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Insects are conventionally modelled as controlling
flight by varying a few summary kinematic parameters
that are defined on a per-wingbeat basis, such as
the stroke amplitude, mean stroke angle, and mean
wing pitch angle. Nevertheless, as insects have tens of
flight muscles and vary their kinematics continuously,
the true dimension of their control input subspace is
likely to be much higher. Here we present a compact
description of the deforming wing kinematics of 36
manoeuvring Eristalis hoverflies, applying functional
principal components analysis to Fourier series fits of
the wingtip position and wing twist measured over
26,541 wingbeats. This analysis offers a high degree of
data reduction, in addition to insight into the natural
kinematic couplings. We used statistical resampling
techniques to verify that the principal components
were repeatable features of the data, and analysed
their coefficient vectors to provide insight into the
form of these natural couplings. Conceptually, the
dominant principal components provide a natural
set of control input variables that span the insect’s
control input subspace, but they can also be thought
of as output states of the flight motor. This functional
description of the wing kinematics is appropriate to
modelling insect flight as a form of limit cycle control.
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21. Introduction
Insects in general, and flies in particular, display a spectacular degree of manoeuvrability,
which they achieve despite—or perhaps because of—their lack of independent control surfaces
analogous to the flaps of a conventional fixed-wing aircraft or the tail of a bird (but see [1]).
Instead, the kinematics of their beating wings are continuously adjusted to meet the joint
requiriements of weight support, thrust production, and flight control simultaneously. In this
respect, insects resemble a multi-rotor, but their wing kinematics are infinitely more complex and
varied than those of a rotor blade, even though both function as passive aeroelastic structures
driven and controlled by torques applied at the wing root. This difference ultimately reflects the
complexity of the underlying drive mechanism. In particular, the torques that are applied at the
root of an insect’s wing are produced by a multitude of different flight muscles contained within
the thorax [2].

The various flight muscles may be broadly categorised into two types: power muscles, and
steering muscles. In most insects, including dipteran flies, the main power muscles do not attach
directly to the wings, but instead drive the wingbeat by deforming the thorax, through which
kinetic energy is propagated to the wing hinge [3]. In Diptera, and several other insect orders,
these indirect muscles are asynchronous and stress-activated, which means that their neuronal
activity does not map onto their contractile state in a one-on-one fashion. Instead, as the indirect
flight muscles always occur in antagonistic sets, the contraction of one set stretches the other,
thereby stimulating its contraction and giving rise to a limit cycle oscillation [4]. This arrangement
presents limited opportunities for the direct control of power muscle output, but because the
thorax is a complex and highly anisotropic three-dimensional structure, even the simple linear
motions of the indirect flight muscles are transformed into a complex three-dimensional motion
after transmission through the wing hinge [3].

In contrast to the power muscles, all of the steering muscles are activated neuronally. Most
of the steering muscles attach directly to the wing hinge, or close to it, controlling its complex
three-dimensional motion through a variety of highly nonlinear mechanisms [2,5]. Other indirect
steering muscles act by modifying the deformation of the thorax. Besides the obvious function of
the direct steering muscles in changing the trajectory of the wing tip, or altering the amplitude
and phase of the wing’s pitching rotation and torsional deformation, indirect steering muscle
activity may be important in controlling the frequency of the limit cycle oscillations of the stretch-
activated power muscles [4]. In summary, the power muscles can be thought of as driving a limit
cycle oscillation of the wing; the form and frequency of which is controlled by the steering muscles
[6],[4]. This perspective is consistent with the scheme proposed by [7], according to which the
coupled motion of the insect’s wings and body is treated as a limit cycle oscillation that must be
controlled to stabilize and steer its flight.

Given that the wings are passive aeroelastic structures, the complexity of their kinematics
ultimately derives from the complexity of their actuation and deformation, with the latter in turn
being shaped by the complexity of the wings’ venation [8–12]. The number and arrangement
of the flight muscles varies across insects, but dipteran flies possess some 13 pairs of direct
steering muscles in addition to the many other pairs of indirect power muscles and indirect
steering muscles that together force the deformation of the thorax. The result is a highly coupled,
nonlinear, and over-actuated system [2]. It is an open question whether the direct steering muscles
can be controlled fully independently, but descending neurons from the brain are connected to
more than one flight muscle in flies. Moreover, in hawkmoths, control signals from the central
nervous system are distributed to multiple subunits of the indirect power muscles, leading to a
synergistic action of the muscles of the left and right wings [13].

Any complete quantitative description of an insect’s wing kinematics must necessarily reflect
the complexity of this underlying mechanism. Nevertheless, most previous studies have simply
used a set of summary kinematic parameters defined on a per-wingbeat basis, such as the
stroke amplitude or inclination of the stroke plane [14]. Evidently, these few parameters are
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3not sufficient to capture either the dynamics of the underlying mechanism, or the detailed time
history of the insect’s wingbeat. This is problematic, because the dimension of an insect’s control
input subspace may therefore be far greater than has been captured previously. For instance,
previous work assessing the controllability of insect flight has used 3 or 4 summary kinematic
parameters defining the stroke amplitude, mean stroke angle, and mean pitch angle of the wing
on the upstroke and downstroke [15,16]. This simplified approach is reasonable where the aim
is simply to test whether these kinematic parameters are sufficient to stabilize flapping flight
[15,16], but will not characterise fully the controllability of the real insect. Moreover, as these
summary kinematic parameters are defined on a per-wingbeat basis, they cannot capture the fine
details of the wing’s motion, such as whether the wing tip traces a U-shaped or figure-of-eight
trajectory [17], which can have large effects on aerodynamic force production [19]. In summary,
previous studies of insect flight dynamics and control have considered kinematic parameters that
are easy to quantify, rather than kinematic parameters that reflect what the insect actually controls.
This paper aims to rectify this position by providing a natural method of modelling an insect’s
deforming wing kinematics.

