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Highlights:

• We provide AIMsetfinder, a tool to systematically select ancestry informative markers (AIMs).

• Simulations of human population structure can be used to assess the performance of AIM selection
procedures.

• 17 SNPs identified by AIMsetfinder suffice to classify all african, european, east asian, and south asian
individuals in the 1000 Genomes project correctly.

Abstract

Inference of the Biogeographical Ancestry (BGA) of a person or trace relies on three ingredients: (1) A
reference database of DNA samples including BGA information; (2) a statistical clustering method; (3) a
set of loci which segregate dependent on geographical location, i.e. a set of so-called Ancestry Informative
Markers (AIMs). We used the theory of feature selection from statistical learning in order to obtain AIM-
sets for BGA inference. Using simulations, we show that this learning procedure works in various cases,
and outperforms ad hoc methods, based on statistics like FST or informativeness for the choice of AIMs.
Applying our method to data from the 1000 genomes project (excluding Admixed Americans) we identi-
fied an AIMset of 17 SNPs, which partly overlaps with existing ones. For continental BGA, the AIMset
outperforms existing AIMsets on the 1000 genomes dataset, and gives a vanishing misclassification error.

Keywords: Biogeographical Ancestry, Ancestry Informative Markers, classification, 1000 genomes dataset,
coalescent simulation.

1 Introduction

The biogeographical ancestry of a person (or trace) was coined in work leading in 2004 to the patent application
US2004/0229231A1 by Toni Frudakis and Mark Shriver [17]. BGA has been defined as the heritable compo-
nent of “race” or heritage, which is relevant on any scale of resolution [16]. Today, several application fields
have formed, which range from population history (e.g. [12]), biomedicine (e.g. [19]) to personal genomics
(e.g. [4]) and forensic genetics (e.g. [36]). In the present work, we are interested in the continental scale of
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1 INTRODUCTION 2

BGA, and we step back from the above definition and either use the sampling location (in simulations) or the
population origin, as given in a reference database such as the 1000 genomes dataset [1] as an equivalent of
BGA.

In the forensic context, the available DNA trace is often only available in minimal amounts and might be
contaminated with non-human, for instance microbial DNA. Thus inference of BGA is usually based on a set
of only a few genetic markers rather than the whole genome. Therefore an important task is to find Population-
Specific Alleles [48] or Ancestry Informative Markers (AIMs). Once such a set of markers (also called AIMsets
below) is available, a classifier is used to group samples into BGA-classes. Here, we follow the frequently used
approach to use a naı̈ve Bayesian classifier, which has its roots in the software STRUCTURE [40], and has gained
further interest through the software SNIPPER [38]; see also http://mathgene.usc.es/snipper/. It
has recently been shown that for non-admixed samples, the naı̈ve Bayesian approach outperforms logistic
regression classifiers and genetic distance algorithms [8, 9].

AIMsets are often designed to distinguish specific populations. For example, the SNPforID 34-plex was
introduced as a panel of 34 unlinked AIMs designed to distinguish between African (AFR), European (EUR),
and East Asian (EAS) ancestry [38]. (It was later revised in order to include a SNP specific for East Asia;
[15].) Furthermore, the Pacifiplex panel of 29 SNPs [46] was introduced to complement the SNPforID 34-plex
in order to additionally distinguish Oceanic samples. A panel introduced in [27] consists of 55 AIMs and is
designed to draw world-wide distinctions. To help locate AIMs, either putatively neutral mutations are used,
or mutations subject to strong regional positive selection in the recent past, which create local adaptations [2].
Today, several AIMsets have been considered for different distinctions; see e.g. [39] for a review.

For BGA inference, finding good AIMsets is an important task. In Table 1, we collected example criteria
how AIMs have been selected in practice. Most of these approaches must be considered empirical in the sense
that the AIMs were not chosen in order to minimize the number of errors in a given task to infer BGA, but
based on summary statistics such as FST , the allele frequency differential, δ, or the informativeness, usually
abbreviated In and introduced by [42] (see also in Materials and Methods). As explained in [36], roughly FST

is proportional to I2n, and similarly to the population frequency differential, such that ordering SNPs according
to any of the above measures results in similar AIMsets.

A few algorithmic approaches in order to find AIMsets have also been given. While [27] uses STRUCTURE

to assess the quality of AIMs, the use of Principal Component Analysis (PCA) and a clustering algorithm [35],
or of eigenfunctions and support vector machines [55] in order to find an AIMset, were described. Conceptual
approaches to find AIMsets have been given in [41]. Two of them add SNPs to a given AIMset one at a time. (i)
The univariate accumulation method uses the SNPs which have the highest prediction accuracy when used as
single SNPs. As discussed in [41], this method does not account for shared information between SNPs. While
following such a univariate method, Zhao et al. add a penalty term to account for such shared information [56].
(ii) In the greedy accumulation method, the SNP with the highest prediction accuracy is used, when added
to the current AIMset. We will use this greedy approach, and note that [43] follows a similar route. These
authors provide an AIMset with 100 SNPs for distinguishing 24 populations (all from the HGDP dataset),
and end up with an error rate of 40%. While being conceptually similar to [43] and [41], there are some
important differences to our approach as detailed below. Most importantly we use a Bayesian prior distribution
for BGA (rather than using a Maximum-Likelihood approach), resulting in a closed form for the estimate of
allele frequencies, and we use logarithmic loss rather than misclassification error for choosing AIMs, which
naturally allows the AIM selection procedure to account for the confidence of it’s predictions.

