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One Sentence Summary: Integrating tumor-derived sequences across large panels of patient-

specific mutations offers enhanced sensitivity for ctDNA detection and monitoring from both 

high-depth and low-depth plasma sequencing data. 

Abstract: Circulating tumor-derived DNA (ctDNA) can be used to monitor cancer dynamics 35 

noninvasively. Patients with small tumors have few copies of ctDNA in plasma, resulting in 

limited sensitivity to detect low-volume or residual disease. We show that sampling limitations 

can be overcome and sensitivity for ctDNA detection can be improved by massively parallel 

sequencing when hundreds to thousands of mutations are identified by tumor genotyping. We 

describe the INtegration of VAriant Reads (INVAR) analysis pipeline, which combines patient-40 

specific mutation lists with both custom error-suppression methods and signal enrichment based 

on biological features of ctDNA. In this framework, the sensitivity can be estimated 

independently for each sample based on the number of informative reads, which is the product of 

the number of mutations analyzed and the average depth of unique sequencing reads. We applied 

INVAR to deep sequencing data generated by custom hybrid-capture panels, and showed that 45 

when ~106 informative reads were obtained INVAR allowed detection of tumor-derived DNA 

fractions to parts per million (ppm). In serial samples from patients with advanced melanoma on 

treatment, we detected ctDNA when imaging confirmed tumor volume of ~1cm3. In patients 

with resected early-stage melanoma, ctDNA was detected in 40% of patients who later relapsed, 

with higher rates of detection when more informative reads were obtained. We further 50 

demonstrated that INVAR can be generalized and allows improved detection of ctDNA from 

whole-exome and low-depth whole-genome sequencing data.  

 

Introduction 

Circulating tumor DNA (ctDNA) can be robustly detected in plasma when multiple copies of 55 

mutant DNA are present; however, when ctDNA levels are low, analysis of individual mutant 

loci might produce a negative result due to sampling noise even when using an assay with perfect 

analytical sensitivity. Such “missed” samples can have low fractional concentrations of ctDNA 

(relatively few mutant molecules in a high background), or low absolute numbers of mutant 

molecules due to limited sample input (Fig. 1A). This effect of limited sampling reduces the 60 

sensitivity of ctDNA monitoring for patients with early-stage cancers, or following treatment for 
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detection of minimal residual disease (1, 2). Studies showed, for example, that by targeting a 

single mutation per patient in the plasma of early-stage breast and colorectal cancer patients post-

operatively, ctDNA was detected in approximately 50% of patients who later relapsed (3, 4). 

When applied to BRAF- or NRAS-mutant stage II-III patients with melanoma, ctDNA was 65 

detected up to 12 weeks post-surgery in only 16.8% of patients who relapsed within 5 years (5). 

To increase the number of mutant molecules sampled, previous studies have shown that it may 

be possible to analyze larger volumes of plasma from multiple blood tubes (4, 6) and/or utilize 

broader sequencing panels. 

Tumor-guided patient-specific analysis, which involves prior tumor genotype information 70 

and custom panel design (7–11), offers the possibility to greatly increase the sensitivity of 

ctDNA assays for cancer monitoring by targeting a larger number of mutations (2, 11) (Fig. 1B). 

Such assays have analyzed up to 40 patient-specific mutations in parallel, quantifying ctDNA to 

1 mutant molecule per 25,000 copies in a patient with non-small cell lung cancer (NSCLC) (10). 

Increasingly broad tumor sequencing is being performed both in research and clinical settings 75 

(12), which provides valuable mutation information that may be leveraged for improved 

sensitivity for ctDNA. We conceptualize the factors influencing ctDNA sensitivity as a two-

dimensional space (Fig. 2A), highlighting the importance of maximizing the number of relevant 

DNA fragments analyzed, by increasing either plasma volumes or the number of (patient-

specific) mutations sampled: the number of informative reads (IR) generated is proportional to 80 

the product of these two factors. 

ctDNA detection methods often rely on identification of individual mutations (6, 9, 13) 

which may discard mutant signal that does not pass a threshold for calling. In this study, to 

improve sensitivity, we aggregated sequencing reads across 102-104 mutated loci, using prior 

information from tumor genotyping to guide analysis (Fig. 2B). The potential sensitivity benefit 85 

of targeting hundreds to thousands of tumor markers per patient has been previously suggested 

(10, 14), though such approaches have not been applied to cancer monitoring in plasma.  

We suggest that a tumor-guided approach targeting a large number of patient-specific 

mutations has advantages beyond simply mitigating sampling error. By virtue of generating a 

large number of IR, multiple error-suppression steps may be employed to overcome sequencing 90 

and PCR errors while retaining signal. Aside from molecular barcoding, it may be possible to 
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identify artefactual signal at a given locus by comparison of the given allelic fraction against the 

allele fractions at other patient-specific loci. Furthermore, greater weight may be assigned to 

fragments more likely to arise from tumor cells based on their biological characteristics such as 

fragment size (15), thereby enhancing the signal to noise ratio.  95 

Here, we present a workflow for enhanced patient-specific monitoring that is optimized 

for sensitive detection of ctDNA to parts per million, using patient-specific sequencing data and 

custom hybrid-capture panels (Fig. 2C, flowchart in Fig. S1). This approach leverages custom 

error-suppression and signal enrichment methods to enable sensitive monitoring and 

identification of residual disease.  We further demonstrate the ability to apply INVAR to plasma 100 

whole-exome sequencing (WES) and shallow whole genome sequencing (sWGS), demonstrating 

improved sensitivity for detection and quantification of ctDNA. 

 

Tumor genotyping 

First, tumor genotyping was performed to identify multiple patient-specific mutations per 105 

patient: exome sequencing data was generated from tumor and buffy coat samples from 47 

patients with Stage II-IV melanoma (Methods), identifying a median of 625 mutations per 

patient (IQR 411-1076, Fig. S2 and Table S1).  These mutation lists were used to generate 

custom capture sequencing panels, which were used to sequence longitudinal plasma samples 

(n=144) (2,301x mean raw depth). In addition, WES (238x mean raw depth, n=20) and sWGS 110 

(0.6x mean raw depth, n=33), was performed on samples from the same patients and used as 

input for INVAR analysis (Tables S2 and S3). 

 

Characterizing background error rates 

We started by characterizing background error rates in hybrid-capture sequencing data. 115 

Approximation of error rates may potentially be achieved through grouping mutations of similar 

class. We demonstrate that error rates vary between mutation class by over an order of 

magnitude using raw sequencing data without using molecular barcodes (Fig. 3A), consistent 

with Newman et al. (10). To increase the resolution of background error rates further, we 

grouped mutations by both mutation class and trinucleotide context, demonstrating over two 120 
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orders of magnitude difference in background error rate between the least and most noisy 

trinucleotide context (Fig. 3B). 