Previous research has used a spherical coordinate system [17] to describe the time history of
the wing tip kinematics, and has used blade-element modelling to describe the twisting of the
wings through the stroke [18]. In principle, a set of 4 time-varying primary kinematic variables,
comprising 2 spherical angular coordinates, and 2 coefficients measuring the spanwise twist
gradient and twist offset, is sufficient to describe the motions of a flapping wing with time-varying
linear twist distribution [1]. Previous work has used these same spherical and blade-element
coordinate systems as a basis for defining the wing kinematic inputs that are important in flight
control. Hence, insects are usually said to control their flight by varying their stroke amplitude
(i.e. the peak-to-peak amplitude of the combined variation in stroke angle and deviation angle),
or their stroke plane angle (i.e. the slope of the path traced by the wingtip), or the timing of
their wing rotation (i.e. the phase of the pitching motion of the wing with respect to its stroking
motion) [14]. However, whilst insects must certainly be capable of exerting control over all of these
aspects of their kinematics, it is an open question whether they are capable of controlling them
independently, or whether the same variables come close to providing a natural representation of
the insect’s control inputs.

The approach that we apply here is quite different to previous studies of insect flight, but
similar in some respects to a groundbreaking study of bat wing kinematics that used principal
components analysis (PCA) to quantify the dimensional complexity of the wing’s motion [20].
The wing of a bat is very different to the wing of an insect, comprising a directly actuated skeletal
structure with an elastic membrane that is held under muscular tension. Nevertheless, 95% of the
complexity of a bat’s wing motion could be captured by the first 16 principal components (PCs)
of the three-dimensional positions of the 17 tracked markers through time, or by the first 15 PCs
of the 20 corresponding joint angles [20]. This is broadly similar to the approach that we apply
here, with the key difference that we undertake the PCA not on marker positions or joint angles,
but rather on the Fourier series coefficients of the four primary kinematic variables that we use to
describe the time history of each wingbeat. This approach to data reduction is known as functional
principal components analysis (FPCA), because the PCs that the analysis identifies are expressed
in terms of a set of basis functions, here comprising the terms of the truncated Fourier series. This
provides an exceedingly compact description of the insect’s wing kinematics, and offers a clear
way of expressing the control couplings that are observed during free-flight manoeuvres.

The analysis that we present here is based on a published empirical dataset describing the
deforming wing kinematics of free-flying drone flies over a total ofN = 26, 541 wingbeat pairs [1].
We begin by giving a brief description of the videogrammetric method already used to measure
the complete time history of the 4 primary kinematic variables through each wingbeat. We then
describe the analytical methods that we develop here, starting with a description of how we used
periodic regression to decompose the time history of all 4 primary kinematic variables into a time-
periodic component and a time-linear component for each wingbeat. We next describe how we
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4applied FPCA to the time-periodic and time-linear components of the Fourier series that we fitted
to each wingbeat, identifying the minimum number of PCs needed to explain at least 99% of the
between-wingbeat variation. By definition, this reduced set of PCs spans the entire control input
subspace of the insect’s wing kinematics, providing a comparatively small set of variables that is
sufficient to capture all of the relevant variation in the wing kinematics. Finally, we analyse the
dominant PCs to characterise the key couplings that are present in the wing kinematics, before
discussing how the PC decomposition provides a natural basis for defining the control input
vector in a state-space model of the insect’s flight dynamics and control.

2. Materials and methods
The empirical measurements that we analyse here are those previously described in [1]. For
completeness, we begin by providing a brief summary of the experimental methods and
kinematic reconstruction technique, before providing a detailed description of the analysis that
forms the primary contribution of this paper.

(a) Experimental methods and kinematic reconstruction
A total of 36 wild-caught Eristalis tenax or E. pertinax were allowed to fly freely inside a 1m
diameter opaque acrylic sphere with diffuse overhead lighting. High-speed video sequences were
captured at 3.8kHz using four synchronized Photron SA3 cameras (Photron Ltd, West Wycombe,
UK) with 180mm macro lenses (Sigma Imaging Ltd, Welwyn Garden City, UK) viewing the insect
through clear portholes in the upper hemisphere. The recordings were triggered automatically
by an infrared trigger system as the insect passed through the centre of the sphere. Two 200W
pulsed infrared lasers (HSI-5000, Oxford Lasers Ltd, Oxford, UK) provided intense 805nm back-
illumination invisible to the insect, with a 20µs pulse duration slaved to the cameras. The
cameras were calibrated using a nonlinear least squares bundle adjustment routine implemented
in MATLAB, given images of a calibration grid in a wide range of positions and orientations [21].
A total of 854 video sequences were obtained in which both wings were visible for one or more
wingbeats, comprising N = 26, 541 wingbeat pairs [1].

A voxel-carving method was used to delimit the wing and body in three dimensions (see [1]
for details). The primary wing kinematic parameters were defined with respect to a right-handed
body-fixed axis system for the right wing, and with respect to an equivalent left-handed axis
system for the left wing. Each axis system had its origin at the wing base, with the x-axis directed
anteriorly parallel to the major axis of the body voxels, and the y-axis directed toward the wing
tip along the line connecting the wing bases. This convention ensures equivalency by making
the sign of all the primary wing kinematic parameters the same for both wings in symmetric
flight. The wing tip kinematics are described by a pair of spherical coordinates measuring the
azimuth (stroke angle, φ) and elevation (deviation angle, θ) of the wingtip. Note that because the
longitudinal body axis is at an oblique angle to the stroke plane, these quantities vary to a similar
degree through the wingbeat, which is different to other conventions in which the stroke angle
and deviation angle are defined with respect to the stroke plane. The local pitch angle ω(r) of each
wing is modelled as a linear function of the relative distance from the wing base (r) expressed as a
proportion of the wing length, such that ω(r) = ω0 + ωrr, where the offset term is called the twist
constant (ω0), and the slope term is called the twist gradient (ωr).