In inference methods for BGA and elsewhere, it is often assumed that alleles in different geographical
origins come in different frequencies. Population genetic theory, in particular the so-called coalescent process
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1 INTRODUCTION 3

Sanchez et al, 2006 [44]

(i) not too low heterozygosity (i.e. at least 30%, which equals
0.28 for the minor allele frequency) in at least one population;
and not too low heterozygosity (i.e. at least 20%, which equals
0.17 minor allele frequency) in all three populations; (ii) a min-
imum distance (100 kb) to neighboring genes; (iii) no likely as-
sociation with commonly used STR loci; (iv) a small amplicon
(less than 120 bp) generated for optimal primer design, as well as
flanking DNA sequence reliably reported and free from interfer-
ing polymorphisms.

Phillips et al, 2007 [38]

(i) SNPs private to one or two populations, but non-segregating
in others; (ii) an allele frequency differential between populations
of > 0.6 between populations (the allele frequency differential is
the absolute value of the difference in allele frequencies in two
populations); (iii) tri-allelic SNPs; (iv) fixed difference markers,
which separate one population (group) against other populations
(or population groups).

Kosoy et al, 2009 [29]
and Nassir et al, 2009 [33]

(i) SNPs that overlapped with the 300K genome-wide Illumina
SNP array; (ii) large allele frequency differences (> 45%) be-
tween European and Amerindian groups and small allele fre-
quency differences (< 5%) between two disparate Amerindian
groups; (iii) SNPs with large frequency differences (> 45%) be-
tween African and European populations groups; (iv) minimum
distance of AIMs (i.e. at least 8 cM on the deCODE map).

Kidd et al, 2014 [27]

(i) using AIMs found previously, e.g. in the AIMsets by [29] and
[34]; (ii) SNPs with large pairwise allele frequency differences
for a total of 63 populations; (iii) SNPs which perform well for
classification using STRUCTURE [40].

Phillips et al., 2014 [37]

(i) ranking SNPs by allele frequency differential; here, holding
one population fixed, pairwise population comparison differen-
tials were summed for the remaining populations; (ii) balancing
the degree of differentiation among all population groups.

Jia et al, [24]

(i) only SNPs in Hardy-Weinberg equilibrium (HWE) were se-
lected; (ii) population-specific markers, comprising private SNPs,
or SNPs with a differential at least 0.5; (iii) an Fst-value of at least
0.35 (for three ancestral groups); (iv) no linkage disequilibrium
(LD) among the population groups.

Table 1 Example for empirical criteria of finding AIMsets.
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2 MATERIALS AND METHODS 4

(e.g. [52]), is an important tool for understanding the occurrence of such frequency differences. In addition,
since its introduction by Kingman and Hudson [28, 23], it is also a tool for simulating genetic data for neutral
variants. Note that the coalescent is versatile, and recombination, gene conversion and population size changes
were subsequently included. Today, coalescent simulations play some role in association mapping of complex
traits (see e.g. [57]), and form the foundation of various methods in population history (see e.g. [11]). Here,
we use the coalescent for generating data in order to give a proof of principle that our approach for finding
AIMsets works in independent simulated data. For this, we used an implementation from [26], which makes
genome-wide simulation feasible.

In the language of statistical learning, inference of the BGA of a genetic trace is a high-dimensional clas-
sification problem. Here, the number of dimensions is the number of SNPs in the dataset. Finding AIMs in
this context is then termed feature selection [20]. As such, general learning methods can be applied to the
inference of BGA. To date, variants of STRUCTURE [40] are frequently used for the classification procedure.
While the first application of this software was the unsupervised problem of finding structure in large datasets,
reference databases incorporating individuals with (putatively) known ancestry make inference of BGA a su-
pervised learning procedure. Hence, the approach has been taken further and software such as SNIPPER [38]
has been developed. In the following, we subsume these approaches using the term naı̈ve Bayes [32].

2 Materials and Methods

Before we come to our method how to choose AIMs in Section 2.2, we have to introduce some
notions. Note that our implementation (which relies on python and R) can be downloaded from
https://github.com/fbaumdicker/AIMsetfinder, and is described in detail in the SI.

2.1 Prerequisites

We assume that we have 2n + 2m (haploid) samples taken from a population, which is structured into K
groups (or subpopulations), where nk samples are from group k for k = 1, ...,K. Using the n (diploid)
samples (training set), we train a naı̈ve Bayesian classifier (see below for the details). Once we have set up our
classification method, we use the test set of (diploid) size m in order to obtain the misclassification error (also
called test error; see below). Each sample consists of alleles at s SNPs (or loci). In sample i of deme k at SNP
j we observe state xijk ∈ Ξ = {0, 1, 2}, which gives the number of copies of the derived allele in this sample.
We stress that our method is independent of the knowledge of ancestral and derived alleles, such that xijk can
as well indicate the number of copies of the less frequent allele. Moreover, since our method assumes linkage
equilibrium between SNPs, we don’t need to know phase, i.e. the exact allelic compositions of chromosomes.
Using these assumptions, we write xijk = w2i−1,j,k + w2i,j,k, i = 1, ..., nk, where w2i−1,j,k, w2i,j,k ∈ {0, 1}
are the two copies of sample i in SNP j in deme k. The frequency of the derived allele (or the less frequent
allele) in deme k in SNP j is denoted pkj . Throughout, we will assume that we do not have three or four-fold
degenerate sites in the sample.