 Using a patient-specific sequencing approach, a large number of private mutation loci 

were targeted. Each locus has its own error rate, though accurate benchmarking of the 

background noise rates of individual loci to levels below 10-6 would require the cfDNA 125 

molecules from a total of 100mL of plasma in order to sample one mutant read. This assumes a 

cfDNA concentration of 10ng/mL from plasma, yielding 3 million analyzable molecules. Thus, 

we sought to develop a background error model for patient-specific sequencing data that could 

estimate the background error rate of a locus accurately using limited control samples. In this 

study, 99.8% of the mutations identified by tumor sequencing were private i.e. unique to each 130 

individual. We assessed if patients may be used to control for other patients’ mutation lists, 

thereby enabling us to group patient-specific mutation lists of multiple patients together and 

reduce the number of additional control samples to be run on each panel. In this study, a mean of 

5.5 patients were included on each custom hybrid-capture sequencing panel design. There was 

no significant difference in background error rate whether using healthy individuals or other 135 

patients serving as controls (‘patient-control’ samples, which may control for other patients at 

private loci) (Fig. 3C). Thus, INVAR utilizes sequencing data from one patient to control for 

others with both custom and untargeted approaches such as exome or WGS (Fig. 3D). 

 

Error-suppression in patient-specific sequencing data 140 

As part of the INVAR pipeline, we sought to develop methods to minimize artefacts in 

patient-specific sequencing data. Read collapsing was performed using unique molecular 

barcodes which reduced error rates across all mutation classes (Fig. S3A), similar to previous 

studies (16). Increasing the minimum number of duplicates required per read family reduced 

error rates further, but at the expense of a greater fraction of the sequencing data being discarded 145 

(Fig. S3B). To balance data loss against background error rate, a minimum family size threshold 

of 2 was used. 

INVAR requires any mutation signal to be represented in both the forward (F) and 

reverse (R) read of the read pair. This serves to both reduce sequencing error and produces a 

small size-selection effect for short fragments since only short fragments would be read 150 
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completely in both F and R with paired-end 150bp sequencing. This step retained 92.4% of 

mutant reads and 84.0% of wild-type reads in a training dataset (Fig. S3C).  

When targeting a large number of patient-specific loci, it becomes increasingly likely that 

technically noisy sites, or single-nucleotide polymorphism (SNP) loci are included in the list. 

Newman et al. have previously utilized position specific polishing to address this issue (10). In 155 

this study we blacklisted loci that showed either error-suppressed mutant signal in >10% of the 

patient-control samples, or a mean background error rate of >1% mutant allele fraction. This 

approach excluded 0.5% of the patient-specific loci (Fig. S3D). Requiring mutant signal in both 

reads and applying a locus noise filter reduced noise modestly when applied individually; 

however, when combined they showed a synergistic effect, reducing background error rates to 160 

below 1x10-6 in some mutation classes (Figs. 4A, S3E). The individual effects of these filters on 

individual trinucleotide contexts are shown in Fig. S3F. 

When targeting a large number of patient-specific sites, it becomes possible to assess the 

distribution of allele fractions observed. In the residual disease setting, we expect to have a high 

degree of sampling error. Therefore, signal should appear stochastically as individual mutant 165 

molecules distributed across patient-specific loci, with many of the loci having zero mutant 

reads. In order to optimize INVAR for detection of the lowest possible levels of ctDNA, we 

developed a method called patient-specific outlier suppression to exclude signal at a locus that is 

not consistent with the remaining loci (Figs. S3G and 4B). This tests each locus against the 

distribution of signal at all other loci with a correction for multiple testing, excluding loci that are 170 

significantly outlying. Mutant signal was reduced 3-fold in control samples, while retaining 

96.1% of mutant signal in patient samples (Fig. 4C).  

Overall, combining the above steps results in an average 131-fold decrease in background 

error relative to raw sequencing data (Fig. 4A) and reduces the error rates of some trinucleotide 

contexts to below 10-6 (Fig. S3E). 175 

 

Patient-specific signal enrichment 

To enhance detection further, INVAR is able to enrich for ctDNA signal through 

probability weighting based on the tumor allele fraction of each mutation locus and ctDNA 
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fragment sizes. Tumor mutations with a higher tumor allelic fraction are more likely to be 180 

observed in the plasma (8, 17), therefore, greater weight was allocated to mutant signals in 

plasma from loci with high tumor mutant allele fraction. Using a dilution series, we confirm the 

relationship between the tumor allele fraction of a locus and rate of detection of ctDNA of that 

locus in plasma (Fig. S4A). We confirm in clinical samples that patient-specific mutation loci 

observed in plasma had a significantly higher tumor allele fraction compared to those not 185 

observed in plasma (P = 2x10-16; Wilcoxon test, Fig. 4D). 

Analysis of 144 samples showed a nucleosomal pattern of cfDNA fragmentation, with 

mutant fragments shorter than wild-type fragments at the mono-nucleosome and di-nucleosome 

peak (Fig. S4B). We also observed that stage IV melanoma patients had a significantly higher 

median mutant fragment size compared to the stage II-III melanoma patients (163bp vs. 154bp, P 190 

= 2x10-16, Wilcoxon test, Fig. S4C). Previous research has shown enrichment for ctDNA when 

shorter fragments are selected using either in vitro or in silico size selection (15, 18, 19). 

However, at low levels of signal, such methods can cause loss of rare mutant alleles (20). Thus, 

in this study we weighted each signal based on its fragment size in order to boost ctDNA signal, 

while retaining all the data (Fig. 4E). Based on smoothed size profiles of mutant and wild-type 195 

fragments observed (Fig. S4D), patient data were used to size-weight other patients’ data using a 

leave-one-out approach (Supplementary Methods).  

Following signal weighting, INVAR aggregates signal across all patient-specific 

mutations (Methods). In order to determine whether or not ctDNA is detected in a sample, data 

from non-matched mutations in other patients were used as negative controls to set the detection 200 

threshold (Fig. S5). An Integrated Mutant Allele Fraction (IMAF) is determined by taking a 

background-subtracted, depth-weighted mean allele fraction across the patient-specific loci in 

each sample (Supplementary Methods). 

