above procedure with a Bayesian observer that did not exploit complex motion
structure knowledge (by making the observer assume an IND motion prior), even when motion structure
was present in the stimuli. As Fig. 2B (right vs. left) reveals, this modification caused all motion structure-
dependent performance gains to vanish. Hence the observed performance gain of human participants cannot
be explained by stimulus-intrinsic factors alone. Instead, humans appear to make use of motion structure
knowledge when performing the task.

The finding that the Bayesian observer with correct motion prior explains large parts of human perfor-
mance, while the motion structure-agnostic observer (IND prior) does not, is further supported by scatter
plots shown in Fig. 2D (replotting the data from panel B; the two Pearson correlation coefficients are signifi-
cantly different, p 0.001 [19, 20]; additional analysis). This visual impression is corroborated by pre-registered
statistical measures: while the cosine similarity between per-participant human and correct-prior observer
model performance gains (“structured condition minus IND condition”) is highly significant (p10−5, one-
tailed test against H0: positive cosine similarity is a random effect), the one between per-participant human
and IND-prior observer model performance gains is not (p≈ 0.99).
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Revealing the structure of human motion priors
The MOT task revealed that humans make use of motion structure knowledge during visual tasks. However,
the limited information provided by the participants’ responses (three chosen dots per trial) didn’t allow
us to identify which exact motion features were employed. We therefore developed a second experiment,
multiple object prediction, that grants a more fine-scaled insight into the cognitive machinery underlying
motion perception.

Multiple object prediction uses partially observed dynamic visual scenes to test human perception in face
of uncertainty. As before, in each trial, seven dots rotated stochastically about a circle (see Fig. 3A). After
5 s, however, two target dots (the larger green and red dots) became invisible while the motion of the other
dots remained visible. After another 1.5 s the scene froze, at which point participants had to predict the
location of both target dots with a computer mouse. We used highly volatile motion-structured stimuli with
quickly changing dot velocities, such that the use of motion structure information was indispensable for
making predictions. We further colored the dots according to their role in the motion structure to prevent dot
confusion. In contrast to previous single-dot prediction tasks [11], the rationale for simultaneously predicting
two dot locations is that the covariance pattern of errors convey additional information about the motion
structure assumptions of our participants. For example, if global motion was assumed, we would expect the
participants to jointly over- or underestimate the red and green targets’ final locations.

We tested 12 participants on 3 motion conditions each: global motion (GLO), clustered motion (CLU) and
counter-rotating deep hierarchical motion (CDH) (motion graphs in Fig. 3B; example videos in Appendix),
with 100 trials per condition. As before, participants were briefly trained on all motion structures and were
informed about the specific structure underlying each trial. Participants reported the task to be challenging,
but performed reasonably well (average absolute error to optimal predictions: 36.2◦ ± 4.0◦, mean± SD across
participants; additional analysis).

In order to identify the structure of the motion prior employed by each participant in each stimulus
condition, we formulated a Bayesian observer model of human responses in the prediction task. This model
was the same as our MOT model, but without the dot confusion component, and with location observations
assumed to be practically noise-free (σobs=0, except for the invisible dots for which no further observations
were provided). After each trial, motion-structured Kalman filters with different putative motion structure
priors L predicted the statistically optimal, most likely location of the target dots based on the motion of
the other dots, and the uncertainty in this prediction. Building on [21], we linked this prediction to the
locations reported by the participants by assuming additional response variability that scaled with prediction
uncertainty (correlated across the two target dots), motor noise (uncorrelated across dots), and the possibility
to confuse the red and green dots when reporting their locations (see Material and Methods for details). The
first two variability sources were modeled as Gaussians, owing to the Gaussianity of observed human
response error distributions (see Appendix, Fig. S1; additional analysis), whereas the third variability source
was implemented by a small swapping probability. Overall, this led to three model parameters that we fit by
maximum-likelihood separately for each participant, condition, and putative motion structure prior. Applied
to simulated behavior with the same trials, we found that this procedure was able to correctly recover the
motion structure underlying simulated responses (Appendix, Fig. S2).

To identify the most likely motion structure prior employed by the participants, we compared across
7 structurally different putative motion priors how well the model can explain the participants’ trial-by-trial
predictions (pre-registered; see Appendix, Fig. S3 for additional comparison across a larger range of motion
structures, yielding similar results). Fig. 3C shows the resulting log-likelihood ratios, with putative motion
priors sorted from simpler to more complex motion structures (note that all models have the same number of
free parameters). For the global (GLO) motion condition (first row of Fig. 3C), human responses are best
explained either by the correct global motion prior or by more complex priors which would be similarly
suited for solving the task (e.g., because they contain a global motion source). Motion priors without a global
motion source, such as IND, CNT, and CLI, resulted in significantly worse model fits. For the clustered (CLU)
motion condition (second row), all alternative model priors led to worse model fits. Together, these results
establish confidence in the applicability of the Bayesian observer model.

