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To date, it is still impossible to sample the entire mammalian brain with single-neuron precision. This forces one to either use
spikes (focusing on few neurons) or to use coarse-sampled activity (averaging over many neurons, e.g. LFP). Naturally, the
sampling technique impacts inference about collective properties. Here, we emulate both sampling techniques on a spiking
model to quantify how they alter observed correlations and signatures of criticality. We discover a general effect: when the
inter-electrode distance is small, electrodes sample overlapping regions in space, which increases the correlation between
the signals. For coarse-sampled activity, this can produce power-law distributions even for non-critical systems. In contrast,
spike recordings enable one to distinguish the underlying dynamics. This explains why coarse measures and spikes have
produced contradicting results in the past— that are now all consistent with a slightly subcritical regime.

1 Introduction

For more than two decades, it has been argued that the cor-
tex might operate at a critical point [1–6]. The criticality hy-
pothesis states that by operating at a critical point, neuronal
networks could benefit from optimal information-processing
properties. Properties maximized at criticality include the cor-
relation length [7], the autocorrelation time [6], the dynamic
range [8, 9] and the richness of spatio-temporal patterns [10,
11].

Evidence for criticality in the brain often derives from mea-
surements of neuronal avalanches. Neuronal avalanches are
cascades of neuronal activity that spread in space and time. If a
system is critical, the probability distribution of avalanche size
𝑝(𝑆) follows a power law 𝑝(𝑆) ∼ 𝑆−𝛼 [7, 12]. Such power-
law distributions have been observed repeatedly in experiments
since they were first reported by Beggs & Plenz in 2003 [1].

However, not all experiments have produced power laws
and the criticality hypothesis remains controversial. It turns
out that results for cortical recordings in vivo differ systemati-
cally:

Studies that use what we here call coarse-sampled activity
typically produce power-law distributions [1, 13–22]. In con-
trast, studies that use sub-sampled activity typically do not [15,
23–27]. Coarse-sampled activity include LFP, M/EEG, fMRI
and potentially calcium imaging, while sub-sampled activity is
front-most spike recordings. We hypothesize that the apparent
contradiction between coarse-sampled (LFP-like) data and sub-
sampled (spike) data can be explained by the differences in the
recording and analysis procedures.

In general, the analysis of neuronal avalanches is not
straightforward. In order to obtain avalanches, one needs to de-
fine discrete events. While spikes are discrete events by nature,
a coarse-sampled signal has to be converted into a binary form.
This conversion hinges on thresholding the signal, which can be
problematic [28–31]. Furthermore, events have to be grouped
into avalanches, and this grouping is typically not unique [23].
As a result, avalanche-size distributions depend on the choice

of the threshold and temporal binning [1, 32].
In this work, we show how thresholding and temporal bin-

ning interact with a (so far ignored) effect. Under coarse-
sampling, neighboring electrodes may share the same field-of-
view. This creates a distance-dependent measurement overlap
so that the activity that is recorded at different electrodes may
show spurious correlations, even if the underlying spiking activ-
ity is fully uncorrelated. We show that the inter-electrode dis-
tance may therefore impact avalanche-size distributions more
severely than the underlying neuronal activity.

In the following, we explore the role of the recording and
analysis procedures on a generic, locally-connected network of
spiking neurons. We compare apparent signs of criticality un-
der sub-sampling versus coarse-sampling. To that end, we vary
the distance to criticality of the underlying system over a wide
range, from uncorrelated (Poisson) to highly-correlated (criti-
cal) dynamics. We then derive signatures of criticality— as is
done in experiments— and study how results depend on elec-
trode distance and temporal binning.

2 Results
The aim of this study is to understand how the sampling of
neural activity affects the inference of the underlying collec-
tive dynamics. It is not about introducing a novel model that
might generate critical dynamics. Therefore, we use an estab-
lished phenomenological model, where the distance to critical-
ity can be precisely tuned. To study sampling effects, we use a
two-level setup inspired by [35]: An underlying networkmodel,
on which activity is then sampled with a grid of 8 × 8 virtual
electrodes. All parameters of the model, the sampling and the
analysis are closely matched to those known from experiments
(see Methods).

In order to evaluate sampling effects, we want to precisely
set the underlying dynamics. Therefore, we employ the es-
tablished branching model, which is well understood analyti-
cally [10, 26, 33–35]. Inspired by biological neuronal networks,
we simulate the branching dynamics on a dense 2D topology
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with 𝑁N = 160 000 neurons where each neuron is connected
to 𝐾 ≈ 1000 local neighbors. To emphasize the locality, the
synaptic strength of connections decays with the distance 𝑑N
between neurons. For a detailed comparison with different
topologies, see the Supplemental Information (Fig. S1).

2.1 The branching parameter 𝑚 sets the distance
to criticality

In order to compare apparent signatures of criticality with the
true, underlying dynamics, we first give some intuition about
the branching model. The branching parameter 𝑚 quantifies
the probability of postsynaptic activations, or in other words,
how many subsequent spikes are caused (on average) by a sin-
gle spike. With increasing 𝑚 → 1, a single spike triggers in-
creasingly long cascades of activity. These cascades determine
the timescale over which fluctuations occur in the population
activity— this intrinsic timescale 𝜏 describes the dynamic state
of the system and its distance to criticality.

The intrinsic timescale can be analytically related to the
branching parameter by 𝜏 ∼ −1/ ln (𝑚). As 𝑚 → 1, 𝜏 → ∞
and the population activity becomes “bursty”. We illustrate this
in Fig. 1B and Table 1: For Poisson-like dynamics (𝑚 ≈ 0),
the intrinsic timescale is zero ( ̂𝜏psn ≈ 0ms) and the activity
between neurons is uncorrelated. As the distance to critical-
ity becomes smaller (𝑚 → 1), the intrinsic timescale becomes
larger ( ̂𝜏sub ≈ 19ms, ̂𝜏rev ≈ 98ms, ̂𝜏crit ≈ 1.6 s), fluctuations
become stronger, and the spiking activity becomes more and
more correlated in space and time.

2.2 Avalanches are extracted differently under
coarse-sampling and sub-sampling

At each electrode, we sample both the spiking activity of the
closest neuron (sub-sampling) and a spatially averaged signal
that emulates LFP-like coarse-sampling.

Both sub-sampling and coarse-sampling are sketched in
Fig. 1A: For coarse-sampling (left), the signal from each elec-
trode channel is composed of varying contributions (orange cir-
cles) of all surrounding neurons. The contribution of a partic-
ular spike from neuron 𝑖 to electrode 𝑘 decays as 1/𝑑𝑖𝑘 with
the neuron-to-electrode distance 𝑑𝑖𝑘 (see Supplemental Infor-
mation for an extended discussion on the impact of the distance
dependence). In contrast, if spike detection is applied (Fig. 1A,
right), each electrode signal captures the spiking activity of few
individual neurons (highlighted circles).

Table 1: Parameters and intrinsic timescales of dynamic states. All
combinations of branching parameter 𝑚 and per-neuron drive ℎ result
in a stationary activity of 1Hz per neuron. Due to the recurrent topol-
ogy, it is more appropriate to consider the measured autocorrelation
time ̂𝜏 rather than the analytic timescale 𝜏 .