 

Analytical sensitivity and specificity of INVAR 205 

To benchmark the sensitivity of INVAR, we performed custom capture sequencing of a 

dilution series of plasma from one melanoma patient (stage IV disease), for whom we identified 

5,073 mutations through exome sequencing. Plasma DNA from this patient was serially diluted 

into control volunteers’ plasma DNA to an expected IMAF of 3.6 x 10-7. Without use of unique 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/759399doi: bioRxiv preprint 

https://doi.org/10.1101/759399
http://creativecommons.org/licenses/by-nc-nd/4.0/


Wan & Heider et al., September 2019 
High-sensitivity monitoring of ctDNA by patient-specific sequencing panels and integration of variant reads 

 8 

molecular barcodes, INVAR detected ctDNA down to an expected allele fraction of 3.6 x 10-5, 210 

which was quantified to an average IMAF of 4.7 x 10-5 from two replicates (Fig. 5A). Following 

the use of molecular barcodes and custom error-suppression methods, the diluted ctDNA was 

detected to an expected IMAF of 3.6 x 10-6 (3.6 parts per million) in two replicates, with IMAF 

values of 4.3 and 5.2 ppm. Overall, the correlation between IMAF and the expected mutant 

fraction was 0.98 (Pearson’s r, p < 2.2 x 10-16, Fig. 5A). At an expected allele fraction of 3.6 x 215 

10-7, ctDNA was detected in 2 out of 3 replicates. To assess the impact on sensitivity of the 

number of mutations targeted we downsampled sequencing data in silico to include subsets of 

patient-specific mutation lists. This confirmed that targeting more mutations resulted in more IR 

and correspondingly higher ctDNA detection rates (Fig. 5B, Supplementary Methods).  

The false positive rate of INVAR was measured twice, once in patient-control samples 220 

and separately in healthy control samples. First, analytical specificity was determined through 

analysis of samples from other patients (patient-control samples) at non-matched mutation loci, 

giving a median specificity of 98.0% (Fig. S6, Table S4). To confirm the specificity of INVAR 

in independent control samples, we ran custom capture sequencing (with the same oligo pools) 

on samples from healthy individuals and analyzed those by INVAR using each of the patient-225 

specific mutation lists. The ROC curve for the stage IV melanoma cohort controlled against 

healthy individuals is shown in Fig. 5C. Across each of the analyses in this study, using control 

cfDNA from 26 healthy individuals, a median specificity value of 97.05% was obtained, 

consistent with the analytical specificity defined in non-matched control samples from other 

patients (Fig. S6).  230 

 

Quantification of ctDNA in patient samples  

We applied INVAR to custom capture panel sequencing data from 130 plasma samples 

from 47 stage II-IV melanoma patients, generating up to 2.9 x 106 IR per sample (median 1.7 x 

105 IR), thus analyzing orders of magnitude more cfDNA fragments compared to methods that 235 

analyze individual or few loci (Fig. 6A). In this study, we demonstrated a dynamic range of 5 

orders of magnitude and detection of trace levels of ctDNA in plasma samples (Figs. 6B, 6C); 

this detection was obtained from a median input material of 1638 copies of the genome (5.46 ng 

of DNA; Table S2). In a total of 13 of the 130 plasma samples analyzed with custom capture 
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sequencing, ctDNA was detected with signal in fewer than 1% of the patient-specific loci (Fig. 240 

6D). The lowest fraction of cancer genomes detected was 1/714, equivalent to <5 femtograms of 

tumor DNA. Given the limited input, the low ctDNA levels detected would be below the 95% 

limit of detection for a ‘perfect’ single-locus assay in 48% of the cases (indicated with filled 

circles in Fig. 6C). The input mass vs. IMAF of each sample is shown in Fig. S7A, highlighting 

the sensitivity benefit of a broad sequencing approach. Thus, targeting multiple mutations can 245 

allow detection of low absolute amounts of tumor-derived DNA. 

In Stage IV melanoma patient samples, ctDNA IMAF values showed a correlation of 0.8 

with tumor size assessed by CT imaging (Pearson’s r, P = 6.7 x 10-10, Fig. S7B, Table S5), 

comparable to other studies (9, 21). Similarly, ctDNA IMAF had a correlation of 0.53 with 

serum lactate dehydrogenase (LDH), a routinely used clinical marker for monitoring of 250 

melanoma (Pearson’s r, P = 2.8 x 10-4, Fig. S7C). INVAR analysis was used to monitor ctDNA 

dynamics in response to treatment, in which the majority of patients received anti-BRAF targeted 

therapy first line, which resulted in a rapid decline in ctDNA in those patients (Fig. S7D). In one 

patient (#59) treated with a series of targeted therapies and immunotherapy, ctDNA was detected 

down to an IMAF of 2.5 ppm, corresponding to a radiological tumor volume of 1.3 cm3 (Fig. 255 

6E). Following progression on vemurafenib, patient #59 progressed on multiple other anti-BRAF 

targeted therapies (pazopanib, dabrafenib and trametinib) and immunotherapy (ipilimumab), 

corresponding to a constant rise in ctDNA over two years of monitoring (Fig. 6E) 

 

ctDNA detection post-surgery 260 

To test INVAR in the residual disease setting, we applied INVAR to post-operative 

samples from 38 patients with resected Stage II-III melanoma recruited in the UK AVAST-M 

trial. Patient samples were collected up to 6 months after surgery with curative intent. The 

clinical details of this cohort are given in Fig. S8A. We interrogated a median of 3.6 x 105 IR 

(IQR 0.64 x 105 to 4.03 x 105) and detected ctDNA to a minimum IMAF of 2.85 ppm, indicated 265 

in Fig. 6C. The specificity of this analysis was >0.98 (Fig. S6). In total, ctDNA was detected in 

samples from 11 of 38 patients (28.9%). ctDNA was detected at higher rates when higher 

numbers of informative reads were obtained, with ctDNA detected in 10 of 28 (35.7%) cases 

with >66,666 informative reads (sensitivity of detection of ~30 ppm), 9 of 18 (50%) cases with 
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>250,000 informative reads (detection limit below 10 ppm) and in 5 of 6 (83%) cases with >106 270 

informative reads (Fig. 6B). Samples with no ctDNA detected and few informative reads may 

indicate limited resolution and would benefit from additional information (more informative 

reads, obtainable from deeper sequencing or more mutations). A similar approach was previously 

described in the relative haplotype dosage method by Lo et al. (22). In our case, excluding 3 

samples where ctDNA was undetected and had fewer than 20,000 informative reads (detection 275 

resolution of 0.01% not reached), ctDNA was detected in 8 of 20 (40%) patients who later 

recurred and was associated with a strong trend for shorter disease-free interval (6.3 months vs. 

median not reached with 5 years’ follow-up; Hazard ratio (HR) = 2.08; 95% CI 0.85-5.13, P = 

0.11) and overall survival (2.6 years vs. median not reached, P = 0.08). In comparison, a 

previous analysis of ctDNA detection at 12 weeks after surgery in 161 patients with resected 280 

BRAF or NRAS mutant melanoma detected ctDNA in 16.8% of patients who later relapsed (5). 