Informativeness

Wright’s fixation index FST was introduced in order to have a measure for the amount of structure within a
population [22]. Therefore, one can use SNPs with high values of FST to select AIMs. A more advantageous
approaches is taken in [42], where a measure of global informativeness of a marker with respect to ancestry
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2 MATERIALS AND METHODS 5

is introduced. Assume K islands and a bi-allelic marker with frequencies p1, ..., pK and 1 − p1, ..., 1 − pK ,
respectively. Informativeness In is related to Shannon entropy, and defined as follows: For p = 1

K

∑K
i=1 pi,

In := −h(p) +
1

K

K∑
i=1

h(pi) (1)

with h(x) := x log(x) + (1− x) log(1− x) where we have the convention that h(0) = 0. We will use In both,
for preselecting AIMs and to obtain a full set of AIMs; see below.

Naı̈ve Bayesian classifier

For our Bayesian classifier, we implemented a simpler version of STRUCTURE [40]. Our aim is to classify
diploid samples into K ≥ 2 groups using genetic data at s loci. Such data is described by (yz) ∈ Ξs, by
which we denote the number of copies of the derived (or less frequent) allele at all s loci. We use this notation
since y and z can as well be seen as haploid genomes themselves, but only the number of copies is used in
our algorithm. For a genome (yz) ∈ Ξs, the classification method we use is based on probabilities pk(y) for
a (haploid) sample y belonging to group k, which have to be obtained. Observing a genotype yz then gives
the corresponding probabilities pk(yz) := pk(y)pk(z)/(

∑
` p`(y)p`(z)) for the sample to belong to group k.

(Here, we are actually assuming that all populations are in Hardy-Weinberg equilibrium.) Classification then is
built upon the majority vote

c(yz) :

{
Ξs → {1, ...,K}
(yz) 7→ argmax{p`(yz) : ` = 1, ...,K}.

The values for pk(y) are obtained as follows: Letwik = (wi1k, ..., wisk) be the SNPs of the ith (haploid) sample
from the kth group in the training set, i = 1, ..., 2nk, k = 1, ...,K. For each SNP j in each of the K groups,
the prior for the frequencies qjk = (qjka)a∈{0,1} are Dir((1)a∈{0,1})-distributions, i.e. q0 = 1− q1 is uniformly
distributed on [0, 1]. Then – since the training data consists of a multinomial pick using the frequencies from
the prior – standard theory [14] tells us that the posterior probability distribution of the allelic frequencies in
group k are

Dir
((

1 +

2nk∑
i=1

1wijk=a

)
a∈{0,1}

)
.

(Recall that if (Xa)a∈{0,1} ∼ Dir((xa)a∈{0,1}) and x =
∑
xa, then E[Xa] = xa/x is the probability that a

random pick with the random probabilities distributed according to the Dirichlet distributions is a, and V[Xa] =

xa(x− xa)/(x2(1 + x)), in particular the variance is smaller for higher x, i.e. larger sample sizes.) Using the
naı̈ve Bayes approach of assuming that all SNPs are independent, we get that

pk(y) =

p∏
j=1

1 +
∑2nk

i=1 1wijk=yj

|Ξ|+ n
(2)

for the probability of picking a (haploid) sample y if we pick from group k. We note that SNIPPER slightly
deviates from this formula, since (i) it uses an a priori probability for classification which is proportional to
the population size in the reference dataset and (ii) it uses pk(y) ∼

∏p
j=1 max(1,

∑2nk
i=1 1wijk=yj ) rather than

(2). However, since 1 +
∑2nk

i=1 1wijk=yj ≈ max(1,
∑2nk

i=1 1wijk=yj ) in large datasets, and (2) is derived directly
using the Dirichlet prior, we stick to the approach described above. Note that adding 1 in the numerator of (2)
is called Laplace smoothing in the naı̈ve Bayes literature.
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2 MATERIALS AND METHODS 6

Misclassification error and logarithmic loss

If we have BGA information from all samples, the error we make in our classification scheme can be computed.
We set b(i) = k if sample i was taken from population k. The misclassification (test) error is then, for the test
data of size m with genotypes (yizi)i=1,...,m,

errmis :=
1

m

m∑
i=1

1b(i) 6=c(yizi). (3)

(But note that the misclassification error can as well be computed on the training set, which is then denoted the
training error.) This error function does not take into account how confident the method is about its own belief,
i.e. a small misclassification error can occur if pk(yi)pk(zi) is close to 1 for b(i) = k, or if pk(yi)pk(zi) is just
marginally bigger than (p`(yi)p`(zi))`6=k. This confidence is taken into account for a second error function we
consider, the logarithmic loss (or logloss). It is defined as

errlog := − 1

m

m∑
i=1

log(pb(i)(yizi)). (4)

2.2 Feature selection: how to choose an AIMset

Most importantly, the Bayesian classifier as described above depends heavily on the selected s SNPs. We
choose such an AIMset as follows, using only data on the training set: In order to reduce the number of
possible AIMs, we compute the informativeness from (1) and exclude all SNPs with an informativeness below
the 90% quantile (on the training set) of the resulting empirical distribution of informativenesses. We do this in
order to improve the run-time of our algorithm without much performance deficit of the obtained AIMset. For
the remaining SNPs, we start with an AIMset of size 0. For all SNPs, we determine the logarithmic loss (on the
training set) when only this single SNP is used. The SNP with the smallest logloss is then put into the AIMset.
Once we have an AIMset of size s, we try to add all remaining SNPs to this set and determine in each case the
logloss (on the training set). Then, the (s+ 1)st AIM is the SNP with the smallest logloss.