Our most complex motion condition, the counter-rotating deep hierarchy (CDH; Fig. 3 bottom row), was
designed to require inference over both latent motion sources for correct prediction. In other words, none
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Figure 4. Bias-variance decomposition for the
prediction task. (A) Human prediction errors
are assumed to be the sum of a systematic
(bias) and a stochastic (noise) component.
The relative contribution of both components
can be estimated from repetitions of the same
trial, leading to responses ϕ(1) and ϕ(2), and
associated errors ∆(1) and ∆(2). (B) Noise fac-
tors for the green and the red dot, one marker
per participant (color & filling) and motion con-
dition (shape). A combination of systematic
and stochastic errors underlie human sub-
optimality. Black cross and ellipsoids indicate
mean and iso-density curves (1-3 SDs) of a
bivariate Gaussian fitted to all noise factors.

of the tested shallow (non-nested) motion priors can mimic the error covariance pattern expected under a
CDH prior. Global (GLO) motion would miss the counter-rotating component of the blue and green groups.
Counter-rotating (CNT) motion would miss the global motion component. A clusters-plus-independent
(CLI) motion prior (see Fig. 3C top) could approximately predict the green dot’s location, but lacks the global
component for predicting the red dot. The only structures that could approximate a CDH covariance pattern
are other deep nested hierarchies, such as a standard deep hierarchy (SDH) that employs a third latent motion
source. The result of Bayesian model comparison (bottom row in Fig. 3C) clearly favors deep hierarchical
motion priors for explaining human predictions. Interestingly, several participants reported that they did
not consciously use hierarchical information in the CDH motion condition. The fact that their prediction
errors nonetheless indicate a deep hierarchical prior points to the subconscious use of hierarchical motion
knowledge in perception by our visual system. Overall, our results strongly suggest that human observers
are able to use deep hierarchical motion structure when perceiving dynamic scenes.

Systematic and stochastic errors underlie human sub-optimality
Even though participants employed the qualitatively correct motion structure in the prediction task, they
featured additional, suboptimal variability when compared to a statistically optimal observer. This variability
could arise from consistent deterministic bias, indicating a systematic mis-integration of the stimuli, or
stochastic fluctuations, indicating potentially noisy computations. To determine the contribution of each
alternative to overall variability, we repeated each trial twice within each condition, supporting a bias-
variance-decomposition [22] of this variability (Fig. 4A). Specifically, if all of the variability was due to
deterministic biases, participants should feature the exact same, systematic errors, ∆(1) = ∆(2), in both trials.
If, in contrast, all variability was purely stochastic, the observed errors should be uncorrelated across paired
trials. This idea allowed us to quantify the ratio between bias and variance by one noise factor fnoise per
participant and motion condition, with fnoise=0 and fnoise=1 denoting purely bias-driven and purely noise-
driven observers, respectively (see Material and Methods for details). We evaluated the noise factor separately
for the green and red target dot, with the results shown in Fig. 4B. Note that these results are additional
analyses. We found that human sub-optimality is a combination of systematic and stochastic errors. The
noise factors of both dots were on average equally strong (black ×). The positive correlation between red and
green dot noise factors (ρ = 0.51, Pearson correlation) suggests a participant-dependent level of “noisiness”.
This impression is further supported by consistently higher or lower noise factors across participants (colors
& filling in Fig. 4B; p 10−4, one-way Welch’s ANOVA).

Discussion
We have shown that humans make use of motion structure knowledge during demanding perceptual tasks,
and that they can flexibly employ structured motion priors for the task at hand. Beyond shallow motion
motifs, such as global motion or clustered motion, we were able to show that humans can even use deep
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nested motion hierarchies. Key to revealing the covert motion priors of human participants was the design
of analytically tractable stimuli that capitalize on motion relations. Analytical tractability facilitated the
development of normative Bayesian observer models, our mathematical scalpel for dissecting the use of
motion priors by the participants from stimulus-intrinsic contributions to visual motion perception.