 

Sensitive ctDNA monitoring using WES and sWGS  

 Patient-specific capture panels allow highly sensitive detection of ctDNA, but require 

prior design of patient specific capture panels. Therefore, we assessed whether INVAR could be 285 

applied to standardized workflows such as WES or WGS. This allows the panel design step to be 

omitted and requires only the patient-specific mutation list from tumor sequencing, which may 

be performed in parallel with plasma sequencing to save time (Fig. 7A).  

To test the generalizability of INVAR, we selected samples with IMAF values quantified 

as being between 4.5 x 10-5 and 0.16 using custom-capture sequencing and utilized commercially 290 

available exome capture kits to sequence plasma DNA to a median raw depth of 238x. Despite 

the modest depth of sequencing, we obtained between 1,565 and 473,300 IR using WES (Fig. 

7B). We detected ctDNA in all 20 samples tested down to IMAFs as low as 4.34 x 10-5 (Fig. 7C), 

demonstrating that ctDNA can be sensitively detected by INVAR from WES data using patient-

specific mutation lists. These IMAF values showed a correlation of 0.97 with custom capture 295 

data from the same samples (Pearson’s r, P = 1.5 x 10-13, Fig. 7D). Therefore, INVAR is not only 

highly sensitive when applied to custom capture panels that redundantly sequence up to 102-103 

haploid genomes, but also when applied to WES data with a de-duplicated coverage between 10-

100x (Fig. 7E). 
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We hypothesized that ctDNA could be detected and quantified with INVAR from even 300 

smaller amounts of input data. Therefore, we performed WGS on libraries from cfDNA of 

longitudinal plasma samples from a subset of six patients with Stage IV melanoma, to a mean 

depth of 0.6x (indicated in black in Fig. 7B). For each of those patients we identified >500 

patient-specific mutations using WES from each patient’s tumor and buffy coat DNA, generating 

between 226 and 7,696 IR per sample (median 861, IQR 471-1,559; Fig. 7B) with a “minimum 305 

family size” requirement of 1 (i.e. duplicate removal). Despite not leveraging unique molecular 

barcodes, error rates per trinucleotide were still sufficiently low, with many trinucleotide 

contexts showing error rates below 1 x 10-5 (Fig. S9). Using INVAR on sWGS data, IMAF 

values as low as 1.1 x 10-3 were quantified (Fig. 7F). Compared to custom capture data from the 

same samples we observed a correlation of 0.93 (Pearson’s r, P = 9 x 10-10, Fig. 7D).  In samples 310 

where ctDNA was not detected, it was possible to estimate the maximum likely IMAF of that 

sample from the known number of informative reads for each sample, which is indicated by the 

grey bars in Fig. 7F. Using less than 1x coverage, INVAR can boost the sensitivity utilizing 

patient-specific mutation lists by up to an order of magnitude compared to copy-number analyses 

(15, 23). 315 

These analyses suggest that with a sufficiently large number of tumor -specific mutations, 

INVAR may yield high sensitivity for ctDNA detection from untargeted sequencing data that can 

be limited in depth and thus input material obtainable, for example, from dried blood spots (24).  

 

Extrapolation to higher IR and sensitivity 320 

The sensitivity of INVAR depends on the number of patient-specific mutations identified, 

and so its effectiveness may be limited in samples with fewer identified mutations, or in cancers 

with lower mutation rates. Fig. 8A shows the distribution of IR for all the samples in this study, 

highlighting those with limited sensitivity (<20,000 IR) and those with sensitivity to ppm. 

Samples with limited sensitivity could be re-analyzed with larger amounts of DNA input/more 325 

sequencing, or by designing larger capture panels by identifying additional patient specific 

mutations through broader-scale sequencing such as WGS of the tumor and buffy coat DNA 

from that patient. Analyses involving greater IR would render the current background error rates 

limiting and would therefore require greater error-suppression, such as duplex molecular 
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barcodes (25).  However, when increasing the sensitivity of ctDNA beyond the ppm range, 330 

sequencing output may become the limiting factor. 

 We studied the ctDNA levels in the samples analyzed with custom capture in order to 

estimate the levels of sensitivity that would be required for different clinical applications. We 

used IMAF values from the clinical samples and plotted the detection rates while varying the 

numbers of IR and the levels of sensitivity (Fig. 8B). In Stage IV melanoma patients at pre-335 

treatment baseline time points, ctDNA was detected in 100% of cases using 105 IR, whereas up 

to two orders of magnitude greater sensitivity may be needed to detect ctDNA at high rates 

following treatment initiation (Fig. S8B). For the population we studied of Stage II-III melanoma 

patients who underwent surgery, we suggest that even analysis of 107 IR might not be sufficient 

to detect all patients who ultimately relapse.  340 

 

Discussion 

In this study, we developed a method for sensitive patient-specific monitoring of ctDNA 

that leverages the properties of patient-specific sequencing data. This approach mitigates 

sampling error through aggregation of mutant signal, which is first weighted based on the 345 

features of each read and mutation locus, and uses features of cfDNA aside from specific 

sequence alterations, such as fragment sizes and tumor allele fractions of each mutation. By 

aggregating signal across 102-104 mutated loci it is possible to detect <0.01 copies of a cancer 

genome, even when this represents few parts per million of the cfDNA in plasma, 1-2 orders of 

magnitude lower than previous studies (6, 10).  350 

We show that INVAR can be applied not only to patient-specific capture panel data to 

quantify ctDNA to parts per million (Fig. 6), but also to exome sequencing and sWGS data (Fig. 

7). Although these latter methods generated fewer informative reads, INVAR detected ctDNA to 

50 ppm using WES, and to 0.1% mutant allele fraction using sWGS, over an order of magnitude 

more sensitive compared to previous methods based on copy-number analysis of sWGS (23, 26). 355 

This level of sensitivity can only be achieved by targeting a sufficiently large number of patient-

specific mutations, as increasing input mass alone would not be feasible to this extent (Fig. 2A). 

Therefore, we assessed whether INVAR would still retain sufficient sensitivity when applied to 

sWGS data from other cancer types with lower mutation rates than melanoma. We estimated the 
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potential sensitivity for INVAR using sWGS on other cancer types based on their known whole-360 

genome mutation rates (27) (Fig. 8C). Using 0.1x WGS coverage, INVAR may yield 

sensitivities of 10-1–10-3 for these cancer types, with the potential for higher sensitivity with 

deeper sequencing.  