We found that minimizing the logloss (see (4)) for choosing AIMs works better than minimizing the mis-
classification error. The reason is that once the misclassification error is small, e.g. only two out of several
thousand individuals are misclassified, the minimal misclassification error for the next AIM is not unique, and
it is hard to come up with a rule which AIM should be chosen out of all minimizers. Since the logloss takes
into account the exact frequencies at all AIMs, this minimum is nearly always unique, and no further rule is
required.

Clearly, the step-wise approach we use here might not be optimal. The reason is that a global minimal
logloss for s AIMs need not lie on a decreasing path of loglosses for 1, ..., s AIMs. However, only this step-
wise approach has a run-time which is linear in the size of the AIMset we are looking for. Given that real data
frequently come with several million SNPs, this seems to be the only viable approach.

Cross-validation

Since the reported AIMs depend only on the genomic data on the training set, there is the chance that different
AIMs appear on different training sets. In order to study this effect, we used five-fold cross-validation as
follows: Splitting the data randomly in five parts of equal size, we take all five combinations of a training set
comprising 80% of the individuals in the dataset and of a test set of the remaining 20% of the individuals. Then,
finding AIMs step-wise as just described is carried out, leading to five different AIMsets for the five folds.
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2 MATERIALS AND METHODS 7

2.3 Simulated data

Population genetic data can efficiently be simulated by the coalescent [28, 23]. Today, a time-efficient, exact
coalescent-simulator is available [26]. Such simulations result in data from (haploid) individuals, drawn uni-
formly from the continents (or islands or demes) of a structured population, which can then be combined to
form diploids.

We run two sets of simulations. A detailed description is given in the SI. First, we use a symmetric migration
model with five islands (mimicking five continents), i.e. migration rates between and sizes of islands are equal
and constant over time. Here, migration rates (i.e. the expected number of haploids changing from one island
to another island per generation) vary from 1 to 8. We simulated 20 pairs of chromosomes for 500 individuals
on each island, where each recombining chromosome contains approximately 5 · 104 SNPs. For obtaining an
AIMset, we use two methods: (i) the 20 most informative SNPs (i.e. the SNPs with the highest informativeness,
as given in (1)); (ii) the approach from Section 2.2.
Second, in order to be more realistic with respect to human history, we adopt the Out of Africa model as given
in [18] for human genetic history. We stress that this model was recently implemented in https://github.
com/popgensims/stdpopsim as a standard model for human population history. This model was fit using
maximum likelihood on the allelic frequency spectrum of 5Mb of non-coding DNA (26,000 SNPs) from the
Environmental Genome Project. Roughly, divergence between West African (as represented by 12 Yorubean
from Ibadan, YRI) and Eurasian (represented by 22 individuals from a population from Utah, CEU) populations
was inferred to have occurred 140 thousand years (kya) ago (the 95% confidence interval is 40− 270 kya). The
European and East Asian (represented by 12 Han Chinese, CHB) divergence time to was estimated to be 23
kya (95% confidence interval: 17 − 43 kya). In our simulations, we used the point estimators. Both Asian
and European populations went through a bottleneck when they were founded. The most likely model also
allows for recent migration between continents. Using this model, we simulate 20 pairs of chromosomes for
800 individuals in Africa, Asia and Europe. Again, the mutation rate is set such that we have about 5 · 104

SNPs on each recombining chromosome. As in the symmetric case, we choose AIMsets either by taking the
most informative SNPs, or by the approach as described in Section 2.2.

2.4 Human data

We downloaded 1000 Genomes data (phase 3) from ftp://ftp.1000genomes.ebi.ac.

uk/vol1/ftp/release/20130502/, as well as information on the sampling locations from
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_

call_samples_v3.20130502.ALL.panel [1]. Note that this is data from 2504 individuals from five
continental populations (called superpops in the dataset). These are 661 from Africa (AFR), 347 Admixed
Americans (AMR), 504 East Asians (EAS), 503 Europeans (EUR) and 489 South-East Asians (SAS). The
dataset comes with approximately 80 million SNPs. In the dataset, sampling locations are broken down
to smaller populations, but we did not use this information and classified only according to the continental
populations. Note that AMR individuals come from four different populations: Mexican Ancestry from Los
Angeles (MXL); Puerto Ricans from Puerto Rico (PUR); Colombians from Medellin (CLM), Colombia;
Peruvians from Lima, Peru (PUR). Also note that this dataset comes with no missing data.
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Published AIMsets

For comparison of our method, we used published AIMsets from [33] (denoted the Seldin-AIMset),
from [27] (denoted the Kidd-AIMset), and the EUROFORGENE global AIMset from [37] (denoted the
EUROFORGENE-AIMset). We briefly introduce these AIMsets and their choice of markers:

• Seldin-AIMset: Validated on the HGDP dataset, this AIMset contains 93 AIMs and was designed to
distinguish various populations from all continents (except Australia). Figure 2 in [33] indicates that 9
large population clusters were considered (two Africans, two Europeans, two South Asians, East Asia,
Amerindian and Oceania). Wright’s Fst was used as a measure to differentiate between populations.