Because wingbeat frequency varied considerably between individuals (mean ± SD: 188± 14

Hz for all wingbeats), there was a similarly variable number of video frames recorded per
wingbeat. Hence, to provide consistency in our representation of the kinematic data, we first fitted
a quintic smoothing spline to our measurements of each of the four kinematic variables φ(t), θ(t),
ω0(t), and ωr(t), where t is time. We used MATLAB to fit these splines at a tolerance calculated to
remove the same total amount of variation as a 3rd order Butterworth filter with a −3dB cutoff
frequency of 500Hz for the wing tip kinematics φ(t) and θ(t), and a −3dB cutoff frequency of
800Hz for the wing twist kinematics ω0(t) and ωr(t). Finally, we transformed time t to wingbeat
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5phase ϕ, and evaluated the splines analytically at 101 evenly spaced points through the wingbeat
on the interval ϕ∈ [0, 2π], keeping separate record of the wingbeat period. We defined the phase
of the wingbeat (ϕ) relative to the timing of the reversal of the mean angular velocity of the
left and right wingtips at the top of the downstroke, where ϕ= 0 corresponds to the start of the
downstroke. The justification for defining the phase of the wingbeat with respect to stroke reversal
rather than with respect to wing twist is that the acceleration of the wing tip depends closely on
the torques applied at the base of the wing, whereas wing torsion and rotation are dominated by
aeroelastic forces.

We call the resulting estimates of the 4 primary kinematic variables (i.e. φ, θ, ω0, and ωr)
the full-fidelity kinematics, to distinguish these from the high-fidelity analytical approximations
that we arrive at through the progressive rounds of model reduction described in the next
two subsections. The estimates of the four primary kinematic variables are provided as
Supplementary Data 1, together with the code implementing the Fourier series analysis and the
FPCA to produce the high-fidelity approximations.

(b) Fourier series representation of the wingbeat kinematics
The first step in our reduction of these data was to express the full-fidelity kinematics, comprising
4× (101− 1) = 400 distinct sample points per wingbeat, as periodic functions of the wingbeat
phase ϕ. We did this by using periodic regression to fit a truncated Fourier series to each of the
four kinematic variables, using a 5th order Fourier series to capture the variation in the wing tip
kinematics φ(ϕ) and θ(ϕ), and a 3rd order Fourier series to capture the variation in the wing twist
kinematics ω0(ϕ) and ωr(ϕ). We also fitted a time-linear component for each wingbeat to account
for the fact that no actual wingbeat cycle is ever strictly periodic, as in practice the wing is never
found in exactly the same kinematic state at ϕ= 0 and ϕ= 2π. The order of the Fourier series was
matched to the degree of smoothing of the splines fitted in the preceding section, and captured
> 99.9% of the variation in the full fidelity kinematics through each wingbeat (mean R2 > 0.999,
over all N = 26, 541 wingbeat pairs). The data and code required to perform this decomposition
are provided as Supplementary Data 1, and a graphical portrayal of the scope of the modelling is
shown for one representative wingbeat in Figure 1A-D.

The generic Fourier series representation for each primary kinematic parameter is:

f(ϕ) =K0 (ϕ− π) +K1 +

n∑
i=1

[K2i cos(iϕ) +K2i+1 sin(iϕ)] (2.1)

where f(ϕ) stands for any of the 4 kinematic variables (i.e. φ, θ, ω0, or ωr) as a function of the
wingbeat phase ϕ. Breaking this expression down into its component parts, the coefficient K0

models the time-linear variation in f(ϕ) through each wingbeat, and is multiplied by (ϕ− π)

rather than by ϕ, to ensure that this time-linear term has zero mean on the interval ϕ∈ [0, 2π].
The constant offset term K1 represents the mean of f(ϕ) over the wingbeat, and the remaining
coefficients K2 . . .K2n+1 capture the periodic variation in f(ϕ) through the wingbeat, where n is
the order of the harmonics, which takes the value n= 3 for the wing tip kinematics and n= 5 for
the wing twist kinematics. Analytically, these Fourier series coefficients K2 . . .K2n+1 describe
a periodic oscillation about the reference condition described by the constant offset term K1.
Conceptually, these time-periodic components may be thought of as representing a limit cycle
oscillation of a nonlinear system, in contrast to the aperiodic motion described by the time-linear
term K0, which represents the motion required to transition smoothly between different limit
cycles [4,6,7].

Each wingbeat is therefore described by a total of 8 + 8 + 12 + 12 = 40 numerical coefficients.
Collecting the periodic coefficients for a given wingbeat together as:

KφP = [Kφ
1 . . .K

φ
2n+1]
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Figure 1. Kinematic reconstruction of a randomly selected wingbeat. (A-D) Kinematics reconstructed using all of the fitted

Fourier series terms. (E-H) Kinematics reconstructed using only the first 20 time-periodic PCs and all 4 time-linear PCs.

(I-L) Difference in local pitch wing angle of wing between the reduced-order PC model in (E-H) and the full Fourier series

model in (I-L). Each column shows four different phases of the stroke: (A,E,I) start of downstroke, ϕ= 0; (B,F,J) mid-

downstroke, ϕ= π/2; (C,G,K) start of downstroke, ϕ= π; (D,H,L) mid-upstroke, ϕ= 3π/2. Note the high-fidelity of the

approximation at all phases of the wingbeat. Green traces show the prior wing tip trajectory. See Supplementary Videos

1-2 for an animated version of the second and third columns of this figure, showing the effect of varying the number of

time-periodic PCs used in the reconstruction.

where Kφ
1 . . .K

φ
2n+1 denotes the set of coefficients for the kinematic variable φ, and similarly for

the other 3 kinematic variables, we may compactly summarise the entire dataset in the matrices:

XL =


1K

φ
0 1K

θ
0 1K

ωr
0 1K

ω0
0

. . . . . . . . . . . .

. . . . . . . . . . . .

2NK
φ
0 2NK

θ
0 2NK

ωr
0 2NK

ω0
0

 (2.2)

and

XP =


1KφP 1KθP 1Kωr

P 1Kω0

P

. . . . . . . . . . . .

. . . . . . . . . . . .

2NKφP 2NKθP 2NKωr

P 2NKω0

P

 (2.3)

where XP ∈R2N×36 describes the time-periodic components, and XL ∈R2N×4 the time-linear
components, for all N = 26, 541 wingbeat pairs. For a complete dimensional description of a
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7given wingbeat, it is of course necessary to specify its period, but we did not model the variation
in wingbeat frequency explicitly in our analysis. Including the wingbeat period as a variable
in the subsequent FPCA would have been problematic, because its dimensions are different to
those of the kinematic coefficients, all of which are in units of angular measure. This is no great
limitation in practice, because whereas wingbeat period varies substantially between individuals,
the within-individual variation in wingbeat period during any given flight recording was small
(mean coefficient of variation: 2.3%). Because the primary kinematic variables are all in units of
angular measure, and because their range of variation was similar (approximately ±50◦ in each
case), we did not normalise any of the time-periodic or time-linear coefficients before running the
FPCA.