In summary, patient-specific mutation lists provide an opportunity for highly sensitive 

monitoring from a range of sequencing data types using methods for signal aggregation, 365 

weighting and error-suppression. As tumor sequencing becomes increasingly performed in 

personalized oncology, patient-specific mutation lists may be leveraged for individualized 

monitoring using INVAR-like tools.   
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Materials and Methods 370 

Patient cohort. Samples were collected from patients enrolled on the MelResist (REC 

11/NE/0312) and AVAST-M studies (REC 07/Q1606/15, ISRCTN81261306) (28, 29). Consent 

to enter the studies was taken by a research/specialist nurse or clinician who was fully trained 

regarding the research. MelResist is a translational study of response and resistance mechanisms 

to systemic therapies of melanoma, including BRAF targeted therapy and immunotherapy, in 375 

patients with stage IV melanoma. AVAST-M is a randomized control trial which assessed the 

efficacy of bevacizumab in patients with stage IIB-III melanoma at risk of relapse following 

surgery; only patients from the observation arm were selected for this analysis. The Cambridge 

Cancer Trials Unit-Cancer Theme coordinated both studies, and demographics and clinical 

outcomes were collected prospectively. Baseline characteristics for all cohorts are summarized in 380 

Table S6. 

 

Sample collection and processing. Fresh frozen tumor biopsies prior to treatment were 

collected from patients with Stage IV cutaneous melanoma. Formalin-fixed paraffin-embedded 

(FFPE) tumor tissue was obtained for the AVAST-M trial. For patients on the AVAST-M study, 385 

plasma samples were collected within 12 weeks of tumor resection, with a subsequent sample 

after 3 months, where available. Longitudinal samples were collected during treatment of 

patients with stage IV melanoma as part of the MelResist study. Peripheral blood samples were 

collected at each clinic visit in S-Monovette 9mL EDTA tubes. For plasma collection, samples 

were centrifuged at 1,600 g for 10 minutes within an hour of the blood draw, and then an 390 

additional centrifugation of 20,000 g for 10 minutes was carried out. All aliquots were stored at -

80°C.  

 

Tissue and plasma extraction and quantification. FFPE samples were sectioned into up to 8 

µm sections, and one H&E stained slide was generated, which was outlined for tumor regions by 395 

a histopathologist. Marked tumor regions were macrodissected, and DNA extraction was 

performed using the QIAamp DNA FFPE Tissue Kit using the standard protocol, except with 

incubation at 56°C overnight and 500 rpm agitation on a heat block. DNA was eluted twice using 
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20 µL ATE buffer each time with centrifugation at full speed. Following extraction, DNA repair 

was performed using the NEBNext® FFPE DNA Repair Mix as per the manufacturer's protocol. 400 

Fresh frozen tissue biopsies were first homogenized prior to DNA extraction, which was 

performed as follows: up to 30 mg of each fresh frozen tissue biopsy sample was combined with 

600 µL RLT buffer, then placed in a Precellys CD14 tube (Bertin Technologies) and 

homogenized at 6,500 rpm for two bursts of 20 seconds separated by 5 seconds. Subsequently, 

the Qiagen AllPrep extraction kit as per the manufacturer’s protocol.  405 

Genomic DNA was extracted from up to 1 mL whole blood or buffy coat using the 

Gentra Puregene Blood Kit (Qiagen) as per the manufacturer’s protocol. Samples were eluted in 

two rounds of 70 µL buffer AE and incubated for 3 minutes before centrifugation. Up to 4mL of 

plasma was extracted using the QIAsymphony (Qiagen) with a QIAamp protocol. DNA was 

eluted in 90 µL elution buffer and stored at -80°C. Plasma samples were extracted using the 410 

QIAsymphony instrument (Qiagen) using the 2-4mL QIAamp protocol. For each QIAsymphony 

batch, 24 samples were extracted, which included a positive and negative control. 

Following extraction of fresh frozen, FFPE and genomic DNA, eluted DNA 

concentration was quantified using a Qubit fluorimeter with a dsDNA broad range assay 

(ThermoFisher Scientific). To quantify cell-free DNA concentration of plasma DNA eluates, 415 

digital PCR was carried out using a Biomark HD (Fluidigm) with a 65bp TaqMan assay for the 

housekeeping gene RPP30 (Sigma Aldrich) (7). 55 PCR cycles were used. The estimated number 

of RPP30 DNA copies per µL of eluate was used to determine the cell-free DNA concentration 

in the original sample. 

 420 

Tumor library preparation. FFPE tumor tissue DNA samples (up to 150 ng) and buffy coat 

DNA samples (75 ng) were sheared to a length of 150bp, using the Covaris LE 220 (Covaris, 

Massachusetts, USA). The standard Covaris protocol for a final fragment length of 150bp and an 

input volume of 15µl using the 8 microTUBE-15 AFA Beads Strip V2 was used. After the 

shearing, the fragmentation pattern was verified using a Bioanalyser (Agilent). 425 

Sequencing libraries were prepared using the ThruPLEX DNA-seq kit (Rubicon). 100ng 

and 50ng sheared tumor and buffy coat DNA, respectively, were used and the protocol was 

carried out according to the manufacturer’s instructions. The number of amplification cycles was 
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varied during library preparation according to the manufacturer's recommendations. Library 

concentration was determined using qPCR with the Illumina/ROX low Library Quantification kit 430 

(Roche). Library fragment sizes were determined using a Bioanalyser (Agilent). After library 

preparation, exome capture was performed with the TruSeq Exome Library Kit (Illumina), using 

a 45Mbp exome baitset. Three libraries were multiplexed in one capture reaction and 250ng of 

each library was used as input. For compatibility with ThruPLEX libraries, the protocol was 

altered by adding 1µl of i5 and i7 TruSeq HT xGen universal blocking oligos (IDT) during each 435 

hybridization step. To compensate for the increased hybridization volume, the volume of CT3 

buffer was adjusted to 51 µl. Two rounds of hybridizations were carried out, each lasting for 24 

hours. Library QC was performed using qPCR and Bioanalyser, as above. Samples were 

multiplexed and sequenced with a HiSeq 4000 (Illumina).  

Fresh frozen tumor biopsies and matched buffy coat library preparation was performed as 440 

described by Varela et al. (30) using the SureSelectXT Human All Exon 50 Mb (Agilent) bait 

set. Samples were multiplexed and sequenced with a HiSeq 2000 (Illumina). 

 

Tumor mutation calling. For fresh frozen tumor biopsies, mutation calling was performed as 

described by Varela et al. (30). For FFPE tumor biopsies, mutation calling was performed with 445 

Mutect2 with the default settings: --cosmic v77/cosmic.vcf and --dbsnp v147/dbsnp.vcf. To 

maximize the number of mutations retained, variants achieving Mutect2 pass OR tumor LOD > 

5.3 were retained. Mutation calls were filtered as follows: 

1. Buffy coat mutant allele fraction equals zero 

2. Mutation not in homologous region  450 

3. Mutation not at a multiallelic locus 

4. 1000 Genomes ALL and EUR frequency equals zero  

5. A minimum unique tumor depth of 5. 

In addition, for FFPE data in the melanoma cohort, the filter for C/A errors proposed by 

Costello et al. (31) was applied to suppress C/A artefacts. As a result, we generated patient-455 

specific mutation lists for 47 patients with stage II-IV melanoma. A median of 625 (IQR 411 -

1076) patient-specific mutations were identified per patient (Fig. S2, Table S1).  These mutation 
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lists were used both to design custom capture sequencing panels, and as input for the INVAR 

method. 