Understanding motion perception as Bayesian inference has a rich scientific history [10, 11, 16, 23–27].
Bayesian models of low-level perception [23–25] were extended to explain human multiple object tracking of
independent dot movement [16, 27]. Our work extends this line of research to structured motion, revealing
the use of structured motion priors during tracking. Our aim to resolve the fine structure of human motion
priors led to the development of a novel probabilistic multiple object prediction task that augments single
object prediction [11] with velocity covariances within a tractable protocol. Including posterior covariance
matrices in the observer model greatly enhanced the log-likelihood ratios in the prediction task beyond the
resolution achievable in single object prediction (see Appendix, Fig. S4). While we had originally developed
our modular matrix representation L of hierarchical structure as an extension to the motion trees in [10],
the proposed decomposition into graph connectivity and motion strengths bears some resemblance to
the semantic structure interpretation of singular value decomposition applied in [28] to categorical data
and to Pythagorean tree embeddings used in [29] for describing language structure. Flexible structure
representations are expected to foster cognitive science research on how humans infer the motion structure
of a visual scene—potentially recruiting from a set of motion features—and how such motion features for
modular combination could be learned in the first place.

Biologically, the importance of motion for visual scene perception is reflected in the tuning of cells in
primate visual areas. Neurons in area MT are frequently tuned to the speed and direction of velocity within
their receptive field [30], while downstream areas, like MSTd, encode progressively richer motion primitives
such as selective tuning to expansion, rotation and spiraling [31, 32]. This points to a feature repertoire that
is tailored to behaviorally relevant stimuli such as radial expansion (the visual pattern on the retina of a
forward-moving observer) or rotation (when tilting your head to the left/right). Little, however, is known
about how such motion primitives are further recruited in neural circuits for high-level, hierarchical motion
processing. Our motion structure representation is compatible with existing neural implementations of
Bayesian sensory integration, such as the neural Bayesian filtering model of Beck et al. [33]. In combination
with physiology-based models of motion integration [34, 35], this could bring forth normative neural models
of structured motion perception in higher visual areas, and guide experiments on the neural code along the
visual motion pathway.

Material and Methods
The study has been pre-registered [36] prior to data collection, and all pre-registered analyses are presented
in the main text. Any additional analyses are labeled as such.

Motion structure matrix representation
We describe the motion of K visible objects that are driven by M motion sources. Usually, M K since, besides
shared latent sources, each object can feature individual motion. We represent how motion source m affects
object k via a composition matrix of motion motifs C ∈RK×M. If m drives k, we set Ckm = 1; if m does not
affect k, we set Ckm = 0; for counter-rotating motion, we set Ckm =+1 and −1 for opposing directions. Thus,
each column of C encodes a motion motif (e.g., all 1s for global motion), which is tied to motion source m.
Each motion source has an associated real-valued motion strength λm ≥ 0, and we define the motion structure
matrix L as the product of composition and strengths, L = C Λ with Λ = diag(λ1, ..,λM), i.e., strength λm
scales the m-th motion motif.

Motion-structured stimuli

The stochastic dynamics for location zt ∈ [0, 2π)K and velocity vt ∈RK are given by

dvt =−vt/τ dt + LdWt (1)
dzt = vt dt , (2)
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with friction time constant τ ∈ R+ and M independent Wiener processes in vector Wt. The values of τ
and Λ used in each experiment are provided in Appendix. For simulations, we employed Euler–Maruyama
integration to advance the dynamics, and we map zt 7→ (zt mod 2π) after each step to keep locations on the
circle. The stationary distributions under above dynamics are (see [13]):

lim
t→∞

p(v) =N (v; 0, Σv) , lim
t→∞

p(z) =
K

∏
k=1

Uniform (zk; 0, 2π) , (3)

where Σv =
τ
2 L LT, and the expression for p(z) assumes that each object has a non-vanishing independent

motion component. Knowing the stationary velocity covariance Σv in closed form gives convenient control
over the stimulus. For example, the marginal velocity distribution of the k-th object is N

(
vk; 0, σ2

vk

)
with

σ2
vk
= ∑m λ2

m ·C2
km which is simply the sum of all parent motion sources’ squared strengths. In all experiments,

we initialize the stimuli from a sample of their stationary distribution. Then, velocities follow a multivariate
Gaussian at any time, and locations become asymptotically independent.