• Kidd-AIMset: Developed for forensic use, several approaches to select the 55 AIMs in this set were
applied. Mainly, sites were included which have a large absolute frequency difference or large Fst values,
where 63 populations with a total of 3071 individuals were tested (including the HGDP-data). The
AIMset was tested against the Seldin AIMset and the AIMset from [34], both of which are based on
HGDP-data.

• EUROFORGENE-AIMset: As stated in [37], this AIMset was chosen using an algorithm using just
AIMs with a high sum of allele frequency differentials over population pairs, δ. This study selected
AIMs also with respect published sources of AIMs. This resulted in an AIMset of 128 SNP, including 6
tri-allelic SNPs.

Note that the Seldin- and Kidd-AIMsets were combined to form the Precision ID Ancestry panel, which is also
commercially available from ThermoFisher Scientific [51, 3].

3 Results

3.1 Simulated Data

Symmetric island model

When simulating data in a structured population with five islands, each pair sharing the same number of ex-
pected migrants per generation (the so-called migration rate), it is clear that the misclassification error (see (3))
increases with migration rate. Here, based on ∼ 106 SNPs we trained the classification method on a training
set of 200 (diploid) individuals per island and then evaluated the test error on the remaining 50 individuals
per island. When the classifier just uses the 20 most informative SNPs as AIMset, the set selected with the
naı̈ve Bayesian classifier that we implemented outperforms the AIMsets selected based on informativeness; see
Figure 1.

Model for human evolution from [18]

The Out-of-Africa model from [18] aims at describing a realistic scenario for human evolution. As a proof of
principle, we used a training set of 600 individuals in each continent (Europe, Africa, Asia), and a test set of
200 individuals in each continent. When using the most informative SNPs as AIMs, we see in Figure 2 that the
misclassification error is never below 5%. The reason is the symmetry of the definition of informativeness, in
conjunction with the asymmetric model for human evolution. However, when using our naı̈ve Bayes approach,
8-10 AIMs suffice to get a vanishing misclassification error on the test set. Here, AIMs are ordered by the
step-wise manner described in Section 2.2:
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Figure 1 For varying migration rate m (which indicates the number of haploids migrating between any
pair of islands in one generation), we obtain the misclassification error, when AIMs are selected using
informativeness alone, or the naı̈ve Bayes approach. In each run, we select 20 AIMs from a total of ∼ 106

SNPs.

3.2 Human Data

Excluding admixed Americans

Using a specific (random) distinction in training and test set, we obtain an AIMset on the 1000 genomes data
via the method described above. The goal of this set is a minimal error on the test set with a low number of
AIMs, as described in Materials and Methods. At least when excluding Admixed Americans (AMR) from the
dataset, we are able to achieve a vanishing misclassification (test) error (see (3)) with 21 AIMs; see Figure 3.
See the Appendix for SNP identifiers. Interestingly, we did not find AIMs which can distinguish the continental
origin when including AMRs; see Figure 4. (The SNPs found in this case are also in the Appendix.) We also
note that the misclassification error when using the Kidd-AIMset, Seldin-AIMset or EUROFORGENE-AIMset
is around 15%, since AMRs are not classified correctly. The reason might be that many AMRs have a mixed
background and for this reason, we exclude admixed Americans in the sequel. Specifically, we follow [37],
who also excluded the majority of AMRs for finding AIMs.

Comparison to published AIMsets

After excluding AMRs, we compared the misclassification errors for continental origin (which drops to 0
at 21 AIMs) of our AIMset with published AIMsets by [33] (Seldin-AIMset), [27] (Kidd-AIMset), and [37]
(EUROFORGENE-AIMset) on the 1000 genomes data. We have to mention that not all AIMs could be included
for the EUROFORGENE AIMset, since (i) two AIMs are not included in the 1000 genomes dataset and (ii)
not all are bi-allelic and our algorithm as it stands only works for bi-allelic SNPs. In total, we could use
121 (out of 128) AIMs in the EUROFORGENE AIMset; see Table 2 for details. In our analysis, the Seldin
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Figure 2 For a model for human evolution from [18], we determine the misclassification error depending
on the number of AIMs used. Each line corresponds to one out of ten independent simulations.

Kidd Seldin EUROFORGENE
total number of SNPs 55 93 128
in 1000 genomes dataset 55 93 1262

... and bi-allelic 55 93 1213

... and most informative0 541 93 1174

Table 2 0 Informativeness was computed using the training set as in Figure 3. 1 SNP rs4471745 is not
among the 10% most informative SNPs. 2 SNPs rs12402499 and rs17287498 (tri-allelic) are not present in
the 1000 genomes dataset. 3 SNPs rs2069945, rs2184030, rs433342, rs4540055, rs5030240 are tri-allelic. 4

SNPs rs1509524, rs2139931, rs715605, rs9908046 are not among the 10% most informative SNPs.