 460 

Plasma library preparation. Cell-free DNA samples were vacuum concentrated at 30°C using 

a SpeedVac (ThemoFisher) prior to library preparation where required. The median input into 

the library was 1652 haploid genomes (IQR 900 – 3013). Whole genome library preparation for 

plasma cell-free DNA was performed using the Rubicon ThruPLEX Tag-Seq kit. The number of 

PCR amplification cycles during the ThruPLEX protocol was varied between 7-15 cycles, as 465 

recommended by the manufacturer. Following amplification and sample barcoding, libraries 

were purified using AMPure XP beads (Beckman Coulter) at a 1:1 ratio. Library concentration 

was determined using the Illumina/ROX low Library Quantification kit (Roche). Library 

fragment sizes were determined using a Bioanalyser (Agilent).  

For the stage IV melanoma cohort, library preparation and sequencing were run in 470 

duplicate to assess the technical reproducibility of the experimental and computational method, 

showing a correlation between IMAF values generated by the INVAR pipeline of 0.97 

(Pearson’s r, p-value < 2.2 x 10-16). For the early-stage cohorts, input cell-free DNA material was 

not split and was instead prepared and sequenced as a single sample per time point. 

 475 

Custom hybrid-capture panel design and plasma sequencing. Following mutation calling, 

custom hybrid-capture sequencing panels were designed using Agilent SureDesign software. 

Between 5 and 9 patients were grouped together per panel in this implementation. Baits were 

designed with 4-5x density and balanced boosting. 95.5% of the variants had baits successfully 

designed; bait design was not reattempted for loci that had failed. Custom panels ranged in size 480 

between 1.26-2.14 Mb with 120 bp RNA baits. For each panel, mutation classes and tumor allele 

fractions are shown in Fig. S2 and Table S1.  

Libraries were captured either in single or 3-plex (to a total of 1000 ng capture input) 

using the Agilent SureSelectXT protocol, with the addition of i5 and i7 blocking oligos (IDT) as 

recommended by the manufacturer for compatibility with ThruPLEX libraries (32). Custom 485 

Agilent SureSelectXT baits were used, with 13 cycles of post-capture amplification. Post-capture 
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libraries were purified with AMPure XP beads at a 1:1.8 ratio, then were quantified and library 

fragment size was determined using a Bioanalyser (Agilent).  

 

Exome capture sequencing of plasma. For exome sequencing of plasma, the Illumina TruSeq 490 

Exome capture protocol was followed. Libraries generated using the Rubicon ThruPLEX 

protocol (as above) were pooled in 3-plex, with 250ng input for each library. Libraries 

underwent two rounds of hybridization and capture in accordance with the protocol, with the 

addition of i5 and i7 blocking oligos (IDT) as recommended by the manufacturer for 

compatibility with ThruPLEX libraries. Following target enrichment, products were amplified 495 

with 8 rounds of PCR and purified using AMPure XP beads prior to QC.  

 

Plasma sequencing data processing. Cutadapt v1.9.1 was used to remove known 5’ and 3’ 

adaptor sequences specified in a separate FASTA of adaptor sequences. Trimmed FASTQ files 

were aligned to the UCSC hg19 genome using BWA-mem v0.7.13 with a seed length of 19. 500 

Error-suppression was carried out on ThruPLEX Tag-seq library BAM files using CONNOR 

(33). The consensus frequency threshold -f was set as 0.9 (90%), and the minimum family size 

threshold -s was varied between 2 and 5 for characterization of error rates. For custom capture 

and exome sequencing data, a minimum family size of 2 was used. For sWGS analysis, a 

minimum family size of 1 was used, i.e. not using molecular barcodes except for where 505 

duplicates are present. 

To leverage signal across multiple time points, error-suppressed BAM files could be 

combined using `samtools view -ubS - | samtools sort -` prior to further data processing. In the 

early-stage melanoma cohort (AVAST-M), where multiple samples were available for the same 

patient before 6 months post-surgery, sequencing data for each of the samples were merged. 510 

 

Low-depth whole-genome sequencing of plasma. For sWGS, 30 libraries were sequenced per 

lane of HiSeq 4000, achieving a median of 0.6x deduplicated coverage per sample. For these 

libraries, since the number of informative reads (IR) would limit sensitivity before background 

errors would become limiting, we used error-suppression with family size 1 for this particular 515 
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setting. Error rates per trinucleotide were compared between WGS and custom hybrid-capture 

sequencing data for family size 1, showing a Pearson r of 0.91. WGS data underwent data 

processing (Supplementary Methods) except the minimum depth at a locus was set to 1, and 

patient-specific outlier-suppression (Supplementary Methods) was not used because loci with 

signal vs. loci without signal would only give allele fractions of 0 or 1 given a depth of 0.6x. 520 

 

INVAR pipeline. The INVAR pipeline takes BAM files (+/- error-suppression with molecular 

barcodes), a BED file of patient-specific loci, and a CSV file indicating the tumor allele fraction 

of each mutation and which patient it belongs to. The pipeline is shown in Fig. S2 and full details 

are given in the Supplementary Materials. See ‘Data and materials availability’ for code access.  525 

 

Imaging. CT imaging was acquired as part of the standard of care from each patient of the stage 

IV melanoma cohort and was examined retrospectively. Slice thickness was 5 mm in all cases. 

All lesions with a diameter greater than 5 mm were outlined slice by slice on CT images by an 

experienced operator, under the guidance of a radiologist, using custom software written in 530 

MATLAB (Mathworks, Natick, MA). The outlines were subsequently imported into the LIFEx 

software (34) in NifTI format for processing. Tumor volume was then reported by LIFEx as an 

output parameter from its texture-based processing module (Table S5).  

 

Data and materials availability. Raw sequencing data will be made available at the European 535 

Genome-phenome archive, accession number EGAS00001002959. 

 

Supplementary Materials 

Materials and Methods 

Fig. S1. Flowchart of analysis steps in the INVAR pipeline. 540 

Fig. S2. Tumor mutation list characterization for INVAR. 

Fig.  S3. Characterization of background error rates. 

Fig. S4. Utilizing tumor allelic fraction information and plasma DNA fragment length to enhance 
ctDNA signal.  

Fig. S5. Overview of the INVAR pipeline. 545 
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Fig. S6. ROC curves and specificity for all cohorts and data types.  