In the next subsection, we use FPCA to describe separately the kinematic couplings that are
present in the data matrices XL and XP. This separation is appropriate because the time-linear
components can be conceptualised as transition terms that allow the insect to transition from
one steady state oscillation to another, and the modelling ought therefore to make allowance for
these transitions to be reversible. For example, a time-periodic oscillation A should be able to
transition to a time-periodic oscillation B through the superimposition of a time-linear transition
C on A; conversely, this time-periodic oscillation B should be able to transition back to the same
time-periodic oscillation A by superimposing a reversal of the time-linear transition C on A.
This being so, there is no particular reason to expect any straightforward correlation between the
time-periodic and time-linear components of a wingbeat. A more general way of conceptualising
this separation is in terms of limit cycle control: the principal components of the time-periodic
coefficients capture how the steady-state oscillations of the wing vary (i.e. they capture variation
in the shape of the orbit in state space); the principal components of the time-linear coefficients
capture how the wing transitions between different steady-state oscillations (i.e. they capture
variation in the position of the orbit in state space).

(c) Functional Principal Component Analysis (FPCA)
PCA serves to decompose a data matrix X∈Rp×m containing p observations of m variables into
the product of two new matrices:

X̂ = WVT (2.4)

where the hat notation is used to indicate that the data matrix X has been centered by subtracting
the mean of each column, and where the superscript T denotes the matrix transpose. The left
matrix W is a p×m matrix of PC scores, with a typically large number of rows corresponding
to the individual observations, and a typically smaller number of columns corresponding to the
individual PCs. The right matrix VT is an m×m matrix of PC coefficients, ordered such that the
first column of V contains the PC explaining the most variation in X, the second the next most
variation in X, and so on. In the special case that the observations contained in the data matrix
X are the coefficients of a set of basis functions, as is the case for the matrices XP and XL (see
Eqs. 2.2–2.3), then the resulting matrix decomposition is called a functional principal components
analysis (FPCA).

In practice, the decomposition of a centered matrix X̂ into its corresponding parts W and VT

is usually accomplished using the well-known singular value decomposition (SVD):

X̂ = UΛΛΛVT (2.5)

whereΛΛΛ= [λ1, λ2, . . . , λm] is a diagonal matrix containing the ordered eigenvalues of X, where V
is the right eigenvector matrix of X, and where U is the corresponding left eigenvector matrix. By
an obvious use of notation, it follows that the 2N × 4 matrix WL = ULΛΛΛL and the 2N × 36 matrix
WP = UPΛΛΛP contain the scores for the left and right wings of all N = 26, 541 wingbeat pairs on
the PCs identified for the centered time-linear coefficients X̂L and the centered time-periodic
coefficients X̂P. The time-linear and time-periodic PCs are themselves defined by the columns
of the 4× 4 coefficient matrix VL and the 36× 36 coefficient matrix VP. Because the coefficient
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8matrices are centered in this analysis, it follows that the PCs describe each wingbeat oscillation as
a deviation from the mean wingbeat oscillation, with the first PC describing the strongest coupling
of the kinematic variables over all of the wingbeats, the second PC the next strongest coupling,
and so on. The data and code required to perform this decomposition are provided in MATLAB

format as Supplementary Data 1, and the resulting matrices are also provided separately as text
files in Supplementary Data 2.

There are two key reasons for applying FPCA here. The first is to gain insight into how the
wing kinematics vary between wingbeats, noting that the eigenvectors contained in the leading
columns of the PC coefficient matrices VL and VP describe the dominant couplings of the
time-periodic and time-linear terms, respectively. The second is to reduce the complexity of the
functional model of the wing kinematics through model reduction, noting that the magnitude of
the eigenvalues contained in the matricesΛΛΛL andΛΛΛP describes the amount of variation explained
by the corresponding PC eigenvector. In fact, as we show below, the data matrix XP (or similarly
the data matrix XL) can be reconstructed with negligible loss of information as:

XP ≈ W̃PṼ
T
P + X̄P (2.6)

where the tilde notation denotes that the corresponding matrix has been truncated by taking only
its first few columns, and where the overbar notation denotes the mean matrix that is removed
by centering the data, where X̄P = XP − X̂P. The data and the code required to perform this
reconstruction are provided in MATLAB format as Supplementary Data 1

3. Results

(a) FPCA provides a high degree of data reduction
The primary result of the FPCA is a compact representation of the entire dataset, in which the
kinematics of each wingbeat are represented as a perturbation from the kinematics of the mean
wingbeat. These perturbations are described by the PC scores contained in the 2N -by-40 matrix

W =
[

WL WP

]
, where each of the 2N rows provides information on one of the N = 26, 541

wingbeat pairs measured for either the left or the right wing. The physical meaning of the PC
scores is given by the corresponding PC coefficient matrices VL and VP, of dimension 4× 4 and
36× 36, respectively. Given knowledge of the time history of the mean wingbeat, it follows that
the complete time history of every wingbeat can be reconstructed at full fidelity from its score on
each of the 40 time-linear and time-periodic PCs in conjunction with the information contained in
the PC coefficient matrices.
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Figure 2. Explanatory power of the principal components (PCs). Graph plots cumulative percentage of between-wingbeat

variation in the time-linear and time-periodic wing kinematics that is explained by the time-linear (blue) and time-periodic