AIMset produces misclassification errors of approximately 3%, which is much higher than for the Kidd and
EUROFORGENE AIMsets. The latter comes down to 0 at 40 AIMs; see Figure 3. Again, we ordered the
AIMs appearing on the x-axis according to the minimal logloss (see (3)) an additional AIM produces in the
naı̈ve Bayes approach as described in Materials and Methods, i.e. by the same approach as we used for finding
AIMs.

Cross-validation and remarks on some SNPs

Five-fold Cross-validation was used to see if the AIMset remains stable under changes in the training and test
set. Here, for each of the five folds, we let our algorithm run until 10 AIMs were found. (The exact sequences
of AIMs for the five folds are found in the Appendix.) Interestingly, among the first five AIMs in each fold, we
only find eight different SNPs. Four of them also appear in both, the Kidd and EUROFORGENE AIMset:

• rs2814778: It is known that this SNP is part of the molecular basis of the Duffy blood group system
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Figure 3 Comparison between misclassification errors on the 1000 genomes dataset (excluding AMRs).
We only classified using continental origin of the sample.

[21] and relevant for malaria resistance [31]. It shows a nearly fixed difference between Europeans and
Africans; see also Table 3.

• rs16891982: As part of the Irisplex system, which consists of six SNPs relevant for eye (or iris) color
[54], this SNP is known to play a role in human pigmentation. It is also part of Hirisplex-S, a system
consisting of 41 SNPs for simultaneous determining human eye, hair and skin color [53, 6].

• rs3827760: This SNP was recently found to be associated with eyebrow thickness [13] and facial mor-
phology in Eurasians [30].

• rs1426654: Also part of the Hirisplex-S system [53, 6], this SNPs was shown to have a high correlation
with skin and iris pigmentation in individuals of south Asian ancestry [49, 25].

The other four (rs1872600, rs17034666, rs200750143, rs260687) have no associated publications in the dbSNP
database [47].

Using the whole dataset for training (excluding AMRs)

Frequently, a difference between training and test error is attributed to overfitting the set of features (AIMset)
to the training data. As can be seen from Figure 3, this is hardly the case here because the test error also drops
to 0. Since the training and test error do not deviate too much, we used our approach to find an AIMset based
on the whole dataset (but still excluding AMRs) for training. The resulting set is found in Table 3, where we
also list allelic frequencies in the four classes (AFR=Africa, EAS=East Asia, EUR=Europe, SAS=South East
Asia). Note that we again find the same overlap of SNPs with the Kidd and EUROFORGENE AIMset as above.
We also note that the misclassification error when using only these four SNPs is 3.52% (when using the whole
dataset but excluding admixed Americans as training and test-set). Notably, 14 of the selected SNPs fall within
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Figure 4 The classifier gives prediction probabilities from which continent a sample comes. When including
AMRs in our algorithm, the AMR-samples are rarely classified into the class AMR. Rather, ancestry from
other continents dominates the classification of AMRs.

rs2814778 rs16891982 rs3827760 rs1872600 rs1426654 rs889603 rs34454770 rs5743618 rs7541623
AFR 0.964 0.036 0.003 0.523 0.926 0.047 0.013 0.964 0.86
EAS 0 0.006 0.873 0.074 0.988 0.997 0.085 0.994 0.794
EUR 0.006 0.938 0.011 0.152 0.003 0.42 0.353 0.327 0.07
SAS 0 0.059 0.013 0.831 0.315 0.874 0.743 0.926 0.108

rs114429736 rs6053171 rs10130486 rs76057839 rs2073917 rs2847495 rs1641127 rs1355343
AFR 0.074 0.393 0.854 0.12 0.21 0.522 0.784 0.59
EAS 0.625 0.982 0.071 0.663 0.733 0.997 0.849 0.022
EUR 0.097 0.083 0.383 0.828 0.67 0.25 0.116 0.519
SAS 0.612 0.598 0.087 0.357 0.961 0.81 0.142 0.101

Table 3 An AIMset with 17 SNPs which gives a perfect continental classification on the 1000 genomes
dataset (if admixed Americans are excluded).

gene coding regions which highlights the efficiency of sites under selection for the inference of biogeographical
ancestry. In addition, two of the 17 SNPs (rs2814778 and rs16891982) were found in a recently identified set
of 27 SNPs that convey information on diverse health related Off-target phenotypes [5]. However, our method
could readily be applied using a restricted subset of SNPs filtered by custom criteria.

Run-times

Cherry-picking AIMs without prior knowledge from a dataset as large as the 1000 genomes project with its ap-
proximately 80 million SNPs is a computationally demanding task. After filtering for only bi-allelic SNPs and
highly informative SNPs (recall that we restrict ourselves to the top 10% for informativeness), approximately
8 million SNPs remain. In our step-wise manner for choosing the AIMset, we have to compute the logloss for
all of these SNPs in order to decide which one to pick. When using a computer with 32 cores and not less than
64GB RAM, this task took (using multi-core support) about five hours to find one AIM, or about four days
to find the AIMset from the last section. Note that the step-wise manner to choose AIMs results in run-times

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/759464doi: bioRxiv preprint 

https://doi.org/10.1101/759464
http://creativecommons.org/licenses/by-nc/4.0/


4 DISCUSSION 13

which are linear in the number of SNPs in the dataset.