Fig. S7. Characterization of ctDNA levels in advanced melanoma. 

Fig. S8. Characterization of IMAF values in the early-stage melanoma cohort.  

Fig. S9. Application of INVAR to whole exome sequencing data.  

Table S1 Patient-specific mutation lists. 550 

Table S2 Sample library preparation input, QC, and INVAR likelihood ratios – test samples. 

Table S3. Sample library preparation input, QC, and INVAR likelihood ratios – control samples. 

Table S4 INVAR score thresholds. 

Table S5. Tumor volumes for stage IV melanoma cohort 

Table S6 Patient baseline characteristics. 555 
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Figures: 

  
Fig. 1. Patient-specific analysis overcomes sampling error in conventional and limited input 760 

scenarios.  

(A) When high levels of ctDNA are present, gene panels and hotspot analysis are sufficient to 

detect ctDNA (top panel). However, if ctDNA concentrations are low these assays are at high 
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risk of false negative results due to sampling noise. Utilizing a large list of patient specific 

mutations allows sampling of mutant reads at multiple loci, enabling detection of ctDNA when 765 

there are few mutant reads due to either ultra-low ctDNA levels (middle panel), or due to limited 

starting material or sequencing coverage (bottom panel). (B) A given sample contains a limited 

number of copies of the genome, denoted by G. For plasma samples, the small amount of 

material limits the sensitivity that is attainable to one mutant copy in G total copies. By 

analyzing in parallel a large number of marker loci (e.g. loci that are found to be mutated in the 770 

patient’s tumor), denoted by N, detection of tumor DNA can be substantially enhanced to detect 

one or few mutant molecules per N x G copies. The same approach can be employed for other 

applications which aim to detect non-background/altered DNA, such as detection of fetal DNA 

or DNA from transplanted organs, in limited amounts of material such as plasma samples or 

other body fluids. 775 
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Fig. 2. Study outline and rationale for integration of variant reads.  

(A) Illustration of the range of possible working points for ctDNA analysis using INVAR, 

plotting the haploid genomes analyzed vs. the number of mutations. Diagonal lines indicate 780 

multiple ways to generate the same number of informative reads (IR, equivalent to haploid 

genomes analyzed (hGA) x targeted loci). Current methods often focus on analysis of ~10 ng of 

DNA (300-10,000 haploid copies of the genome) across 1 to 30 mutations per patient. This 

typically results in ~10,000 IR, leading to frequently encountered detection limits of 0.01%-0.1% 

(9, 13). In this study we focused on analysis of larger numbers (100s-1000s) of mutations, 785 
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including deep sequencing by patient-specific hybrid-capture panels or limited input. mL, 

milliliter; µL, microliter. (B) To generate deep sequencing data across large patient-specific 

mutations lists at high depth, patient-specific mutation lists generated by tumor genotyping were 

used to design hybrid-capture panels, that were applied to DNA extracted from plasma samples. 

In later sections, the tumor genotyping data is used to analyze sequencing data from standard 790 

WES panels and shallow WGS. (C) The INtegration of VAriant Reads (INVAR) pipeline. To 

overcome sampling error, signal was aggregated across hundreds to thousands of mutations. 

Here we classify samples (rather than individual mutations) as significantly containing ctDNA, 

or not detected. ‘Informative Reads’ (IR, shown in blue) are reads generated from a patient’s 

sample that overlap loci in the same patient’s mutation list. Some of these reads may carry the 795 

mutation variants in the loci of interest (shown in orange). Reads from plasma samples of other 

patients at the same loci (‘non-patient-specific’) are used as control data to calculate the rates of 

background error rates (shown in purple) that can occur due to sequencing errors, PCR artefacts, 

or biological background signal. INVAR incorporates additional sequencing information on 

fragment length and tumor allelic fraction to enhance detection. 800 
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Fig. 3. Characterization of background error rates.  

(A) Non-error suppressed background error rates by mutation class. (B) Non-error suppressed 

background error rates by trinucleotide context. (C) Background error rates were calculated by 

mutation class for healthy control individuals (blue) and patient samples (red) after equalizing 805 

the number of read families per group. Complementary mutation classes were combined. T-tests 

were performed between healthy and patient samples. NS, not significant. (D) Overview of the 

usage of sequencing data by the INVAR pipeline. Data is collected for each locus of interest in 

the matched patient (shown by colored boxes), and control data is obtained by analyzing the 

same loci in additional patients from the same cohort for whom the loci were not found to be 810 

mutated in the tumor or buffy coat analysis. Such data can be generated by applying a 

standardized sequencing approach, such as WES/sWGS, to all samples (Fig. 7) or by combining 

multiple patient-specific mutation lists into a custom capture panel that is sequenced across 

multiple patients (Fig. 6). Data from other patients in those loci (‘non-matched mutations’) are 

used to determine background mutation rates and a ctDNA detection cut-off.  815 
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Fig. 4. Development and analytical performance of the INVAR method.  

(A) Reduction of error rates following different error-suppression settings (Supplementary 

Methods). (B) Loci observed with significantly greater signal than the remainder of the loci of 820 

that patient might be due to noise at that locus, contamination, or a mis-genotyped SNP locus (in 

red, see Methods). (C) Summary of effect of outlier suppression on both cohorts. Mutant signal 

was reduced 3-fold in control samples, while retaining 96.1% of mutant signal in patient 

samples. (D) Tumor allele fractions were compared between loci with and without detected 

signal in plasma. Loci with signal in plasma had significantly higher tumor allele fractions in 825 

patient samples. There was no significant increase in tumor allele fraction when performing this 

analysis on non-patient-specific samples (Student’s t-test, NS, not significant; *** = P < 0.0001). 

(E) Log2 enrichment ratios for mutant fragments from three different cohorts of patients. Size 

ranges enriched for ctDNA are assigned more weight by the INVAR pipeline.
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 830 

Fig. 5. Sensitivity and specificity determination of INVAR.  

(A) Spike-in dilution experiment to assess the sensitivity of INVAR. Using error-suppressed data 

with INVAR, ctDNA was detected in replicates for all dilutions to 3.6 ppm, and in 2 of 3 

replicates at an expected ctDNA allele fraction of 3.6 x 10-7 (Supplementary Methods). Using 

error-suppressed data of 11 replicates from the same healthy individuals without spiked-in DNA 835 

from the cancer patient, no mutant reads were observed in an aggregated 6.3 x 106 informative 

reads across the patient-specific mutation list. (B) The sensitivity in the spike-in dilution series 

was assessed after the number of loci analyzed was downsampled in silico to between 1 and 

5,000 mutations (Supplementary Methods). (C) ROC analysis of the stage IV melanoma cohort 

was performed against patient-controls (black) and healthy individuals (red). 840 
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Fig. 6. ctDNA detection by INVAR in early and advanced disease.  