State name 𝑚 ̂𝜏 (measured) 𝜏 = −2ms
ln𝑚 ℎ

Poisson 0.0 0.1 ± 0.1ms 0.0ms 2 × 10−3

Subcritical 0.9 18.96 ± 0.09ms 18.9ms 2 × 10−4

Reverberating 0.98 98.3 ± 1.0ms 98.9ms 4 × 10−5

Critical 0.999 1.58 ± 0.12 s 1.99 s 2 × 10−6
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FiguRe 1: Sampling affects the assessment of dynamic states from
neuronal avalanches. A: Representation of the sampling process
of neurons (black circles) using electrodes (orange squares). Under
coarse-sampling (e.g. LFP), activity is measured as a weighted aver-
age in the electrode’s vicinity. Under sub-sampling (spikes), activity
is measured from few individual neurons. B: Fully sampled popula-
tion activity of the neuronal network, for states with varying intrinsic
timescales 𝜏 : Poisson ( ̂𝜏psn ≈ 0ms), subcritical ( ̂𝜏sub ≈ 19ms), rever-
berating ( ̂𝜏rev ≈ 98ms) and critical ( ̂𝜏crit ≈ 1.6 s). C: Avalanche-size
distribution 𝑝(𝑆) for coarse-sampled (left) and sub-sampled (right) ac-
tivity. Sub-sampling allows for separating the different states, while
coarse-sampling leads to 𝑝(𝑆) ∼ 𝑆−𝛼 for all states except Poisson.
Parameters: Inter-electrode distance 𝑑E = 400 µm and time-bin size
𝛥𝑡 = 8ms.

To test both recording types for criticality, we apply the
standard analysis that provides a probability distribution 𝑝(𝑆)
of the avalanche size 𝑆: In theory, an avalanche describes a
cascade of activity where individual units— here neurons— are
consecutively and causally activated. Each activation is called
an event. The avalanche size is then the total number of events
in the time between the first and the last activation. A power
law in the size distribution of these avalanches is a hallmark of
criticality [6]. In practice, the actual size of an avalanche is hard
to determine because individual avalanches are not clearly sep-
arated in time; the coarse-sampled signal is continuous-valued
and describes the local population. In order to extract binary
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FiguRe 2: Analysis pipeline for avalanches from sampled data. I:Un-
der coarse-sampling (LFP-like), the recording is demeaned and thresh-
olded. II:The timestamps of events are extracted. Under sub-sampling
(spikes), timestamps are obtained directly. III: Events from all chan-
nels are binned with time-bin size 𝛥𝑡 and summed. The size 𝑆 of each
neuronal avalanche is calculated. IV: The probability of an avalanche
size is given by the (normalized) count of its occurrences throughout
the recording.

events for the avalanche analysis (Fig. 2), the signal has to
be thresholded—which is not necessary for spike recordings,
where binary events are inherently present as timestamps.

2.3 Coarse-sampling makes dynamic states indis-
tinguishable

Irrespective of the applied sampling, the inferred avalanche dis-
tribution should represent the true dynamic state of the system.

However, under coarse-sampling (Fig. 1C, left), the
avalanche-size distributions of the subcritical, reverberating
and critical state are virtually indistinguishable. Intriguingly,
all three show a power law. The observed exponent 𝛼 = 1.5 is
associated with a critical branching process. Only the uncorre-
lated (Poisson-like) dynamics produce a non-power-law decay
of the avalanche-size distribution.

Under sub-sampling (Fig. 1C, right), each dynamic state pro-
duces a unique avalanche-size distribution. Only the critical
state, with the longest intrinsic timescale, produces the char-
acteristic power law. Even the close-to-critical, reverberating
regime is clearly distinguishable and features a “subcritical de-
cay” of 𝑝(𝑆).

2.4 Measurement overlap causes spurious corre-
lations

Why are the avalanche-size distributions of different dynamic
states hard to distinguish under coarse-sampling? The answer
is hidden within the cascade of steps involved in the recording
and analysis procedure. Here, we separate the impact of the
involved processing steps. Most importantly, we discuss the
consequences of measurement overlap—which we identify as
a key explanation for the ambiguity of the distributions under
coarse-sampling.
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FiguRe 3: Coarse-sampling leads to greater correlations than sub-
sampling. Pearson correlation coefficient between the signals of two
adjacent electrodes for the different dynamic states. Even for inde-
pendent (uncorrelated) Poisson activity, measured correlations under
coarse-sampling are non-zero. Parameters: Inter-electrode distance
𝑑E = 400 µm and time-bin size 𝛥𝑡 = 8ms.

In order to obtain discrete events from the continuous time
series for the avalanche analysis, each electrode signal is filtered
and thresholded, binned with a chosen time-bin size 𝛥𝑡 and,
subsequently, the events from all channels are stacked. This
procedure is problematic because (i) electrode proximity adds
spatial correlations, (ii) temporal binning adds temporal corre-
lations, and (iii) thresholding adds various types of bias [28–
30].

As a result of the involved analysis of coarse-sampled data,
spurious correlations are introduced that are not present in sub-
sampled data. We showcase this effect in Fig. 3, where the
Pearson correlation coefficient between two virtual electrodes
is compared for both the (thresholded and binned) coarse-
sampled and sub-sampled activity. For the same parameters
and dynamic state, coarse-sampling leads to larger correlations
than sub-sampling.

Depending on the distance between electrodes, multiple
electrodes might record activity from the same neuron. This
measurement overlap (or volume conduction effect) increases
the spatial correlations between electrodes— and because from
the signals from multiple electrode channels are combined in
the analysis, correlations can originate frommeasurement over-
lap alone.

2.5 Inter-electrode distance shapes criticality

Due to the measurement overlap, avalanche-size distributions
under coarse-sampling depend on the inter-electrode distance
𝑑E (Fig. 4A). For small inter-electrode distances, the overlap
is strong. Thus, the spatial correlations are strong. Strong
correlations manifest themselves in larger avalanches. How-
ever, under coarse-sampling the maximal observed size 𝑆 of an
avalanche is limited by the number of electrodes 𝑁E [35]. This
limit due to 𝑁E manifests as a sharp cut-off and— in combina-
tion with spurious measurement correlations due to 𝑑E —can
shape the probability distribution. In the following, we show
that these factors can be more dominant than the actual under-
lying dynamics.

In theory, supercritical dynamics are characterized by a
sharp peak in the avalanche distribution at 𝑆 = 𝑁E. Inde-
pendent of the underlying dynamics, such a peak can origi-
nate from small electrode distances (Fig. 4A, 𝑑E = 100 µm):
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FiguRe 4: Under coarse-sampling, apparent dynamics depend on
the inter-electrode distance 𝑑E. A: For small distances (𝑑E = 100 µm),
the avalanche-size distribution 𝑝(𝑆) indicates (apparent) supercritical
dynamics: 𝑝(𝑆) ∼ 𝑆−𝛼 with a sharp peak near the electrode number
𝑁E = 64. For large distances (𝑑E = 500 µm), 𝑝(𝑆) indicates subcritical
dynamics: 𝑝(𝑆) ∼ 𝑆−𝛼 with a pronounced decay already for 𝑆 < 𝑁E.
There exists a sweet-spot value (𝑑E = 250 µm) for which 𝑝(𝑆) indicates
critical dynamics: 𝑝(𝑆) ∼ 𝑆−𝛼 until the the cut-off is reached at 𝑆 =
𝑁E. The particular sweet-spot value of 𝑑E depends on time-bin size
(here, 𝛥𝑡 = 4ms). As a guide to the eye, dashed lines indicate 𝑆−1.5.
B: The branching parameter 𝑚av is also biased by 𝑑E when estimated
from neuronal avalanches. Apparent criticality (𝑚av ≈ 1, dotted line)
is obtained with 𝑑E = 250 µm and 𝛥𝑡 = 4ms but also with 𝑑E =
400 µm and 𝛥𝑡 = 8ms. B, Inset: representation of the measurement
overlap between neighboring electrodes; when electrodes are placed
close to each other, spurious correlations are introduced.