4 Discussion

Using statistical learning, we obtained an automated method for producing an AIMset for biogeographical
inference using genome-wide population data. As a core principle for finding the AIMset, we use an approach
previously described by Rosenberg in [41], who calls the method greedy by the stepwise approach of adding
SNPs to an AIMset. More specifically, we add SNPs one by one to the AIMset, which minimizes the logloss
when classifying a training set using a naı̈ve Bayesian classifier. In contrast to the misclassification error,
the logloss accounts for the confidence in its classification being correct. In other words, choosing AIMs by
minimizing the logloss leads to an AIMset which is more likely to classify traces with higher confidence. Once
the AIMset is found, we again use the naı̈ve Bayesian classifier for inference of BGA, as in [38].

A similar method (called AIM-SNPtag) for choosing an AIMset was introduced in [56], also based on the
1000 genomes dataset. First, combinations of classes/populations which will be most important to distinguish
are manually determined. Second, for each of these combinations, SNPs (20.000) with a high FST -value are
pre-selected. Third, a feature selection algorithm (based on a naı̈ve Bayesian classifier) is used in order to (i)
minimize the misclassification error (for single SNPs) and (ii) minimize correlations between AIMs. However,
since the error is only minimized on single SNPs in the last step, combinations of AIMs are not tested as in the
stepwise approach we use here.

Although no manual step is involved in our approach, we are able to give an AIMset of 17 SNPs with a
perfect classification of the 1000 genomes dataset into four continental groups (after excluding admixed Amer-
icans). It thereby outperforms other methods (which also exclude admixed Americans). However, we can still
suggest some possible improvements of our method: (i) change the stepwise choice of the AIMs to an optimal
choice of a combination of SNPs (called exhaustive evaluation in [41]), but note that the computational com-
plexity is huge; (ii) allow for deviations from independence of the two copies for each locus (Hardy-Weinberg
equilibrium) within populations, as is done in the extension of SNIPPER [45]; see [8, Online resource 1]; (iii)
rather than treating all SNPs the same in (2), more important SNPs should get a larger weight in the actual
classification procedure; (iv) rather than only using bi-allelic SNPs, also tri-allelic SNPs or microhaplotypes
could be used [7].

For comparing the performance of our 17-SNPs-AIMset to published AIMsets (Kidd [27], Seldin [33],
EUROFORGENE [37]), we excluded Admixed Americans from the 1000 genomes dataset since the naı̈ve
Bayesian classifier was not able to classify them by any AIMset. The Seldin AIMset (93 SNPs) was announced
to be able to distinguish between the continental groups of Oceana, South Asia, East Asia, Sub-Saharan Africa,
North and South America, and Europe, and was tested on HGDP, HapMap and other data. Our results show
that this AIMset is outperformed by the smaller Kidd AIMset (55 SNPs) for inference of continental BGA
(African, European, East Asian, South-East Asian) on the 1000 genomes dataset. The Kidd AIMset in turn
was not intended to classify according to continents, but according to 63 populations. The EUROFORGENE
AIMset was designed to draw distinctions between Africans, Europeans, East Asians, Native Americans and
Oceanians, but not South Asians. Still, this AIMset leads to a vanishing misclassification error on the 1000
genomes dataset with the right subset of 40 AIMs. While our AIMset is able to perfectly classify the 1000
genomes dataset with as little as 17 SNPs, it was not trained for any other distinction.

In [27], it was conjectured that ”the greatest improvement [in BGA inference] will come from using
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better SNPs. The problem is finding SNPs that provide a clearer differentiation of certain populations or
groups of populations without detracting from differentiation among some other populations.” Here, using the
1000 genomes dataset, only some SNPs appear simultaneously in several AIMsets (rs2814778, rs16891982,
rs3827760, rs1426654, which appear in the Kidd, EUROFORGENE and our AIMset). As our cross-validation
results show, the remaining AIMs depend not only on the populations which shall be distinguished, but also
on the individuals present in the training and test set.Therefore, we conclude that for a given classification task
there exists a multitude of sets with comparable performance to the optimal AIMset. However, the performance
of all AIMset and methods is worse when admixed Americans are included in training and test set.

Simulation techniques provide benefits in various respects. In population genetics, powerful software based
on the coalescent [23] is today available which can simulate genome-wide data [26]. Once a population model is
specified, it generates genealogical relationships at all loci under consideration. Furthermore, once a population
model is specified, simulations come with the advantage of “perfect” sampling: BGA in simulations can only
mean the simulated sampling location when running the software. In this case, “perfect” sampling means
that the technique recruits simulated individuals only on the basis of their simulated belonging to one of the
populations designated in the previously defined classification scheme and no ambiguous cases can occur.

We nevertheless believe that simulation techniques can furthermore be beneficial in forensic genetics, and
provide a proof of principle in scenarios including: (i) comparison of misclassification errors for autosomal
(recombining) and mitochondrial- or Y-chromosomal (non-recombining) data ; (ii) determine the performance
of classifiers if tested data comes from populations that are missing in the reference database; (iii) study the
spatial resolution of classification of BGA with a given number of AIMs; (iv) evaluation of classifiers for
admixed populations.