(A) Number of haploid genomes analyzed (hGA; calculated as the average depth of unique 

reads) and the number of mutations targeted, in 144 plasma samples from 66 cancer patients 

across three cohorts. These were sequenced using custom hybrid-capture panels covering patient-845 

specific mutation lists (Fig. 2B and C) to achieve a median unique depth after read collapsing 
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(hGA) of 185 (Methods) across a median of 628 mutated loci. Dashed diagonal lines indicate the 

number of targeted loci hGA that yield the indicated IR. (B) Two-dimensional representation of 

detected ctDNA fractions are plotted against the IR for each sample. ctDNA could be detected if 

its fractional concentration (IMAF) was higher than 2/IR (falling above the dashed line, which is 850 

plotted at 1/IR). In some samples, >106 IR were obtained, and ctDNA was detected down to 

fractions of few ppm (orange shaded region). In some samples, few IR were obtained resulting in 

limited sensitivity. In our study we used a threshold of 20,000 IR (left-most dotted line), such 

that samples with undetected ctDNA with fewer than 20,000 IR were called “unclassified” and 

excluded from the analysis (total of 6 of 144 samples; dark blue shaded region). Samples outside 855 

this region had detected ctDNA, or had estimated ctDNA levels below 0.01% (undetected with 

>20,000 IR; confidence ranges for this value vary for each sample depending on IR). An 

alternative threshold could be used, for example 66,666 IR, resulting in detection level of 

0.003% or 30 ppm (indicated by the second dotted line and the light blue shaded region), 

increasing the overall detection rates in the cohorts. (C) ctDNA fractional levels (IMAF) 860 

detected in the samples in this study, shown in ascending order for the two cohorts. Filled circles 

indicate samples where the number of haploid genomes analyzed would fall below the 95% limit 

of detection for a perfect single-locus assay given the measured IMAF (Supplementary 

Methods). Empty circles indicate unclassified samples, i.e. samples for whom ctDNA was not 

detected (ND) with IR < 20,000. (D) The number of copies of the cancer genome detected for 865 

each of the samples in the same order as above in part (C), calculated as the number of mutant 

fragments divided by the number of loci queried (Table S2).  (E) ctDNA IMAF and tumor 

volume are plotted over time for one patient with metastatic melanoma over the course of several 

treatment lines (indicated by shaded boxes). ctDNA was detected to 2.5 ppm during treatment 

with anti-BRAF targeted therapy, when disease volume was approximately 1.3 cm3.870 
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Fig. 7. Sensitive detection of ctDNA from WES/WGS data using INVAR. (A) schematic 

overview of a generalized INVAR approach. Tumor (and buffy coat), and plasma samples are 

sequenced in parallel using whole exome or genome sequencing, and INVAR can be applied to 

the plasma WES/WGS data using mutation lists inferred from the tumor (and buffy coat) 875 

sequencing. (B) INVAR was applied to WES data from 21 plasma samples with an average 

sequencing depth of 238x (before read collapsing), and to WGS data from 33 plasma samples 

with an average sequencing depth of 0.6x (prior to read collapsing). IMAF values are plotted vs. 
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the number of unique IR for every sample. WES at this depth yielded lower IR compared to the 

custom capture panel, yet in some cases IR exceeded 105. WGS at low depth yielded <10,000 IR, 880 

because mutation lists only spanned the exome based on the extent of tumor sequencing for these 

cases. The dotted vertical line indicates the 20,000 IR threshold, and the dashed diagonal line 

indicates 1/IR. (C) IMAF observed for the 21 samples analyzed with WES ordered from low to 

high. ND, not detected. (D) IMAFs obtained from plasma WES (gold) and sWGS (black) were 

compared to the IMAF obtained from the custom capture approach of matched samples, showing 885 

correlations of 0.97 and 0.93 (Pearson’s r, P = 1.5 x 10-13 and P = 9 x 10-10). (E) Number of hGA 

(indicating depth of unique coverage after read collapsing) and mutations targeted by plasma 

WES and sWGS. Compared to the custom capture approach, both the WES and sWGS samples 

had fewer hGA and occupy a space further to the left in the two-dimensional space, indicating 

that INVAR can detect ctDNA from limited data and few genome copies sequenced in a library. 890 

(F) Longitudinal monitoring of ctDNA levels in plasma of six patients with stage IV melanoma 

using sWGS data with an average depth of 0.6x, analyzed using INVAR with patient-specific 

mutation lists (including >500 mutations for each patient, based on WES tumor profiling). Filled 

circles indicate detection at a specificity level of >0.99 by ROC analysis of the INVAR 

likelihood (Fig. S9). For other samples, the 95% confidence intervals of the ctDNA level are 895 

shown, based on the number of informative reads for each sample (empty circles and bars). ND, 

not detected.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/759399doi: bioRxiv preprint 

https://doi.org/10.1101/759399
http://creativecommons.org/licenses/by-nc-nd/4.0/


Wan & Heider et al., September 2019 
High-sensitivity monitoring of ctDNA by patient-specific sequencing panels and integration of variant reads 

 36 

 

Fig. 8. Current limitations and future applications of INVAR.  900 

(A) The number of informative reads that would be obtainable with different numbers of 

mutations analyzed, across the cases in these three cohorts. Increasing sensitivity is directly 

correlated to IR, with the minimal detected ctDNA fraction being 2/IR in the current 

implementation of INVAR (Methods). The red line shows the distribution of IR obtained with 

the custom panels covering all mutations identified by tumor WES. Light/dark green lines show 905 

the IR generated if 1 or 20 mutations were analyzed for each sample (calculated based on the 

mean IR per locus). IR could be increased further by using whole genome sequencing (WGS) to 

guide the design of custom panels (orange curve, extrapolated based on our observed mutation 

rates in WES). Using mutation lists from WES, samples exceeding 106 IR are shaded in orange, 

and samples with fewer than 2x104 IR are shaded in blue. (B) Detection rates of ctDNA for 910 

different numbers of IR sequenced were estimated. There was a linear relationship between IR 

and detection (R2 = 0.95) in the baseline samples of the stage IV melanoma cohort (blue). In 
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stage II-III melanoma post-surgery (red), a linear relationship was observed between IR and 

detection rate, and the predicted rates of detection of ctDNA was extrapolated. ND, not detected. 

(C) Predicted sensitivities for sWGS plasma analysis of patients with different cancer types, 915 

using an average of 0.1x or 10x coverage (equivalent to 0.1 and 10 hGA) and the known 

mutation rates per Mbp of the genome for different cancer types (27). The limit of detection for 

ctDNA based on copy number alterations is shown at 3% (23). 

 
 920 
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