Abstract
Local field potential oscillations reflect temporally coordinated neuronal ensembles— coupling distant brain regions, gating processing windows, and providing a reference for spike timing-based codes. In phase amplitude coupling (PAC), the amplitude of the envelope of a faster oscillation is larger within a phase window of a slower carrier wave. Here, we characterized PAC, and the related theta phase-referenced high gamma and beta power (PRP), in the olfactory bulb of mice learning to discriminate odorants. PAC changes throughout learning, and odorant-elicited changes in PRP increase for rewarded and decrease for unrewarded odorants. Contextual odorant identity (is the odorant rewarded?) can be decoded from peak PRP in animals proficient in odorant discrimination, but not in naïve mice. As the animal learns to discriminate the odorants the dimensionality of PRP decreases. Therefore, modulation of phase-referenced chunking of information in the course of learning plays a role in early sensory processing in olfaction.
Significance Early processing of olfactory information takes place in circuits undergoing slow frequency theta oscillations generated by the interplay of olfactory input modulated by sniffing and centrifugal feedback from downstream brain areas. Studies in the hippocampus and cortex suggest that different information “chunks” are conveyed at different phases of the theta oscillation. Here we show that in the olfactory bulb, the first processing station in the olfactory system, the amplitude of high frequency gamma oscillations encodes for information on whether an odorant is rewarded when it is observed at the peak phase of the theta oscillation. Furthermore, encoding of information by the theta phase-referenced gamma oscillations becomes more accurate as the animal learns to differentiate two odorants.
Footnotes
Updated the manuscript to answer reviews in eLife.