(red) PCs over all N = 26, 541 wingbeat pairs for both the left and right wings.
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9In practice, the dimension of the data can be further reduced by considering only the most
informative subset of the PCs. For example, the first 20 time-periodic PCs are sufficient to explain
> 99% of the measured variation about the mean wingbeat in the time-periodic components of
all N = 26, 541 wingbeat pairs (Figure 2). There is therefore minimal loss of information on the
time history of the wingbeat associated with truncating the 2N -by-36 matrix WP to a 2N -by-
20 matrix W̃P (Figure 3). It is important to note that the remaining < 1% of the variation in the
measured kinematics is likely to represent noise rather than real underlying variation in the wing
kinematics. By the same token, only the first 2 time-linear PCs are needed to explain > 99% of the
measured variation in the linear transition components of all N = 26, 541 wingbeats (Figure 2).
In this case, however, it is appropriate to use all of the columns of the 2N -by-4 linear transition
matrix WL to avoid the discontinuities in the kinematics that would otherwise be present at the
transitions between successive wingbeats.
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Figure 3. Kinematic reconstruction of a representative wingbeat pair. Time history of the four primary kinematic variables

for the left (red) and right (blue) wings, shown for a single wingbeat chosen at random from the first flight sequence, and

plotting (A) twist gradient (ωr), (B) twist constant (ω0), (C) stroke angle (φ), and (D) deviation angle (θ). Dots denote

the full fidelity kinematics obtained by evaluating the splines fitted to the raw measurements at 101 evenly spaced points

through the wingbeat on the interval ϕ∈ [0, 2π]. Solid lines show the reduced-order reconstructions obtained by using

only the first 20 time-periodic PCs and all 4 time-linear PCs. This is sufficient to reconstruct > 99% of the measured

variation in the wingbeat kinematics over all N = 26, 541 wingbeat pairs. Moreover, because this variation is expressed

with respect to the mean wingbeat kinematics, which provide an exact time-varying baseline for the reconstruction, the

actual time history of any individual wingbeat will be captured at much better than 99% accuracy. See Supplementary

Video 3 for an animated version of this figure showing the effect of varying the number of time-periodic PCs used in the

reconstruction.

Putting all this together, it follows that almost all of the time-continuous variation in wing
kinematics over all 2N = 53, 082 wingbeat pairs can be captured by the 2N -by-20 matrix W̃P

and by the 2N -by-4 matrix WL. The extent of the approximation involved is illustrated for one
randomly reconstructed wingbeat in Figures 3 and 1 (see also Supplementary Videos 1-3). Further
reduction of the dimensionality of the problem is of course possible, depending on the intended
use and required accuracy of the reduced order modelling (see Discussion). This low-dimensional
representation of the data is possible for only two reasons: first, because the wingbeat kinematics
are quasi-periodic, with only a few significant harmonics; and second, because the dominant PCs
capture the natural couplings inherent to the insect’s wing kinematics. These natural couplings
manifest themselves over the entire dataset as statistical correlations between the orthogonal basis
functions that were used to describe each wingbeat (see Eq. 2.1), and they are fully described by
the columns of the PC coefficient matrices ṼP and VL. Thus, not only does the identification of the
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10most informative set of PCs provide a high degree of data reduction; it also provides insight into
the natural couplings that arise from the actuation, dynamics, and control of the insect’s wings.
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Figure 4. Repeatability of the identified principal component (PC) couplings. Absolute correlation coefficient matrix for

the 36 time-periodic PCs, ordered according to the proportion of the total variation that each PC explains. The grayscale

level of the cells corresponds linearly to the absolute value of the correlation coefficient, calculated as: (A) the absolute

correlation coefficient between the PC coefficient vectors for the left and right wings; and (B) the mean of the absolute

correlation coefficient between the PC coefficient vectors identified for the full dataset, and for each of 100,000 random

subsamples comprising 10% of the full dataset. Note that each correlation coefficient matrix is diagonally dominant,

indicating that similar sets of PCs are identified for the left and right wings, and for random subsamples of the data as

compared to the full dataset. The couplings that the PC coefficient vectors describe are therefore repeatable, hence

physically meaningful, features of the data.
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11(b) FPCA identifies repeatable couplings in the wing kinematics
To check the reliability of the couplings identified by the FPCA, we ran a validation analysis
on centered subsets of the data matrix XP, comparing the PC coefficients for these subsets with
one another or with those already obtained. We first checked the similarity of the PC loadings
identified independently for the left and right wings, reasoning that these ought in principle to
be self-similar. We defined the mean absolute correlation coefficient matrix R for this case as
the matrix with entries R(i,j) corresponding to the absolute correlation coefficient between the
ith and jth columns of the time-periodic PC coefficient matrices of the left and right wings. As
expected, this matrix was nearly diagonal (Figure 4A), indicating that the identified couplings do
indeed have a high degree of self-similarity for the left and right wings. We next ran a resampling
analysis in which we repeated the FPCA 100,000 times on random subsamples each containing
10% of the 2N = 53, 082 rows of the data matrix XP, drawn without replacement. We defined
the mean absolute correlation coefficient matrix R for this case as the matrix with entries R(i,j)

corresponding to the mean of the absolute correlation coefficients between the ith column of the
full time-periodic PC coefficient matrix and the jth column of this matrix for each of the random
subsamples. This matrix was again nearly diagonal (Figure 4B), indicating that the identified
couplings have a high degree of consistency across different subsamples of the dataset. It follows
that the identified couplings describe repeatable features of the data, and that it would also have
been possible to identify these using a sample an order of magnitude smaller than theN = 26, 541

wingbeat pairs analysed here.
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Figure 5. Contribution of the four primary kinematic variables to the dominant principal component (PC) couplings. (A,B)

Contributions to time-periodic PCs 1–20; higher-numbered PCs not shown, on the basis that individually they have

trivial explanatory power. (C,D) contributions to time-linear PCs 1–4. Each vertically stacked bar represents a single

PC coefficient vector; each subdivision shows the magnitude of a PC coefficient corresponding to one of the terms in the

original Fourier series representation (see Eq. 2.1). Subdivisions are coloured according to the primary kinematic variable

to which they refer: φ (dark blue), θ (light blue), ω0 (light red), or ωr (red). In (A,C), the PC coefficients are normalized

such that the total height of the bar for each PC is equal to the proportion of the total variation that it explains. In (B,D),

the coefficient are normalized so that all of the bars have the same total height. The former gives an indication of how

much of the overall variation in wing kinematics is attributable to each primary kinematic variable; the latter allows direct

comparison of the relative importance of the different primary kinematic variables to each PC. Note the especially strong

contribution of the wing twist variables to all of the dominant PCs (i.e. lowest numbered PCs).