Experiment details: MOT task
Twenty Harvard University undergraduates (Mean age=20.6 years, SD=2.01; 14 females) with normal or
corrected-to-normal vision participated in the experiment for course credit. All participants provided
informed consent at the beginning of the experiment. The experiment lasted approximately 2 hours and was
comprised of a thresholding phase and a testing phase. Across both phases, participants performed a multiple
object tracking (MOT) task, in which they were presented with a 2000 ms static display wherein 7 colored
dots encircled by white outlines appeared around a larger black ring. All dots proceeded to move around
the ring for 5000 ms, following predetermined trajectories. Stimulus motion trajectories were pre-computed
using custom Python code and initial values for v and z were drawn from the stimulus motion structure’s
stationary distributions (3). When pre-computing the trials, we asserted that the final dot locations were
non-overlapping to prevent selection ambiguity (trials with overlap were regenerated until they met this
criterion). Red square outlines subsequently appeared for 3000 ms around 3 of the moving dots, marking
them as to-be-tracked targets. The target cues and disc colors then faded to black during the following 700
ms, after which the white outlines continued to move for 6000 ms until coming to a stop. A random number
(1-7) was subsequently superimposed on each dot, prompting participants to report the identities of the
perceived targets by making the appropriate keyboard presses. Feedback was provided after every trial. The
MOT tasks implemented across both phases were nearly identical, with the following exceptions. Whereas
movement trajectories in the thresholding phase followed independent (IND) motion, those implemented in
the test phase varied across blocks (Latin-square counterbalanced) based on each motion structure condition
(IND, GLO, CNT, CDH1, CDH2). The thresholding phase was used to titrate motion speed by adjusting
a per-participant speed factor fspeed (see eq. (2) in Appendix), such that all participants would achieve a
common baseline on IND trials. To this end, participants performed 30 IND trials at an initial speed of
fspeed=2.0. Whether performance at this initial speed fell above or below the targeted 2.15 performance
threshold, participants completed a subsequent 30 trials of the same task at a faster or slower speed (speed
factors varied by 0.25 increments). This staircase thresholding procedure was repeated until each participant’s
average target identification accuracy approximated 2.15 items per trial (Mean repetitions=2.40, SD=0.68).
Once thresholding was complete, participants performed 150 trials of the MOT task at their determined
speed. Prior to the onset of each motion structure block, participants were presented with three example trials
inherent to the forthcoming block of displays, and were provided with a motion graph that explicitly laid
out the motion structure based on the colors of the moving items. Example trials and details of experiment
conduction are provided in Appendix. No data was excluded from the analysis. The study was approved by
the Harvard Institutional Review Board (IRB00000109).

Bayesian observer model: Kalman filtering (both experiments)
We assume independent Gaussian observation noise on the locations of each video frame, p(xt |zt) =
N
(
xt; zt, σ2

obs I
)
. Together with the latent stochastic linear dynamics of (1) + (2), Kalman filters are the

statistically ideal observer models for the stimulus. The circular support of z, however, renders the normal
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distribution underlying Kalman filtering into an approximation. To maintain a close approximation to
the correct posterior, we ensured that variances of the location posterior p(zt | x1:t) remained small at all
time. For all observable dots, location estimates are much smaller than π anyway; for the unobserved dots
in the prediction task, we designed the stimuli such that the correct posterior’s standard deviation never
exceeded 40◦. Thus, most of the probability mass stayed within the (unwrapped) circle at any time, and errors
introduced by the Gaussianity assumption are small. The corresponding matrices of the motion-structured
Kalman filter are provided in Appendix.

Bayesian observer model: MOT task
Above Kalman filter was used for tracking, assuming either the correct motion prior L? to underlie the
stimulus, or a prior of independent motion with identical marginal velocity distributions N

(
vk; 0, σ2

vk

)
.

Following [16], different possible mental dot assignments γ are scored at each frame by comparing the
likelihoods of the current observation xt under the possible assignments. As in [16], this poses a numerically
intractable inference process (per frame, there are K! possible assignments; the total number of assignments
per trial thus grows as K!#frames). We use discrete particle variational inference [37] for approximate inference,
with a single particle and the set of all pairwise dot permutations as differential proposals per frame. After
each frame, the highest scoring candidate assignment γ is maintained. The assignment γ at the end of the
trial determined which three input dots were chosen as targets. In the numerical evaluation, the Kalman
filter was presented with noisy observations, xt ∼N

(
zt, σ2

obs I
)

mod 2π, with σobs=0.05. The value of σobs
was determined via computer simulations to yield on average the target performance (2.15) in the IND
condition. For Fig. 2B, each trial presented to a human participant was simulated 25 times (with changing
noise instantiations), and simulated performance was averaged over all repetitions to reduce the variance of
the observer model’s predictions (shrinking the error bars in the center and right panel).