Avalanches are likely to span the small area covered by the elec-
trode array. Furthermore, due to strong measurement overlap,
individual events of the avalanche may contribute strongly to
multiple electrodes.

Subcritical dynamics are characterized by a pronounced de-
cay already for 𝑆 < 𝑁E. Independent of the underlying dynam-
ics, such a decay can originate from large electrode distances
(Fig. 4A, 𝑑E = 500 µm): Locally propagating avalanches are un-
likely to span the large area covered by the electrode array. Fur-

thermore, due to the weaker measurement overlap, individual
events of the avalanche may contribute strongly to one elec-
trode (or to multiple electrodes but only weakly).

Consequently, there exists a sweet-spot value of the inter-
electrode distance 𝑑E for which 𝑝(𝑆) appears convincingly crit-
ical (Fig. 4A, 𝑑E = 250 µm): a power law 𝑝(𝑆) ∼ 𝑆−𝛼 spans all
sizes up to the cut-off at 𝑆 = 𝑁E. However, the dependence on
the underlying dynamic state is minimal.

Independently of the apparent dynamics, we observe the
discussed cut-off at 𝑆 = 𝑁E, which is also often seen in experi-
ments (Fig. 5). Note, however, that this cut-off only occurs un-
der coarse-sampling (see again Fig. 1C). When spikes are used
instead (Fig. 6), the same avalanche can reach an electrode re-
peatedly in quick succession—whereas such double-events are
circumvented when thresholding at the population level. For
more details see Fig. S2.

A further signature of criticality is obtained by estimat-
ing the branching parameter. This is traditionally done at the
avalanche level: The estimated branching parameter of the neu-
ronal avalanches, 𝑚av, is defined as the average ratio of events
between subsequent time bins in an avalanche, i.e. during non-
zero activity [1, 32]. Note that, due to coalescence and drive
effects, 𝑚av can differ from 𝑚 proper [23, 34].

Obtaining 𝑚av for different electrode distances results in a
picture consistent with the one from avalanche-size distribu-
tions (Fig. 4B). In general, the dependence on the electrode dis-
tance is stronger than the dependence on the underlying state.
At the particular value of the inter-electrode distance where
𝑚av = 1, the distributions appear critical. If 𝑚av < 1 (𝑚av > 1),
the distributions appear subcritical (supercritical). Because the
probability distributions and the estimated branching parame-
ter share this dependence, awide range of dynamic stateswould
be consistently misclassified— solely as a function of the inter-
electrode distance.

2.6 Temporal binning determines scaling expo-
nents

Apart from the inter-electrode distance, the choice of temporal
discretization that underlies the analysis may alter avalanche-
size distributions. This time-bin size 𝛥𝑡 varies from study to
study and it can severely impact the observed distributions [1,
23, 36, 37]. With smaller bin sizes, avalanches tend to be sepa-
rated into small clusters, whereas larger bin sizes tend to “glue”
subsequent avalanches together [23]. Interestingly, this not
only leads to larger avalanches, but specifically to 𝑝(𝑆) ∼ 𝑆−𝛼,
where the exponent 𝛼 increases systematically with bin size [1,
36]. Such a changing exponent is not expected for conventional
systems that self-organize to criticality: Avalanches would be
separated in time, and 𝛼 should be fairly bin-size invariant for
a large range of 𝛥𝑡 [23, 37, 38].

Our coarse-sampled model reproduces these characteristic
experimental results (Fig. 5). It also reproduces the previously
reported scaling [1] of the exponent with bin size 𝛼 ∼ 𝛥𝑡−𝛽

(Fig. 5, insets). Except for the Poisson dynamics, all the model
distributions show power laws. Moreover the distributions are
strikingly similar, not just to the experimental results, but also
to each other. This emphasizes how sensitive signs of criticality
are to analysis parameters: All the shown dynamic states are
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FiguRe 5: In vivo and in vitro avalanche-size distributions 𝑝(𝑆) from LFP depend on time-bin size 𝛥𝑡. Experimental LFP results are
reproduced bymany dynamics states of coarse-sampled simulations. A: Experimental in vivo results (LFP, human) from an array of 60 electrodes,
adapted from [36]. B: Experimental in vitro results (LFP, culture) from an array with 60 electrodes, adapted from [1]. C–F: Simulation results
from an array of 64 virtual electrodes and varying dynamic states, with time-bin sizes between 2ms ≤ 𝛥𝑡 ≤ 16ms and 𝑑E = 400 µm.
Subcritical, reverberating and critical dynamics produce power-law distributions with bin-size-dependent exponents 𝛼. Insets: Distributions
are fitted to 𝑝(𝑆) ∼ 𝑆−𝛼. The magnitude of 𝛼 decreases as 𝛥𝑡−𝛽 with −𝛽 indicated next to the insets.

consistent with the ubiquitous avalanche-size distributions that
are observed in coarse-sampled experiments.

When spikes are used instead, power-law distributions only
arise from critical dynamics. For comparison with the coarse-
sampled results in Fig. 5, we show avalanche-size distributions
from experimental spike recordings and sub-sampled simula-
tions in Fig. 6. In this case, power laws are produced only
by in vitro cultures and the simulations that are (close-to) crit-
ical. In vivo spike recordings on awake subjects and simu-
lations of subcritical dynamics produce distributions that fea-
ture a pronounced decay instead of power laws. In contrast
to coarse-sampling, the avalanche distributions that stem from
sub-sampled measures (spikes) allow us to clearly tell apart the
underlying dynamic states from one another.

Overall, as our results on coarse-sampling have shown, dif-
ferent sources of bias— here the measurement overlap and the
bin size— can perfectly outweigh each other. For instance,
smaller electrode distances (that increase correlations) can be
compensated by making the time-bin size smaller (which again
decreases correlations). This was particularly evident in Fig. 4B,
where increasing 𝑑E could be outweighed by increasing 𝛥𝑡 in
order to obtain a particular value for the branching parameter
𝑚av. The same relationship was again visible in Fig. 5C-F: For
the shown 𝑑E = 400 µm (see also Fig. S6 for 𝑑E = 200 µm),

only 𝛥𝑡 = 8ms results in 𝛼 = 1.5— the correct exponent for
the underlying dynamics. Since the electrode distance cannot
be varied in most experiments, selecting anything but the one
“lucky” 𝛥𝑡 will cause a bias.