(c) Wing twist variation dominates the kinematic couplings
We next sought to characterize the variation in wing kinematics described by each PC. All of the
most important time-periodic and time-linear PCs are dominated by variation in the wing twist
variables, ω0 and ωr , coupled with a much smaller degree of variation in the stroke angle φ, and
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12an even smaller degree of variation in the deviation angle θ (Figure 5). This partly reflects the fact
that the wingbeat phase ϕ was always determined with reference to the wing tip kinematics (see
Materials and methods), which means that the stroke angle and deviation angle have less scope
to vary between wingbeats at any given phase than do the wing twist variables. Even so, the fact
that all of the most important PCs are dominated by variation in wing twist indicates that the
phasing of this wing twist is quite variable with respect to the phase of the wing tip kinematics
(see Discussion).
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Figure 6. Time-domain representation of the dominant time-periodic principal components (PCs). The plots show how

the time histories of the four primary kinematic variables are affected by perturbing the kinematics of the mean wingbeat

±1SD in each of the first 3 time-periodic PCs, where SD denotes the standard deviation of the scores for that PC over all

wingbeats: (A) PC1; (B) PC2; (C) PC3. Black lines plot the time history of the stroke angle (φ), deviation angle (θ), twist

gradient (ωr), and twist constant (ω0); cyan and magenta regions of the graph display the effect of a±1SD perturbation.

(d) Time-domain analysis of the dominant kinematic couplings
We visualised the dominant kinematic couplings by perturbing the time-history of the four
primary kinematic variables with respect to the mean wingbeat, using the PC coefficients
contained in the leading columns of the matrices ṼP and VL (Figures 6 and 7). In doing so,
we used the standard deviations (SDs) of the PC scores across all 2N = 53, 082 left and right
wingbeats (i.e. the column-wise SDs of W̃P and WL) to weight the PC coefficients, thereby
revealing the typical range of variation in the four time-varying primary kinematic variables
that is attributable to each PC (Figure 6). This analysis shows, for example, that time-periodic
PC1 involves continuous changes in wing twist that are most pronounced through the upstroke,
coupled with large changes in stroke angle that are greatest at stroke reversal (Figure 6a). In
contrast, the variation in wing twist that characterises time-periodic PC2 throughout the stroke
is less strongly coupled with variation in the wing tip kinematics (Figure 6b). Time-periodic PC3
involves pronounced variation in stroke angle at dorsal stroke reversal, coupled with changes in
wing twist throughout the wingbeat (Figure 6c).
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The corresponding analysis of the time-linear PCs shows that time-linear PC1 involves
opposing changes in twist gradient and twist constant (Figure 7a), whereas time-linear PC2
involves the same direction of change in both wing twist parameters (Figure 7a). In both
cases, the associated changes in wing tip kinematics are negligible (Figure 7), which makes the
inclusion of time-linear PCs 3–4 particularly important to avoiding discontinuities in the wing
tip kinematics at the transitions between wingbeats. Taken together, the first three time-periodic
PCs are sufficient to capture more than half the variation in the time-periodic wing kinematics
between wingbeats, whilst the first two time-linear PCs already capture almost all of the variation
in the time-linear wing kinematics between wingbeats (Figure 2). It follows that Figures 6–7
contain information on the kinematic couplings that together explain the majority of the variation
between wingbeats. A similar exercise can be carried out for as many PCs as may be required.

(e) Phase-domain analysis of the dominant kinematic couplings
It is already evident from the time domain plots in Figure 6 that the time-periodic PCs each
manifest themselves most strongly at characteristic phases of the stroke cycle. The detailed phase
relationships of these time-periodic kinematic couplings are even more clearly visible in the
corresponding phase portraits. To understand the effects of these perturbations, it is helpful first
to consider the mean wingbeat kinematics, which form the baseline for the perturbed wingbeat
kinematics (Figure 8). The mean wingtip trajectory is similar on both the upstroke and the
downstroke, as can be seen by inspection of the phase portrait of stroke angle against deviation
angle (Figure 8A). In contrast, the wing twist variables follow an opposed path on the upstroke
as compared to the downstroke (Figure 8B), which reflects the fact that the wing is inverted on
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14the upstroke so that its aerodynamic angle of attack is similar on both half strokes. The complex,
looped nature of this path reflects the harmonic content that is present in the wing twist through
the mean wingbeat (cf. Figure 6).

-30-20-1001020304050

-50

-40

-30

-20

-10

0

10

20

aft

-10 0 10 20 30 40 50 60 70 80 90
-40

-30

-20

-10

0

10

20

30

40

50

60

forward

dorsal
ventral

downstroke
upstroke

downstroke

upstroke

A

B
stroke angle φ (˚)

de
vi

at
io

n 
an

gl
e 

θ 
(˚)

twist constant ω0 (˚)

tw
is

t g
ra

di
en

t ω
r(˚
)

ϕ = 0

ϕ = 0

Figure 8. Phase portraits of the mean wingbeat kinematics. (A) Wing tip kinematics, plotting deviation angle (θ) versus

stroke angle (φ); and (B) wing twist kinematics, plotting twist gradient (ωr) versus twist constant (ω0). Zero phase (ϕ= 0)

denotes the start of the downstroke. Note that as φ and θ are the spherical coordinates of the wing tip, the phase portrait

in (A) may be interpreted as an equirectangular projection of the wingtip trajectory; there is no straightforward physical

interpretation of the phase portrait in (B), but both phase portraits show clearly how the primary kinematic variables are

coupled in the mean wingbeat.