Experiment details: prediction task
Twelve adult individuals (Mean age=31 years, SD=9 years; 10 males), participated in exchange for financial
compensation ($10 per hour plus a performance-dependent bonus). All participants reported normal or
corrected-to-normal vision, and provided informed consent at the beginning of the study. On average, the
experiment lasted approximately 80 minutes. Each participant completed 100 trials per motion structure
(GLO, CLU, CDH), presented in blocks (50 unique trials per block, each presented twice in randomized
order). Block orders were balanced across participants. Participants were informed about the stimulus
condition and performed a variable number of training trials prior to each block until they decided to start
the experiment block. Dots were color coded as shown in Fig. 3B. Trials were composed as follows. Initial
values for v and z were drawn from the stimulus motion structure’s stationary distributions (3). After a
1000 ms still period, all dots started moving stochastically for 5000 ms according to (1) + (2). During the
end of the 5000 ms period, the red and green target dots faded out, and only the remaining five dots were
visible for another 1500 ms period after which the scene froze. The green and red dot’s locations had to be
predicted by directing a green / red mouse cursor to the predicted location on the circle. After each trial,
the true dot locations were revealed and participants received points (0 – 20) based on the accuracy of their
prediction. The points only served as task engagement and for payment, and played no role for the analysis.
Example trials and details of experiment conduction are provided in Appendix. No data was excluded from
the analysis. The experiment was approved by the Harvard Institutional Review Board (IRB15-2048).

Bayesian observer model: prediction task
Kalman filters with different candidate motion priors L were presented with the same trials that had been
shown to human participants. For the observer model, we assume correct dot assignment (γ= I) and
set σobs=0 for observed dots since dot confusion and observation noise–induced errors are expected to play
a negligible role in the prediction task. While invisible, we set σobs→ ∞ for the green and red dots. For
candidate prior L, human responses ϕ(i) = (ϕ

(i)
green, ϕ

(i)
red) in trial i = 1, ..,100 are then modeled as
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p(ϕ(i) |L, θ) =(1− πs) · N
(

ϕ(i); µ
(i)
kal, a Σ

(i)
kal + b I

)
(4)

+ πs · N
(

Sϕ(i); µ
(i)
kal, a Σ

(i)
kal + b I

)

where µ
(i)
kal and Σ

(i)
kal are the (2-dim.) mean and (2× 2) covariance matrix of the Kalman filter with motion

prior L for the green and red dot at the end of the trial. The matrix S =
(

0 1
1 0

)
models dot swapping in

the response with probability πs, and a, b ∈ R+ scale structured inference noise and unstructured motor
noise respectively. Eq. 4 describes a stochastic posterior observer model (the winning model identified in
the systematic comparison of [21]) with lapses and motor noise. The three free parameters θ=(πs, a, b)
were fitted via maximum likelihood for each candidate prior L, stimulus condition L? and participant. The
log-likelihood ratios to the model with correct motion prior,

LLRL? ,L = ∑
Trials i

log
p (ϕ(i) |L , θML

L )

p (ϕ(i) |L?, θML
L? )

(5)

are plotted in Fig. 3C. One-tailed paired t-tests identify if the correct prior L? explained human responses
better than alternative priors L.

Distinguishing systematic and stochastic errors in the prediction task
We evaluated the noise factor fnoise separately for the green and red dot per stimulus condition and participant,
that is, each noise factor is based on the repetitions r = 1,2 of the unique trials j = 1, ..,50 in one stimulus
block. We define the average noise variance

σnoise =
〈

Var
[
d(ϕ

(r)
j , ϕj)

]
r

〉
j

(6)

where 〈·〉j denotes the average over unique trials, Var [·]r is the unbiased estimator of the variance over
trial repetitions, d(·, ·) ∈ (−π,π] is the (signed) distance on the circle, and ϕj is the circular mean of the two

responses ϕ
(1)
j and ϕ

(2)
j . We further define the total prediction variance

σtot =
〈

d2(ϕ(i), ϕ
(i)
opt)

〉
i

(7)

as the mean squared error made compared to the optimal prediction ϕ
(i)
opt = µ

(i)
kal(L?). The estimators σnoise

and σtot − σnoise were verified to recover the stochastic and systematic error components of synthetic data
(not shown). The noise factor is defined as the ratio fnoise = σnoise/σtot. Based on synthetic data, the standard
deviation of the noise factors in Fig. 4B is estimated to be 0.10.