2.7 Scaling laws fail under coarse-sampling

The most used indication of criticality in neuronal dynamics
is the avalanche-size distribution 𝑝(𝑆). However, at critical-
ity, the avalanche duration distribution 𝑝(𝐷) and the average
avalanche size for a given duration, ⟨𝑆⟩(𝐷), should also follow
power-laws, each with a respective critical exponent [12]:

𝑝(𝑆) ∼ 𝑆−𝛼 (1)

𝑝(𝐷) ∼ 𝐷−𝛽 (2)

⟨𝑆⟩(𝐷) ∼ 𝐷𝛾 (3)

The exponents are related to one another by the scaling rela-
tionship

𝛽 − 1
𝛼 − 1 = 𝛾 . (4)

For a pure branching process— or any process in the mean-field
directed percolation universality class [7, 39]— they take the
values 𝛼 = 3/2, 𝛽 = 2 and 𝛾 = 2.
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FiguRe 6: In vivo avalanche-size distributions 𝑝(𝑆) from spikes depend on time-bin size 𝛥𝑡. In vivo results from spikes are reproduced by
sub-sampled simulations of subcritical to reverberating dynamics. Neither spike experiments nor sub-sampled simulations show the cut-off
that is characteristic under coarse-sampling. A: Experimental in vivo results (spikes, awake monkey) from an array of 16 electrodes, adapted
from [23]. The pronounced decay and the dependence on bin size indicate subcritical dynamics. B: Experimental in vitro results (spikes, culture
DIV 34) from an array with 59 electrodes, adapted from [37]. Avalanche-size distributions are independent of time-bin size and produce a
power law over four orders of magnitude. In combination, this indicates critical dynamics with a separation of timescales. C–F: Simulation for
sub-sampling, analogous to Fig. 5. Subcritical dynamics do not produce power-law distributions and are clearly distinguishable from critical
dynamics. F: Only the (close-to) critical simulation produces power-law distributions. Note the dependence on time-bin size: In contrast to
the in vitro culture, the simulation does not feature a separation of time scales (due to external drive and stationary activity) which causes a
bin-size dependence.

Lastly, at criticality, avalanches of vastly different duration
still have the same average shape: The activity 𝑠(𝑡, 𝐷) at any
given time 𝑡 (within the avalanche’s lifetime 𝐷) is described by
a universal scaling function ℱ, so that

𝑠(𝑡, 𝐷) ∼ 𝐷𝛾−1ℱ(𝑡/𝐷) . (5)

In other words, changing 𝑠(𝑡, 𝐷) → 𝑠(𝑡, 𝐷)/𝐷𝛾−1 and 𝑡 →
𝑡/𝐷 should result in a data collapse for the average avalanche
shapes of all durations.

From Eqs. (3)–(5), we have three independent ways to de-
termine the exponent 𝛾. Consistency between the three is a
further test of criticality. However, to the best of our knowl-
edge, experimental evidence with the full set of scaling laws
was only observed under sub-sampling: from spikes of in vitro
recordings [40, 41].

The absence of scaling laws in coarse-sampled data can be
explained by how coarse-sampling biases the average shape:
the cut-off in 𝑝(𝑆) near the number of electrodes 𝑆 = 𝑁E im-
plies that ⟨𝑆⟩(𝐷) < 𝑁E. From Eq. (3) we have 𝐷 < 𝑁1/𝛾

E . If
𝛾 > 1 the cut-off in 𝑝(𝑆) causes a much earlier cut-off in both

𝑝(𝐷) and ⟨𝑆⟩(𝐷).
Given that experiments typically have 𝑁E ∼ 102 electrodes,

𝑝(𝐷) of a pure branching process (with 𝛾 = 2) would span a
power-law for less than one order of magnitude. However, the
typical standard to reliably fit a power-law is at least two or-
ders of magnitude [42]. While this is problematic under coarse-
sampling (Fig. 5), we have shown that the hard cut-off is not
present under sub-sampling (Fig. 6).

Again comparing the two ways of sampling, we now ap-
ply the independent measurements of 𝛾 to our model with crit-
ical dynamics (Fig. 7). We find consistent exponents under sub-
sampling.

In this case, although they differ from those expected for
a pure branching process (𝛾 = 2), the exponents we find are
compatible with the experimental values of 𝛾exp = 1.3 ± 0.05
reported in [40] and 1.3 ≤ 𝛾exp ≤ 1.5 reported in [41].

Under coarse-sampling, however, the exponent obtained
from the shape collapse (𝛾 ≈ 0.74) greatly differs from the
other two (𝛾 ≈ 1.74, 𝛾 ≈ 1.62), Fig. 7F. Moreover, the ex-
tremely short range available to fit 𝑝(𝐷) and ⟨𝑆⟩(𝐷) with
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FiguRe 7: Scaling laws of a system with critical dynamics under coarse- and sub-sampling. A–C: Avalanche-size distribution 𝑝(𝑆) ∼ 𝑆−𝛼,
avalanche-duration distribution 𝑝(𝐷) ∼ 𝐷−𝛽, and average size for a given duration ⟨𝑆⟩(𝐷) ∼ 𝐷𝛾 , respectively, for sub-sampled (“sub”) and
coarse-sampled (“coarse”) simulations. Distributions under sub-sampling easily span more than one order of magnitude, while coarse-sampled
distributions suffer from an early cut-off (which hinders power-law fits). D, E: Shape collapse of 𝑠(𝑡, 𝐷) ∼ 𝐷𝛾−1ℱ(𝑡/𝐷) for sub-sampled and
coarse-sampled data, respectively. Under coarse-sampling, the early duration cut-off results in few unique shapes for the collapse (corresponding
to unique 𝐷-values). F: Comparison of the critical exponents obtained independently from Eqs. (3)–(5). Exponents are consistent only under
sub-sampling. Parameters: 𝑑E = 400 µm and 𝛥𝑡 = 8ms.

power-laws (1 ≤ 𝐷 ≤ 6) makes the estimated exponents unre-
liable.

To conclude, the full set of critical exponents revealed criti-
cality only under sub-sampling. Only in this case we observed
both, a match between all the measurements of the exponent 𝛾,
and a power-law behavior extending over a range large enough
to reliably fit them.

3 Discussion

When inferring collective network dynamics from partially
sampled systems, it is crucial to understand how the sampling
biases the measured observables. Without this understanding,
an elaborate analysis procedure— such as the one needed to
study neuronal avalanches from coarse-sampled data— can re-
sult in a misclassification of the underlying dynamics.

We have shown that the analysis of neuronal avalanches
based on (LFP-like) coarse-sampled data can produce indis-
tinguishable results for systems with vastly different spatio-
temporal signatures. These signatures derive from underlying
dynamic states that, in this work, range from subcritical to crit-

ical — a range over which the intrinsic timescale undergoes a
hundred-fold increase. And yet, the resulting avalanche-size
distributions can be uninformative and ambiguous (Fig. 1).

The ambiguity of neuronal avalanches partially originates
from spurious correlations. We have demonstrated the genera-
tion of spurious correlations from two sampling and process-
ing mechanisms: measurement overlap (due to volume con-
duction) and temporal binning. Other studies found further
mechanisms that can generate apparent power-law distribu-
tions by (purposely or accidentally) introducing correlations
into the observed system. For instance, correlated input in-
troduces temporal correlations already into the underlying sys-
tem [43, 44]. Along with thresholding and low-pass frequency
filtering—which add temporal correlations to the observed sys-
tem [24, 45]— this creates a large space of variables that either
depend on the system, sampling and processing, or a combina-
tion of both.