The detailed effect of each time-periodic PC is described by the change it produces in the shape,
position, or orientation of the phase portrait. The kinematic effect of any given PC is reversible,
so we adopt the convention of using parentheses to show how the different elements of the PC
coefficient vector are coupled. For example, under time-periodic PC1, a steepening (shallowing)
of the stroke plane is associated with a shortening (lengthening) of the stroke path (Figure 9A),
but the same steepening (shallowing) of the stroke plane could in principle have been associated
with a lengthening (shortening) of the stroke path under an alternate kinematic coupling. This
steepening (shallowing) and shortening (lengthening) of the stroke path under time-periodic
PC1 results in a marked decrease (increase) in the overall amplitude of the wingbeat, and is
accompanied by compression (expansion) of the path traced by the wingtip on the lower half
of the stroke (Figure 9A). These changes in wing tip kinematics are associated with an increase
(decrease) in the amplitude of the oscillatory variation in wing twist gradient, and with a decrease
(increase) in the amplitude of the oscillatory variation in wing twist constant (Figure 10A). The
corresponding changes in wing pitch are most pronounced at the points of dorsal and ventral
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15stroke reversal, when the distance between the equivalent points on the reference and perturbed
limit cycles is greatest (Figure 10A). Overall, the effect of perturbing PC1 is to steepen (shallow)
the stroke plane whilst decreasing the stroke amplitude, and increasing (decreasing) the degree to
which the wing’s local pitch angle varies as a result of the coupled changes in wing twist constant
and wing twist gradient.
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16In contrast, time-periodic PC2 describes shallowing (steepening) of the stroke plane, which
is most pronounced through the upper half of the stroke, and which is accompanied by only
minimal changes in the shape of the wingtip path (Figure 9B). This shallowing (steepening)
of the stroke plane is accompanied by a coupled increase (decrease) in the amplitude of the
oscillatory variation in both the wing twist constant and wing twist gradient (Figure 10B). Again,
the resulting changes in wing pitch angle are most pronounced at the points of dorsal and
ventral stroke reversal. In summary, the general effect of perturbing PC2 is to shallow (steepen)
the stroke plane, whilst greatly increasing (decreasing) the extent of the variation in the wing’s
pitch angle through the wingbeat through its effects on both the rigid-body rotation and torsional
deformation of the wing. In contrast, time-periodic PC3 describes changes in wingtip trajectory
(Figure 9C) that look geometrically to similar those of PC1 (Figure 9A), albeit that its PC coefficient
vector happens to be oppositely signed. However, whereas the changes in the wingtip trajectory
under PC1 are associated with opposed changes in the amplitude of the oscillatory variation
in wing twist constant and gradient, in PC3 they are associated with a wholesale shift in the
position of the orbit describing the variation in wing twist constant and gradient through the
wingbeat (Figure 10C). In summary, the general effect of perturbing PC3 is to cause a shallowing
(steepening) of the stroke plane, whilst decreasing (increasing) the extent of the wing’s torsional
deformation and increasing (decreasing) its pitch angle at the base.

Time-periodic PCs 1-3 are already sufficient to capture > 50% of the variation in the time-
periodic wing kinematics between wingbeats, whilst time-periodic PCs 4-6 collectively explain
another 30% of this variation. Time-periodic PCs 4-6 are each associated with lesser changes in
wing twist constant and wing twist gradient than PCs 1-3 (Figures 10D-F; cf. Figures 10A-C), but
the associated changes in wingtip trajectory are at least as large (Figures 9D-F; cf. Figures 9A-C).
Focussing on these changes in wingtip trajectory, time-periodic PCs 4 and 5 are both associated
with a prominent increase (decrease) in stroke angle throughout the lower half of the stroke,
leading to a forward (aft) displacement of the position of the wingtip at ventral stroke reversal
(Figures 9D-E). They are also both associated with an increase (decrease) in deviation angle at
the upper part of the stroke, leading to a dorsal (ventral) displacement of the wingtip at dorsal
stroke reversal, which is much more prominent for PC4 (Figure 9D). PC6, in contrast, involves a
steepening (shallowing) of the stroke plane and an expansion (compression) of the path traced
by the wingtip on the lower half of the stroke (Figure 9F), which resembles closely the pattern
observed for PC3 (Figure 9C).

4. Discussion
The time-periodic and time-linear PCs that we have identified provide a compact decomposition
of the natural couplings that are inherent in the wing kinematics of manoeuvring hoverflies. Thus,
any steady-state oscillation of the wing can be characterised as a perturbation of the reference
wingbeat along the directions defined by the time-periodic PCs that we have identified. Any non-
steady oscillation, in which the wing ends its stroke in a different kinematic state to that in which
it began, can be described by superimposing the time-linear PCs that we have identified. The
approach that we have developed here can therefore be considered a model-based approach to
data reduction that reflects the characterisation of insect flight as involving a form of limit cycle
control [4,6,7].

The observation that only around half the PCs are needed to capture > 99% of the measured
variation in the wing kinematics relates partly to the fact that the higher harmonics of some of the
fitted Fourier series are unimportant, and are effectively dropped by the FPCA. For example, to
explain> 99% of the between-wingbeat variation in each of the four kinematic variables it is only
necessary to include up to the 1st harmonic for stroke angle, up to the 3rd harmonic for deviation
angle, and up to the 4th harmonic for twist constant. All 5 fitted harmonics are needed to explain
> 99% of the between-wingbeat variation in twist gradient. Even so, reducing the order of the
Fourier series independently in this way would still leave us with a total of 34 fitted coefficients,
compared to the 24 PCs used to reconstruct the data in Figure 3. It follows that a considerable
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17part of the data reduction that we have achieved through the FPCA must be attributable to the
couplings between the kinematic variables that are described in the Results above. In any case, it
is clear that the overall result of the FPCA is an exceedingly compact representation of the wing
kinematics.

In this compact representation, all of the time-continuous kinematic variation over our entire
dataset of N = 26, 541 wingbeat pairs is summarised for both the left and the right wings by the

2N -by-40 matrix W at effectively full fidelity, and by the 2N -by-24 matrix W̃ =
[

WL W̃P

]
at>

99% fidelity. Lower-dimensional representations are possible using fewer PCs, depending on how
high a degree of approximation is acceptable in the data. The only pieces of information that are
required in addition to the matrix W (or W̃) are: (i) the corresponding 4-by-4 matrix VL and the 36-
by-36 matrix VP (or its truncated submatrix ṼL); (ii) the vector of length 40 containing the Fourier
series coefficients for the mean reference wingbeat; (iii) the vector of length 2N containing the
period of each wingbeat; and (iv) the details of the wing’s planform. All these data are published
here as Supplementary Data 1, to enable this dataset to serve as the basis for future analyses
using computational fluid dynamics (CFD) or other aerodynamic modelling approaches. Because
the entire dataset is uniquely defined in functional form, it can be used reliably for the cross-
validation of different flow solvers and meshing approaches, because different researchers will
be able to generate the same, fully-repeatable wing kinematics with whatever meshing approach
they use.