Data and code availability
Computer simulations and data analysis were performed with custom Python code which is available
on https://github.com/DrugowitschLab/motion-structure-used-in-perception. In this
repository we also provide the raw data collected in the experiments.
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Appendix

Details on the stimulus generation and Kalman filters

Equations of motion with volatility and speed factors
For transparent stimulus control, it is convenient to write the stochastic stimulus dynamics as

dzt = vt dt , (1)

dvt =−vt/(τ/α)dt +
√

α fspeed LdWt (2)

with speed factor fspeed and volatility factor α. The speed factor scales the absolute value of velocity in the
stationary distribution while maintaining the time scale τ of typical changes in the stimulus. The volatility
factor, in contrast, adjusts the time scale τ, while keeping the stationary velocity distribution unchanged,
because:

lim
t→∞

p(v) =N
(

v; 0,
(τ/α)

2
α f 2

speed L LT
)
= fspeedN

(
v; 0,

τ

2
L LT

)
. (3)

In computer implementations, fspeed and α can be absorbed in τ and λ via τ 7→ τ/α and λ 7→ √α fspeed λ. For
the MOT task, we adjusted fspeed in the IND condition in increments of 0.25 until participants performed
approximately at the desired target (2.15). After this adjustment, participants covered speed factors between
1.75 and 2.75. All subsequent experiment blocks then used the per-participant speed factor.

Parameters of the motion structures used in the experiments
MOT task. In the MOT task, we set τ = 64s, leading to slowly changing velocities. For fspeed = 1, the motion
strengths in the stimulus conditions were as follows. For independent (IND) motion, λind = 0.125 for all
seven individual sources. For global (GLO) motion and counter-rotating (CNT) motion, λlat = 0.1244 for
the latent source and λind = 0.0125 for the seven individual sources. For counter-rotating deep hierarchical
(CDH) motion, λglo = 0.1016 for the global motion source, λcnt = 0.0718 for the counter-rotating sub-source,
λind = 0.0125 for the individual motion sources of the six dots in the clusters, and λmav = 0.0729 for the
seventh dot (the Maverick dot). Note that motion strengths add up quadratically in the marginal dot
velocities due to the factor L LT = C · diag(λ2

1..,λ2
M) · CT. At the example of GLO and IND, we have√

0.12442 + 0.01252 = 0.125 such that the marginal velocities are identical across motion structures. The
L-matrices of all conditions are provided in Fig. 5.

Prediction task. In the prediction task, we set τ = 1s, leading to volatile stimuli. The values of λ for the
various motion sources are provided in Fig. 3. The L-matrices of all conditions and observers are provided in
Fig. 6.

Discrete time integration and Kalman filter matrices
For numerical integration, we concatenate (zt, vt) to a single state vector and advance (1)+(2) of the main
paper in small time steps δt:

(
zt+δt
vt+δt

)
=

(
I(K) dt I(K)

0(K) (1− δt
τ ) I(K)

)

︸ ︷︷ ︸
=:F(L)

(
zt
vt

)
+

(
0(K) 0(K×M)

0(K)
√

δt L

)

︸ ︷︷ ︸
=:
√

Q(L)

N (ε; 0, I) (4)

with ε = (ε1, .., εK+M) being i.i.d. standard Gaussian noise. The matrices F and Q =
√

Q · √QT are known as
state transition model and process noise covariance in Kalman filtering.
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Computer simulations
Stimulus videos where presented at 60 Hz (MOT task) and 50 Hz (prediction task), thereby defining δt as the
inverse of this value during tracking with Kalman filters. For the stimulus generation, we used a 10-times
smaller value of δt to ensure smooth trajectories, and video frames were shown every 10th step. Simulations
and data analyses were performed with Python 3.6, Matplotlib 3.0, and Scipy 1.2.

Details to the experiments

MOT task
The MOT tasks used in both thresholding and test phases were displayed using MatLab Psychophysics
Toolbox on a 21.5" iMac monitor (viewable area: 10.54 cm x 18.74 cm, refresh rate: 60 frames/sec). Viewing
distance was unconstrained, but averaged approximately 60 cm. Across both phases, a central fixation cross
(0.70° x 0.70° of visual angle) and black ring (diameter: 19.93° of visual angle, thickness: 0.09° of visual angle)
remained constant on the screen throughout each trial. Each of the 7 target and non-target items subtended
1.74° of visual angle in diameter, and were encircled by white outlines that had a thickness of 0.09° of visual
angle. Red square outlines (2.80° x 2.80° of visual angle, thickness: 0.26° of visual angle) were used to indicate
which of these moving items were to be tracked during the trial. The colors of target and non-target items
alike were sampled from three equiluminant colors (blue, pink, yellow), such that three items belonged to
one color set, three items belonged to another color set, and a singleton was filled with the remaining color.
Participants were informed that the colors of the items were uninformative during the thresholding phase,
but that they aided the identification of each dot’s role within the motion structures during the test phase.
After each trial was complete, participants received feedback in the form of red square outlines (2.80° x 2.80°
of visual angle, thickness: 0.26° of visual angle) appearing around the correct targets.