As our results focus on sampling and processing, we be-
lieve that the observed impact on avalanche-size distributions
is general and model independent. We deliberately chose a sim-
ple model and confirmed that our results are robust to param-
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eter changes: For instance, employing a more realistic topol-
ogy causes no qualitative difference (Fig. S1). Furthermore, as
a proof of concept, we checked the impact ofmeasurement over-
lap in the 2D Ising model (Fig. S3). Even in such a fundamental
model a measurement overlap can bias the assessment of criti-
cality.

With our results on sampling effects, we can revisit the pre-
vious literature on neuronal avalanches. In themodel, we found
that coarse-sampling clouds the differences between subcriti-
cal, reverberating, and critical dynamics: The avalanche distri-
butions always resemble power laws (Fig. 1). Because of this
ambiguity, the power-law distributions obtained ubiquitously
from LFP, EEG, MEG and BOLD activity should be taken as ev-
idence of neuronal activity with spatio-temporal correlations—
but not necessarily of criticality proper; the coarse-sampling
hinders such a precise classification.

In contrast, a more precise classification is possible under
sub-sampling. If power-law distributions are observed from
(sub-sampled) spiking activity, they do point to critical dynam-
ics. For spiking activity, we even have mathematical tools to
infer the precise underlying state in a sub-sampling-invariant
manner that does not rely on avalanche distributions [26, 46].
Having said so, not all spike recordings point to critical dynam-
ics: While in vitro recordings typically do produce power-law
distributions [37, 40, 47, 48], recordings from awake animals
do not [15, 17, 23, 49]. Together, these results suggest that in
vitro systems self-organize towards criticality, whereas the cor-
tex of awake animals (and humans) operates near criticality—
in a slightly subcritical, reverberating regime.

The reverberating regime harnesses benefits associated
with criticality, and it unifies both types of in vivo results: For
experiments on awake animals, spike-based studies indicate
subcritical dynamics. While coarse measures produce power
laws that indicate criticality, with this study we showed that
they cannot distinguish critical from subcritical dynamics. Con-
sistent with both, a brain that operates in a regime— as opposed
to a fixed dynamic state— can flexibly tune response properties.
In particular, the reverberating regime covers a specific range
of dynamics in the vicinity of the critical point, where small
changes in effective synaptic strength cause major changes in
response properties. Hence, the reverberating regime is an
ideal baseline [26] fromwhich brain areas or neural circuits can
adapt to meet task demands [36, 50–56].

In conclusion, our results methodically separate sampling
effects from the underlying dynamic state. They overcome the
discrepancy between the coarse-sampled and sub-sampled re-
sults of neuronal avalanches from awake animals. By offering
a solution to a long-standing (critical) point of conflict, we hope
to move beyond just describing a system as critical or not, and
appreciate the richness of dynamic states around criticality.
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4 Methods

4.1 Model Details

Our model is comprised of a two-level configuration, where a
2D network of 𝑁N = 160000 spiking neurons is sampled by
a square array of 𝑁E = 8 × 8 virtual electrodes. Neurons are
distributed randomly in space (with periodic boundary condi-
tions) and, on average, nearest neighbors are 𝑑N = 50 µm apart.
While themodel is inherently unit-less, it is more intuitive to as-
sign some length scale— in our case the inter-neuron distance
𝑑N — to set that scale: all other size-dependent quantities can
then be expressed in terms of the chosen 𝑑N. For instance,
the linear system size 𝐿 can be derived by realizing that the
random placement of neurons corresponds to an ideal gas. It
follows that 𝐿 = 2√𝑁N 𝑑N = 4cm for uniformly distributed
neurons. (For comparison, on a square lattice, the packing ra-
tio would be higher and it is easy to see that the system size
would be √𝑁N 𝑑N.) Given the system size and neuron num-
ber, the overall neuronal density is 𝜌 = 100/mm2. With our
choice of parameters, the model matches typical experimen-
tal conditions in terms of inter-neuron distance, system size
and neuron density (see Table 2 for details). The implemen-
tation of the model in C++, and the python code used to ana-
lyze the data and generate the figures, are available online at
https://github.com/Priesemann-Group/criticalavalanches.

4.2 Topology

We consider a topology that enforces local spreading dynam-
ics. Every neuron is connected to all of its neighbors within a
threshold distance 𝑑max. The threshold is chosen so that on av-
erage 𝐾 = 103 outgoing connections are established per neu-
ron. We thus seek the radius 𝑑max of a disk whose area contains
𝐾 neurons. Using the already known neuron density, we find
𝑑max = √𝐾/𝜋𝜌 ≈ 1.78mm. For every established connection,
the probability of a recurrent activation decreases with increas-
ing neuron distance. Depending on the particular distance 𝑑𝑖𝑗
between the two neurons 𝑖 and 𝑗, the connection has a normal-
ized weight 𝑤𝑖𝑗 = 𝑒−𝑑2

𝑖𝑗/2𝜎2 / 𝛺𝑖 (with normalization constant
𝛺𝑖 = ∑𝑗′ 𝑒−𝑑2

𝑖𝑗′ /2𝜎2
). Our weight definition approximates the

distance dependence of average synaptic strength. The param-
eter 𝜎 sets the effective distance over which connections can
form (𝑑max is an upper limit for 𝜎 and mainly speeds up compu-
tation.) In the limit 𝜎 → ∞, the network is all-to-all connected.
In the limit 𝜎 → 0, the network is completely disconnected.
Therefore, the effective connection length 𝜎 enables us to fine
tune how local the dynamic spreading of activity is. In our sim-
ulations, we choose 𝜎 = 6𝑑N = 300 µm. Thus, the overall reach
is much shorter than 𝑑max (𝜎 ≈ 0.06 𝑑max).

4.3 Dynamics

To model the dynamic spreading of activity, time is discretized
to a chosen simulation time step, here 𝛿𝑡 = 2ms, which is com-
parable to experimental evidence on synaptic transmission [57].
Our simulations run for 106 time steps on an ensemble of 50 net-
works for each configuration (combination of parameters and
dynamic state). This corresponds to ∼ 277 hours of recordings
for each dynamic state.

The activity spreading is modeled using the dynamics of a
branching process with external drive [26, 33]. At every time
step 𝑡, each neuron 𝑖 has a state 𝑠𝑖(𝑡) = 1 (spiking) or 0 (qui-
escent). If a neuron is spiking, it tries to activate its connected
neighbors— so that they will spike in the next time step. All of
these recurrent activations depend on the branching parameter
𝑚: Every attempted activation has a probability 𝑝𝑖𝑗 = 𝑚 𝑤𝑖𝑗 to
succeed. (Note that the distance-dependent weights are normal-
ized to 1 but the activation probabilities are normalized to 𝑚.)
In addition to the possibility of being activated by its neighbors,
each neuron has a probability ℎ to spike spontaneously in the
next time step. After spiking, a neuron is reset to quiescence in
the next time step if it is not activated again.

Our model gives us full control over the dynamic state of
the system—and its distance to criticality. The dynamic state
is described by the intrinsic timescale 𝜏 . We can analytically cal-
culate the intrinsic timescale 𝜏 = −𝛿𝑡/ ln (𝑚), where 𝛿𝑡 is the
duration of each simulated time step. Note that 𝑚— the con-
trol parameter that tunes the system— is set on the neuron level
while 𝜏 is a (collective) network property (that in turn allows
us to deduce an effective 𝑚). As the system is pushed more
towards criticality (by setting 𝑚 → 1), the intrinsic timescale
diverges 𝜏 → ∞.