The disadvantage of simulated data is the impossibility to simulate a real-life scenario of human population
history since all models require simplification. For example, migration rates dramatically increased in the
past decades, but the model for human evolution used in our simulation study from [18] was fitted using only
Yorubeans, Europeans from Utah and Han Chinese individuals. Furthermore, populations are not always and
not everywhere so neatly delimitable from each other.

The method we propose to find AIMsets starts off with a reference dataset. An apparent complication in the
1000 genome dataset is the group of Admixed Americans, including individuals coming from Mexico, Puerto
Rico, Colombia and Peru. “Admixed Americans” then seems to relate to the US census category “Hispanics”.
As we have seen, these are hard to classify into a single continental group, but were nevertheless kept and
labelled as a separate group when designing the 1000 genomes dataset. Still, excluding admixed individuals
and populations from reference databases in both, training- and test-sets, is a common practise [37], [56] and
makes our method work perfectly, but it may not be working well when applied in a social reality in which
admixed individuals make up a considerable proportion of the population (e.g. in many urban areas worldwide,
and in postcolonial societies).

Another complication of inference of BGA in practise lies in the genesis of reference datasets. Here,
sampling decisions come with various constraints. Sampling for a reference database that aims at distinguish-
ing populations needs to make assumptions that may not be congruent with social reality. Usually, reference
databases depend on information about recent ancestry, provided by the test subject, and use it a proxy for
BGA. In order to obtain reference samples from individuals that are most likely to have all of their ancestry in
only one location or population, the information sought after is the origin of all four grandparents ([10, 12] and
[50, p. 104]). This information, however, can be ambiguous, wrong, or based on different categories than the
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reference database’s classification provides. This points to the complexities that arise when genetic and social
classification schemes do not map onto each other. Moreover, legal restrictions might protect some countries
to be included in reference datasets, and socially loaded group-terms might bias the decision of individuals if
they are asked to give their self-declared BGA.

A result of such sampling decisions becomes clear after a closer look at the 1000 genomes dataset. As an
example, Europe is represented by five populations (Utah Residents with European Ancestry, Toscani in Italia,
Finns, British, and the Iberian Population in Spain). According to the Informed Consent sheet of the 1000
genomes project [10], “the samples should be from people whose grandparents mostly came from [geographic
location or ethnic group]” (p. 2). This means that e.g. “British” does not refer to British citizenship or self-
declared Britishness, but to individuals who have British ancestors, which is a subset of “British citizens”).
Although our AIMset of 17 SNPs gives a perfect classification on this dataset, it is hard to predict the perfor-
mance of the same AIMset on data sampled under these conditions from other parts of Europe, or for samples
without any constraint on ancestry.

To sum up, BGA categories might frequently introduce slippages between social and genetic population
labels, which makes the ultimate goal of BGA inference even more challenging: to provide a useful tool in
forensic casework. After all, the task for forensic geneticists and investigators is to translate a population label
from a genetic reference database into a social category helpful enough for focussing investigations.
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Appendix

A Human data

Excluding admixed Americans

For the specific (random) distinction in training and test set, the AIMset of 30 SNPs is as follows (ordered in a
step-wise manner for minimizing the logloss as described in the main text:

rs2814778, rs16891982, rs3827760, rs1872600, rs1426654, rs3768641, rs5743618, rs112790372,
rs889603, rs6053171, rs7541623, rs1906496, rs2000639, rs1550778, rs260687, rs4587880,
rs2654201, rs6060652, rs191090, rs7686018, rs12916300, rs1811510, rs12536329, rs1630897,
rs10130486, rs1015594, rs2196051, rs58827274, rs200450082, rs9762896.

Including admixed Americans

When we include admixed Americans (AMR in the dataset), the misclassification error becomes significant;
see Figure 4. The resulting AIMs are here

rs2814778, rs16891982, rs3827760, rs4900908, rs1133238, rs7152177, rs5750993, rs12091805,
rs184261752, rs72818358, rs509360, rs11772526, rs2357234, rs12052770, rs10792010,
rs145327787, rs62419475, rs117787287, rs8079722, rs228092, rs9788726, rs12916300,
rs184261752, rs2789823, rs12221394, rs2597305, rs2357234, rs509360, rs9320800, rs9550774.

Five fold cross-validation

When training the classifier on different training sets, different AIMsets result. We studied this phenomenon
using five fold cross-validation. Here are the AIMsets (of size 10) we found in the five folds (ordered by the
step-wise manner as described in Materials and Methods:

• Fold 1: rs2814778, rs16891982, rs17034666, rs200750143, rs1426654, rs889603, rs34454770,
rs2654201, rs6053171, rs114429736.

• Fold 2: rs2814778, rs16891982, rs3827760, rs260687, rs200750143, rs3768641, rs6053171, rs2402522,
rs76057839, rs114429736.

• Fold 3: rs2814778, rs16891982, rs3827760, rs200750143, rs1426654, rs13011477, rs12929243,
rs998401, rs1058119, rs2654201.

• Fold 4: rs2814778, rs16891982, rs3827760, rs1872600, rs1426654, rs889603, rs2443857, rs6053171,
rs112790372, rs371618232.

• Fold 5: rs2814778, rs16891982, rs3827760, rs1872600, rs1426654, rs889603, rs34454770, rs509360,
rs10494991, rs1357368.
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