Prediction task
In the prediction task, the location of two temporarily occluded target dots (green and red) had to be predicted
at the end of the trial, using the motion of five (always visible) non-target dots. Stimuli and graphical user
interface were written in custom Python code (using Matplotlib on the Qt5 backend) and were presented on
an iMac16,2 (display resolution: 2048× 1152; frame rate: 50 frames/second) in an anechoic experiment room
at Harvard Medical School. Viewing distance was unconstrained, but averaged approximately 60 cm. In
each trial, a gray circle (diameter: ~12° of visual angle) remained constant on the screen throughout the trial.
On the circle, seven dots (5 non-targets and 2 targets; diameter: 0.5° and 0.7° of visual angle respectively)
moved stochastically according to eq. (4). Dots were colored as indicated in Fig. 3: light-blue for dots 1, 2
and 3; light-green for dots 4 and 5; green for dot 6 (a target dot); and red for dot 7 (the other target dot).
Participants were informed about the meaning of the colors within the motion structure of the respective
block. At the trial end, participants predicted the targets’ locations by directing a green / red mouse cursor to
the predicted location on the circle. The order (green / red) of the predictions was randomized across trials.
After each trial, the true dot locations were revealed and participants received points based on the accuracy
of their prediction:

points = ∑
c∈{green,red}

round
(

10×
[

1− d(ϕhuman
c , ϕtrue

c )

π/2

]

+

)
(5)

where d(·, ·) ∈ [0,π] denotes the (absolute) distance on the circle, and the rectification [·]+ restricts the points
to positive values. This is a linear decay, per dot, from 10 points for a perfect prediction down to 0 points
for errors of 90° and above. Note that due to the intrinsic stochasticity of the targets’ motion, even an ideal
observer will usually obtain less than 20 points per trial. Participants received a bonus of $1 per 500 points
(rounded up to the next dollar), resulting in $7 or $8 of paid bonus (in addition to the $10 per hour base pay).

Discussion of the quantitative mismatch in the GLO condition of the MOT task
The Bayesian observer model systematically underestimated human MOT performance in the GLO condition
(cf. Fig. 2B in the main paper). In general, it is not surprising that a minimal observer model, that only
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contains the computational components essential to solving the MOT task, cannot capture all nuances of
human tracking behavior. Nonetheless, we asked what is special about the global motion stimulus condition?
Most notably, dot proximity events typically last longer for GLO stimuli than for other stimulus structures
due to the strong positive velocity correlation. Proximity events that span many video frames (each frame
lasts for only 1/60Hz = 17ms) are expected to be particularly susceptible to perceptual noise in our observer
model for two reasons. First, the employed DPVI algorithm [1] evaluates (and possibly discards) alternative
mental dot assignments on a frame-by-frame basis and, thus, alternative hypotheses may not be maintained
throughout a longer proximity event. Humans, in contrast, may reason on longer time scales. Second, the
tracking process relies on Kalman filtering (forward inference) rather than smoothing (forward-and-backward
inference). Updating past location estimates based on new observations could help to resolve ambiguous
mental assignments in the recent past as they occur during proximity events. In addition to these algorithmic
reasons, human participants may direct their visual focus and attention specifically to locations of proximity
events (proximity events last longer, but occur less frequently in GLO motion than in other conditions) in
order to locally reduce perceptual noise [2].