For consistency, we measure the intrinsic timescale during
simulations. To that end, the (fully sampled) population activ-
ity at each time step is given by the number of active neurons
𝐴(𝑡) = ∑𝑖 𝑠𝑖(𝑡). A linear least-squares fit of the autoregressive
relation 𝐴(𝑡 + 1) = 𝑒−𝛿𝑡/𝜏𝐴(𝑡) + 𝑁Nℎ over the full simulated
time series yields an estimate ̂𝜏 that describes each particular
realization.

By adjusting the branching parameter 𝑚 (setting the dy-
namic state) and the probability for spontaneous activations ℎ
(setting the drive), we control the distance to criticality and the
average stationary activity. The activity is given by the average
spike rate 𝑟 = ℎ/(𝛿𝑡(1−𝑚)) of the network. For all simulations,
we fix the rate to 𝑟 = 1Hz in order to avoid rate effects when
comparing different states (see Table 1 for the list of parame-
ter combinations). Note that, due to the non-zero drive ℎ and
the desired stationary activity, the model cannot be perfectly
critical ( ̂𝜏 → ∞, see Table 1).

4.4 Coalescence Compensation

With our probability-based update rules, it may happen that tar-
get neurons are simultaneously activated by multiple sources.
This results in so-called coalescence effects that are particularly
strong in our model due to the local activity spreading [34]. For
instance, naively setting𝑚 = 1 (with 𝜎 = 300 µm)would result
in an effective (measured) �̂� ≈ 0.98, which has considerably
different properties. Compared to e.g. 𝑚 = 0.999 this would
result in a 20-fold decrease in 𝜏 .

In order to compensate these coalescence effects, we apply
a simple but effective fix: If an activation attempt is successful
but the target neuron is already marked to spike in the next
time step, another (quiescent) target is chosen. Because our im-
plementation stores all the connected target neurons as a list
sorted by their distance to the source, it is easy to activate the
next neuron in that list. Thereby, the equivalent probability of
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Table 2: Values and descriptions of the model parameters.

Symbol Value Description

𝛥𝑡 2 − 16ms Time-bin size (duration) for temporal binning
𝛩𝑘 3 Activity threshold, in units of standard deviations of the time series of electrode 𝑘
𝛿𝑡 2ms Simulation time step
𝑟 1Hz Average spike rate
𝑁N 1.6 × 105 Number of neurons
𝑑N 50 µm Inter-neuron distance (measured between nearest neighbors)
𝐿 4 cm Linear system size
𝜌 100/mm2 Neuronal density
𝐾 1000 Average network degree (outgoing connections per neuron)
𝑑max 1.78mm Connection length; all neurons within 𝑑max are connected
𝜎 300 µm Effective length of synaptic connections, sets the distance-dependence of the proba-

bilities of recurrent activations
𝑁E 8 × 8 Number of electrodes
𝑑E 50 − 500 µm Inter-electrode distance
𝑑∗
E 10 µm Dead-zone around each electrode (no neurons present)

the performed activation is as close to the originally attempted
one as possible.

4.5 Virtual Electrode Recordings

Our simulations are designed to mimic sampling effects of elec-
trodes in experimental approaches. To simulate sampling, we
use the readout of 𝑁E = 64 virtual electrodes that are placed in
an 8×8 grid. Electrodes are separated by an inter-electrode dis-
tance that we specify in multiples of inter-neuron distance 𝑑N.
It is kept constant for each simulation and we study the impact
of the inter-electrode distance by repeated simulations span-
ning electrode distances between 1𝑑N = 50 µm and 10𝑑N =
500 µm. The electrodes are modeled to be point-like objects
in space that have a small dead-zone of 𝑑∗

E = 𝑑N/5 = 10 µm
around their origin. Within the dead-zone, no signal can be
recorded (in fact, we implement this by placing the electrodes
first and the neurons second— and forbid neuron placements
too close to electrodes.)

Using this setup, we can apply sampling that emulates ei-
ther the detection of spike times or LFP-like recordings. To
model the detection of spike times, each electrode only observes
the single neuron that is closest to it. Whenever this particu-
lar neurons spikes, the timestamp of the spike is recorded. All
other neurons are neglected— and the dominant sampling ef-
fect is sub-sampling. On the other hand, to model LFP-like
recordings, each electrode integrates the spiking of all neurons
in the system. The contribution of a spike, e.g. from neuron
𝑖 to electrode 𝑘, decays as 1/𝑑𝑖𝑘 with the neuron-to-electrode
distance. (Changing the dependence to 𝑑−2

𝑖𝑘 has no qualitative
impact on the results.) The total signal of the electrode at time
𝑡 is then 𝑉𝑘(𝑡) = ∑𝑁N

𝑖 𝑠𝑖(𝑡)/𝑑𝑖𝑘. (Diverging electrode signals
are prevented by the forbidden zone around the electrodes.) For
such coarse-sampled activity, all neurons contribute to the sig-
nal and the contribution is weighted by their distance.

4.6 Avalanches

Taking into account all 64 electrodes, a new avalanche starts
(by definition [1]) when there is at least one event (spike) in a
time bin— given there was no event in the previous time bin
(see Fig. 2). An avalanche ends whenever an empty bin is ob-
served (no event over the duration of the time bin). Hence, an
avalanche persists for as long as every consecutive time bin con-
tains at least one event—which is called the avalanche duration
𝐷. From here, it is easy to count the total number of events that
were recorded across all electrodes and included time bins—
which is called the avalanche size 𝑆. The number of occurrences
of each avalanche size (or duration) are sorted into a histogram
that describes the avalanche distribution.

4.7 Analysis of Avalanches under Coarse and Sub-
sampling

We analyze avalanche size distributions in a way that is as close
to experimental practice as possible (see Fig. 2). From the simu-
lations described above, we obtain two outputs from each elec-
trode: a) a list containing spike times of the single closest neu-
ron and b) a time series of the integrated signal to which all
neurons contributed.

In case of the (sub-sampled) spike times a), the spiking
events are already present in binary form. Thus, to define a
neural avalanche, the only required parameter is the size of the
time bin 𝛥𝑡 (for instance, we may choose 𝛥𝑡 = 4ms).

In case of the (coarse-sampled) time series b), binary events
need to be extracted from the continuous electrode signal. The
extraction of spike times from the continuous signal relies on a
criterion to differentiate if the set of observed neurons is spiking
or not—which is commonly realized by applying a threshold.
(Note that now thresholding takes place on the electrode level,
whereas previously, an event belonged to a single neuron.)
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Here, we obtain avalanches by thresholding as follows: First,
all time series are frequency filtered to 0.1Hz < 𝑓 < 200Hz.
This demeans and smoothes the signal (and reflects common
hardware-implemented filters of LFP recordings). Second, the
mean and standard deviation of the full time series are com-
puted for each electrode. The mean is virtually zero due to the
high-pass filtering. Each electrode’s threshold is set to three
standard deviations above the mean. Third, for every positive
excursion of the time series (i.e. 𝑉𝑘(𝑡) > 0), we recorded the
timestamp 𝑡 = 𝑡max of the maximum value of the excursion. An
event was defined when 𝑉𝑘(𝑡max) was larger than the threshold
𝛩𝑘 of three standard deviations of the (electrode-specific) time
series. (Whenever the signal passes the threshold, the times-
tamps of all localmaxima become candidates for the event; how-
ever, only the one largest maximum between two crossings of the
mean assigns the final event-time.) Once the continuous signal
of each electrode has been mapped to binary events with times-
tamps, the remaining analysis steps were the same for coarse-
sampled and sub-sampled data.