The natural couplings that the PCs identify relate fundamentally to the control that an insect
can exert over its wing kinematics. Specifically, whilst the insect may not be able to control every
PC independently of every other, the dominant PCs must collectively span the entire range space
of the insect’s flight control system—at least insofar as this was utilised by the subjects of our
experiments. In other words, the dominant PCs contain all of the wing kinematics that the insect
actually uses. Conversely, the PCs that prove unimportant in our analysis (i.e. all of the higher-
order PCs) describe all of the geometrically conceivable wing kinematics that the insect cannot—
or does not—use. The overriding conclusion that the PCs tell us something fundamental about
Eristalis flight control is confirmed by the fact that the FPCA extracts repeatable features from the
data, which we have demonstrated in two ways. First, we have shown that essentially the same
set of PCs is identified for each insect if the analysis is run on the left and right wings separately.
Second, we have shown that the same set of principal components is repeatably identified by
running the analysis on 100,000 random subsamples of the data. It follows that by identifying the
dominant couplings in the wing kinematics, the PC decomposition provides a natural basis in
which to describe how an insect controls its flight.

All of the dominant time-periodic PCs can be interpreted in terms of their effects on the
familiar summary kinematic variables including stroke amplitude, stroke plane angle, and the
timing of wing rotation. However, the full descriptions of the most important PCs that are
provided in Figures 6-7 and 9-10, and which are implicit in the PC coefficient vectors themselves
(Supplementary Data 1), show that the reality is much richer than can be captured by these
summary variables alone. For example, a steeper stroke plane angle is typically associated with
a lower stroke amplitude (Figure 9A,C,F), but is also associated with changes in the shape of the
path traced by the wingtip, and with coupled changes in the detailed time history of the wing’s
twist. Indeed, the overriding conclusion that emerges from this analysis is that the most variable
components of the wing kinematics are those involving wing twist, and comprise complex, high-
order changes in the phasing of the wing’s twisting motion throughout the stroke (Figure 10).
Whilst this variability may partly reflect the difficulty of regulating the passive torsional modes
of the wing through only the application of a pitching torque at the wing root, the fact that specific
patterns of variation in wing twist are repeatably coupled to specific patterns of variation in wing
tip trajectory clearly indicates that a large portion of this variability must indeed be under the
insect’s direct control. Moreover, the nature of these couplings is such that the dominant PCs all
involve changes in the phasing of wing pronation and supination relative to dorsal and ventral
stroke reversal, respectively (Figure 10). This is interesting, because it is well known that the

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 6, 2019. ; https://doi.org/10.1101/759175doi: bioRxiv preprint 

https://doi.org/10.1101/759175
http://creativecommons.org/licenses/by/4.0/


18aerodynamic forces are highly sensitive to the timing of wing pronation and supination relative to
the timing of dorsal and ventral stroke reversal [22,23]. This already suggests that the PCs which
capture the most variation in the wing kinematics are likely to be important aerodynamically, as
does the broader observation that the fine details of the wing’s motion can have large effects on
aerodynamic force production [19]. A detailed analysis of the aerodynamic effects of the PCs will
be provided elsewhere.

In conclusion, there are two complementary ways of interpreting the physical meaning of the
PC decomposition. If the aim is to understand how muscle actions control wing kinematics, then
the dominant PCs define an appropriate basis for observing the kinematic output of the insect’s
neuromuscular control system. Alternatively, if the aim is to understand how wing kinematics
control flight dynamics, then the PCs define an appropriate basis for observing the kinematic
inputs to the insect’s flight dynamics. Hence, the PCs that we have identified may be used to
define either a natural state vector for the muscle actuation system, or a natural control input
vector for the flight control system. This is in contrast to the more conventional approach in insect
flight dynamics of taking the kinematic variables that a human observer might otherwise define—
stroke amplitude, stroke plane angle, and so on—as motor outputs or control inputs. Future work
will make use of the basis provided by the reduced set of PCs to build physically and biologically
meaningful state-space models for systems-level analyses of observability and controllability.
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20Supplementary Data 1. This zipped folder contains all of the data used in the analysis in
the main paper, together with code for implementing the various steps of the analysis, both in
MATLAB format. Running the m-files in sequence produces a reduced-order approximation and
reconstruction of the data. See README file and comments in the various m-files for further
details.

Supplementary Data 2. This zipped folder contains text files corresponding to the data
matrices XL and XP in units of degrees, together with the results of the functional principal
components analysis on these data matrices, comprising: (i) the mean matrices X̄L and X̄P; (ii)
the PC score matrices WL and WP; (iii) the PC coefficient matrices VL and VP; and (iv) the
vectors of eigenvalues on the diagonals of the matricesΛΛΛL andΛΛΛP. The same folder also contains a
vector giving the period of each wingbeat (ms), a vector giving the wing length for each wingbeat
(m), and matrices containing the chordwise and spanwise coordinates of 100 points on both the
leading and trailing edges of a representative wing outline of Eristalis. These coordinates are
expressed in dimensionless form, and may be put in dimensional form by multiplying them by
the wing length. The data matrices and PC score matrices of length 2N = 53, 082 are partitioned
such that the first N = 26, 541 rows correspond to the left wingbeats, and the next N = 26, 541

rows correspond to the right wingbeats. See Materials and methods for details and nomenclature.

Supplementary Video 1. Kinematic reconstruction of a randomly selected wingbeat, showing
the effect of increasing the number of time-periodic principal components (PCs) used in the
reconstruction from 1 to 36. Each reconstruction uses all of the time-linear PCs to ensure
continuity at the transitions between wingbeats. Wing coloured by its local pitch angle.

Supplementary Video 2. Kinematic reconstruction of a randomly selected wingbeat, showing
the effect of increasing the number of time-periodic principal components (PCs) used in the
reconstruction from 1 to 36. Each reconstruction uses all of the time-linear PCs to ensure
continuity at the transitions between wingbeats. Wing coloured by the difference between its
local pitch angle and that of the full-fidelity reconstruction from the Fourier series analysis.

Supplementary Video 3. Animation of Figure 3 showing the effect of varying the number of
time-periodic PCs used in the reconstruction from 1 to 36. Each reconstruction uses all of the
time-linear PCs.
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