To test for a specific detrimental effect of perceptual noise to tracking of GLO stimuli, we re-evaluated the
MOT data by decoupling the noise σobs assumed by the observer model and the noise σx actually corrupting
observations xt in computer simulations (in Fig. 2B of the main paper, we had σobs = σx = 0.05). As an ad
hoc-choice, we assumed that σobs = 10σx, such that corrupted observations in individual frames have a
smaller weight in the Kalman update. Readjustment of the noise level to approximately reach the desired
average target performance (2.15) in the IND condition yielded σobs = 0.7 and σx = 0.07. The resulting
predictions of the observer model, using the decoupled noise for all stimulus conditions, are shown Fig. 7
(additional analysis; only one trial repetition simulated). The resulting predictions match human behaviour
not only qualitatively, but also quantitatively better than the minimal observer model of the main paper
(ρ = 0.57 for the correct motion prior in the evaluation of the left panel of Fig. 2D). Yet, even with decoupled
perceptual noise, motion structured priors are required to explain human performance (ρ = 0.02 for the IND
prior in the evaluation of the right panel of Fig. 2D). We emphasize that this additional analysis is only a
first step towards understanding the detailed contribution of perceptual noise to multiple object tracking
of motion structured stimuli, and additional experiments would be needed to appropriately address this
question.
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Figure 1. Human prediction errors are normally distributed in the prediction task. Each panel shows a probabil-
ity plot of prediction errors in a stimulus condition (GLO, CLU, CDH) for the green or red dot (one point per trial; col-
ors=participants). Prediction errors are the circular distance to the optimal prediction which is given by the mean µkal
of a Kalman filter with correct motion structure prior L. Prediction errors (y-axis) are compared against a normal dis-
tribution with same mean and variance (x-axis; matched per participant). Most of the responses are along the identity
(dotted line) as expected for a normal distribution. The small number of deviations at the tails can be attributed to dot
confusion in some trials: swapping the red and green dot leads to uniformly distributed prediction errors, i.e., "heavy
tails".
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Figure 2. Fitting the Bayesian observer model can re-identify the generating motion prior in the prediction
task. Per stimulus condition (GLO: left, CLU: center, CDH: right), we generated artificial responses to all 1200
(= 12×100) trials presented to human participants by drawing samples (ϕgreen, ϕred) from the observer model pre-
sented in Material and Methods for each of 10 candidate motion priors L. The 10 priors are the 7 priors from the main
paper and 3 additional priors (GLW: weak global, CLW: weak cluster, HDH: half deep hierarchy, see Fig. S3 for their
definition). To create "human-like" responses, we used the average of the max. likelihood parameters θ=(πs, a, b)
fitted to human participants under the correct prior L?. Then we fitted all 10 candidate priors to the responses gen-
erated from the 10 priors as decribed in Material and Methods. This process (response generation and fitting) was
repeated 100 times, i.e., in total 3×1200×10×100 = 3,600,000 artificial trials were evaluated. The figure shows the
number of times, prior "Identified model" had the highest log-likelihood ratio in explaining the responses generated
from prior "Generating model".
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Figure 3. Revealing human motion priors in a multiple object prediction task (more candidate models). Same
as Fig. 3 from the main paper, but with 3 additional (non-preregistered) motion structure priors, GLW: weak global,
CLW: weak cluster, HDH: half deep hierarchy. These were included as additional, potential strategies to solve the task
in the CDH condition. For instance, GLW mirrors the strength of the global motion component in CDH while disregard-
ing the counter-rotating substructure. While GLW and CLW cannot explain human responses in the CDH condition,
HDH – another nested structure with 3 latent sources – could explain human responses as well as the correct CDH
prior. Due to the similarity of GLO and GLW (or CLU and CLW), these priors could not be distinguished reliably in
the GLO (CLU) condition (cf. Fig. S2). Motion strengths λ (vertical extend of edges in the graphs) are not drawn to
scale. Numerical values of all motion strengths λ are given in the top-left corner of the figure. For our stimulus de-
sign, motion strengths add quadratically, granting control over marginal dot velocities. At the example of GLO motion,√

0.3542 + 2.0922 = 2.121 matches the strength of IND.
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Figure 4. Benefits of multiple object prediction over single object prediction. Same as Fig. 3 from the main pa-
per (and Fig. S3), but with an observer model that disregards the posterior covariance Σkal by modeling human re-
sponses as

p(ϕ(i) |L, θ) = (1− πs) · N
(

ϕ(i); µ
(i)
kal, a

( 1 0
0 0
)
+ b

( 0 0
0 1
))

+ πs · N
(

Sϕ(i); µ
(i)
kal, a

( 1 0
0 0
)
+ b

( 0 0
0 1
))

,
i.e., replacing the structured covariance by unstructured noise for both dots (note that the model still has 3 free param-
eters). This evaluation resembles the type of data that could be measured in a single object prediction protocol where
the green and red dots’ locations are predicted in separate trials. Compared to our experiment, it would thus require
twice the number of trials. Despite this, a general reduction of contrast in the log-likelihood ratio is observed, when
compared to multiple object prediction (Fig. S3). This reduction is especially apparent in the CDH stimulus condition
where differentiation of the CLU tracker is reduced to the edge of statistical significance.
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Figure 5. Motion structure matrices of the MOT task. All matrices L lead to the same marginal velocity distribu-
tions p(vk) for all dots k. In this plot, we set fspeed = 2.0 (a typical value for human participants).
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Figure 6. Motion structure matrices of the prediction task. All matrices L lead to the same marginal velocity distri-
butions p(vk) for all dots k.

Figure 7. Probing a specific detrimental effect of perceptual noise to tracking of GLO stimuli. Re-evaluation
of the MOT data with decoupled perceptual noise (for details, see Appendix, section "Discussion of the quantitative
mismatch in the GLO condition of the MOT task"). Tracking of GLO stimuli is more affected by noisy observations than
other stimulus conditions (especially, IND and CNT), likely due to the longer duration of dot proximity events.
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