Table 3: Fitted exponents of 𝛼 ∼ 𝛥𝑡−𝛽.

Dynamic state 𝛽

𝑑E = 200 µm 𝑑E = 400 µm

in vitro (LFP) [1] 0.16 ± 0.01
Critical (coarse) 0.113 ± 0.001 0.141 ± 0.001
Reverberating (coarse) 0.127 ± 0.003 0.156 ± 0.002
Subcritical (coarse) 0.159 ± 0.004 0.231 ± 0.016
Critical (spikes) 0.143 ± 0.010 0.123 ± 0.005

4.8 Power-law fitting and shape collapse

Avalanche size and duration distributions are fitted to power-
laws using the powerlaw package [58]. The shape collapse of Eq.
5 is done following the algorithm described in [59]. Briefly, the
avalanche profiles 𝑠(𝑡, 𝐷) of all avalanches with the same du-
ration 𝐷 are averaged, and the resulting curve is scaled to 𝑡/𝐷
and interpolated on 1000 points in the [0, 1] range. Avalanches
with 𝐷 < 4 , or with less than 20 realizations are removed. The
chosen collapse exponent 𝛾 is the one that minimizes the error
function:

𝐸 = ⟨Var(𝑋𝐷/𝐷𝛾−1)⟩
𝛥𝑋2 (6)

where 𝑋𝐷(𝑡/𝐷) is the interpolated average shape of
avalanches with size 𝐷, and 𝛥𝑋 = max𝑡,𝐷(𝑋𝐷/𝐷𝛾−1) −
min𝑡,𝐷(𝑋𝐷/𝐷𝛾−1). The variance Var(.) is calculated over all
valid 𝐷, and the mean ⟨.⟩ is taken over the scaled duration
𝑡/𝐷. For interpolation and minimization we use the scipy
[60] functions interpolate.InterpolatedUnivariateSpline and
optimize.minimize, respectively.

4.9 Data availability

The simulation data used in this study is available from the cor-
responding author upon request.

4.10 Code availability

The code used to generate and analyze the data is
available online at https://github.com/Priesemann-
Group/criticalavalanches.
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Supplementary Information

1.1 Sampling bias remains under alternative
topologies

The network topology used in the main paper is local: on aver-
age, each neuron is connected to its nearest 𝐾 = 103 neighbors.
It is of interest to check if alternative topologies can impact the
distinguishability of the underlying dynamic state under coarse-
sampling.

For that, we select two additional topologies. The first
(”Orlandi”) mimics the growth process of a neuronal culture.
In short, axons grow outward on a semiflexible path of lim-
ited length and have a given probability to form a synapse
when they intersect the (circular) dendritic tree of another neu-
ron. Thereby, this topology is local without requiring distance-
dependent synaptic weights (refer to [1] for more details). The
second (”Random”) implements a purely random connectivity,
with each neuron being connected to 𝐾 = 103 neurons. Note
that this is an unrealistic setup as this topology is completely
non-local.

We find that, under coarse-sampling, reverberating and crit-
ical dynamics remain indistinguishable with the alternative
topologies (Fig. S1, left). Meanwhile, under sub-sampling, all
dynamic states are clearly distinguishable for all topologies (Fig.
S1, right).

1.2 Influence of the electrode field-of-view

In the main paper we considered that the contribution of a spik-
ing neuron to the electrode signal decays with distance 𝑑 as
∼ 1/𝑑. The precise way neuronal activity is recorded by ex-
tracellular electrodes depends on factors such as neuronal mor-
phology and the level of correlation between synapses [2, 3].
Nevertheless, we can study the impact of a varying electrode
field-of-view by changing the electrode contribution of a spike
to ∼ 1/𝑑𝛾 with 1 ≤ 𝛾 ≤ 2. Note that 𝛾 = 1 corresponds to
an electric monopole, while 𝛾 = 2 corresponds to an electric
dipole—which has a considerably smaller spatial reach.

As 𝛾 increases, the relative contribution of the closest neu-
rons to the electrode increases, and coarse-sampling becomes
more similar to sub-sampling. The cut-off at 𝑆 ∼ 𝑁E vanishes
for large 𝛾, and the different dynamic states become distinguish-
able (Fig. S2D-F). For completeness, in Fig. S4 and Fig. S5 we
show the effect of the varying electrode field-of-view for the
alternative network topologies discussed previously (”Orlandi”
and ”Random”), with 𝑑E = 400 µm and 𝑑E = 200 µm respec-
tively. In all cases, 𝛾 ≥ 1.5 results in a vanishing of the cut-off
in 𝑝(𝑆). Note, however, that this requires a sufficiently large
𝑑E: for 𝑑E = 100 µm and 𝛥𝑡 = 2ms, an electrode field-of-view
of 𝛾 = 1.5 displays the cut-off, and the dynamic states are not
distinguishable (Fig. S2C).

Thus, in order to determine criticality under coarse-
sampling, the experimental set-up must combine i) a large 𝑑E,
ii) a narrow electrode field-of-view (large 𝛾) and iii) systems
with different dynamic states. This can potentially then be used
to qualitatively compare the distance to criticality between the
systems. Not only is this much more limited than what is possi-
blewith sub-sampled data [4–6], but the lack of the cut-off is not
observed in experimental data of coarse-sampled recordings—

Local
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Orlandi
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FiguRe S1: Effect of alternative network topologies. Avalanche-size
probability 𝑝(𝑆) from coarse-sampled activity (left) and sub-sampled
activity (right) for subcritical, reverberating and critical dynamics.
Top: results for the topology used in the main paper (”Local”). Mid-
dle: results for a topology that mimics culture growth [1] (”Orlandi”).
Bottom: results for a random topology. Under coarse-sampling, rever-
berating and critical dynamics are indistinguishablewith all topologies.
Parameters: 𝑑E = 400 µm and 𝛥𝑡 = 8 ms.

which indicate that electrodes typically have a large field-of-
view, and that our assumption of 𝛾 = 1 is adequate.

1.3 Coarse Graining the Ising Model

To demonstrate how general the impact of measurement over-
lap is, we study the two-dimensional Ising model. The Ising
model is well understood and often serves as a text-book ex-
ample for renormalization group (RG) theory in Statistical
Physics [7]. In this framework, the system is coarse grained
by merging multiple parts (spins) into one. An intuitive way
to think of it is by zooming out of a photograph on a computer
screen; a pixel can only show one color although there might be
more details hidden underneath. Coarse graining is also known
as the real-space block-spin renormalization and it can be used
to assess criticality. Please note that coarse graining is differ-
ent from coarse-sampling. Conventionally, coarse-graining per-
fectly tiles the space without any measurement-overlap (see
Fig. S3).

The two-dimensional Ising model consists of 𝑁 = 𝐿2 spins
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FiguRe S2: Effect of changing the electrode contribution ∼ 1/𝑑−𝛾 of a spiking neuron at distance 𝑑. A: Avalanche-size probability 𝑝(𝑆)
with 𝛾 = 1.0 for 𝛥𝑡 = 2ms and 𝑑E = 100 µm. B: Avalanche-size probability 𝑝(𝑆) with 𝛾 = 1.0 for 𝛥𝑡 = 8ms and 𝑑E = 400 µm. C: Same
as A for 𝛾 = 1.5. D: Same as B for 𝛾 = 1.5. E: Same as A for 𝛾 = 2.0. F: Same as B for 𝛾 = 2.0. Increasing 𝛾 results in a smaller electrode
field-of-view, and removes the cut-off for 𝑆 ∼ 𝑁E.

with states 𝑠𝑖 = ±1, arranged on a square lattice of length 𝐿.
In its simplest form, it is given by the Hamiltonian 𝐻( ⃗𝑠) =
∑⟨𝑖,𝑗⟩ 𝑠𝑖𝑠𝑗, where ⟨𝑖, 𝑗⟩ denotes all pairs of nearest neighboring
spins. The probability of observing ⃗𝑠 is given by the Boltzmann
distribution

𝑃( ⃗𝑠, 𝑇 ) = 1
𝑍𝑇

𝑒−𝐻( ⃗𝑠)/𝑘𝐵𝑇 (7)

where 𝑇 is the temperature of the system, 𝑘B is the Boltzmann
constant (here, 𝑘B = 1) and 𝑍𝑇 is the partition function that
normalizes the distribution. As the temperature 𝑇 → 𝑇𝑐 =
2/ln(1+

√
2), the system undergoes a second-order phase tran-

sition between a disordered spin configuration (𝑇 > 𝑇𝑐) and
an ordered state of aligned spin orientations (𝑇 < 𝑇𝑐). Many
observables diverge at 𝑇 = 𝑇𝑐 for 𝐿 → ∞, such as correlation
length, specific heat and susceptibility [7, 8].

We perform Monte Carlo simulations of the 2D Ising model
using the massively parallel multicanonical method [9, 10]. The
multicanonical method offers numerous advantages over con-
ventional Monte Carlo approaches. For instance, instead of
simulating at a single temperature, one simulation covers the
whole energy space. High-precision canonical expectation val-
ues of observables are recovered for any desired temperature
during a post-production step. Thereby, we obtain the nor-
malized absolute magnetization as a function of temperature
𝑚(𝑇 ) = 1

𝑁 | ∑𝑖 𝑠𝑖|.

1.4 Block-Spin Transformation

Measurement overlap causes individual sources to contribute
multiple times to a signal. For the Ising model, a similar pro-
cess takes place when coarse graining is applied. In the process,
spins are grouped into blocks of size 𝑏×𝑏, here 𝑏 = 4 and every
block only takes a single value. The value of each block can be
obtained in different ways.

• Most commonly, themajority rule [7] is employed, where
the block is assigned +1 (−1) if the majority of spins has
value +1 (−1). In this case, the contribution of multi-
ple sources is integrated. Hence we compare this rule to
the effects observed when neuronal systems are coarse-
sampled.

• Alternatively, one can use the decimation rule [7]. In this
case, all except a single spin value within a block are dis-
carded. The block value is assigned from the single spin
that is kept. Hence we compare this rule to the effects
observed when neuronal systems are sub-sampled.

This block-spin transformation rescales the number of spins by
a factor of 1/𝑏2, effectively reducing system size (which will
cause finite-size effects). It is well known, that when studying
the magnetization, the effective size of the compared systems
(after rescaling) has to match.
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FiguRe S3: Coarse graining the Ising model. A: Representation of
the standard coarse graining where block size matches the distance
between blocks (𝑑 = 𝑏 = 4). No overlap is created. B: Coarse grain-
ing with block size 𝑏 = 4 and a distance between blocks of 𝑑 = 3.
Overlapping spins (orange) are shared by two or more blocks. C:With
the “coarse” majority rule, overlap impacts the spontaneous magne-
tization 𝑚(𝑇 ). Only the crossing between the unblocked (𝐿 = 16)
and non-overlapping blocked system (𝑑 = 𝑏, 𝐿 = 64) happens at
𝑇 = 𝑇𝐶 , as would be expected. Intriguingly, the overlap (𝑑 < 𝑏,
𝐿 = 32) pushes the system towards higher magnetization where spins
appear more aligned. On the other hand, the absence of overlap (𝑑 > 𝑏,
𝐿 = 128) causes smaller magnetization where spins appear more ran-
dom. (Note that, in order to avoid finite-size effects, the target size
after coarse graining has to match, here 𝐿 = 16. Consequently, de-
pending on the ratio between 𝑑 and 𝑏, simulations have different sys-
tem sizes.) D: Comparison between the fully-sampled, unblocked sys-
tem and blocked systems using the majority rule (“coarse”) and the
decimation rule (“sub”) for 𝑑 = 𝑏 = 4. All simulations and curves for
𝐿 = 64. In the ordered, low-temperature phase, the sub curve matches
the fully sampled system. Only for the high-temperature phase devi-
ations occur due to finite-size effects (the magnetization for 𝑇 → ∞
approaches the value expected for the rescaled 𝐿 = 16 system). The
coarse curve is systematically biased towards more ordered states.

1.5 Overlap

To mimic the measurement overlap, we now introduce an over-
lap between the blocks of the Ising model coarse graining
(Fig. S3). In the native block-spin transformation, blocks do not
overlap. Then, in terms of spins, the linear distance 𝑑 between
two blocks matches the block size 𝑏 = 𝑑 = 4 (Fig. S3A). When
the distance between blocks is smaller than the block size, 𝑑 < 𝑏
(Fig. S3B), measurement overlap is created, while when 𝑑 > 𝑏
parts of the system are not sampled. Clearly, the changes that
such an overlap will cause on rescaled observables should de-
pend on the rule used perform the block-spin transformation.

Here, we look at combinations of block size 𝑏 = 4 with
distance between blocks of 𝑑 = 2, 𝑑 = 4 and 𝑑 = 8. In order
to preserve the effective system size (𝐿 = 16), we thus perform
simulations for 𝐿 = 32, 𝐿 = 64 and 𝐿 = 128, respectively.

Using the majority rule and no overlap—which is the de-
fault real-space renormalization-group approach— the proce-
dure moves 𝑚 away from 𝑚 (𝑇𝑐) (Fig. S3C, 𝑑 = 𝑏): For 𝑇 < 𝑇𝑐,
𝑚 is increased; For 𝑇 > 𝑇𝑐, 𝑚 is decreased. Ordinarily, 𝑇𝑐 can
be obtained by finding the crossing of 𝑚 between an unblocked
(𝐿 = 16) and a blocked (𝐿 = 64, 𝑏 = 4) system—only at 𝑇𝑐
is the measured 𝑚 invariant under block rescaling transforma-
tions.

1.6 Majority Rule “coarse”

What is the impact of the overlap for the majority rule? For
increasing overlap (𝑑 < 𝑏), the crossing occurs at 𝑇 > 𝑇𝑐
(Fig. S3C). This is because sharing spins increases the correla-
tions between blocks (pairwise and higher-order), making it
more likely that the rescaled spins point into the same direc-
tion. In other words, it biases the measurement of 𝑚 towards
order, increasing our estimated critical temperature.

For absent overlap (𝑑 > 𝑏), only every other block is mea-
sured. This decorrelates the spins near the borders of each block
and, therefore, decreases the correlation between blocks. As a
consequence, the spin orientation of the blocked system moves
towards disorder, decreasing the measured magnetization 𝑚.

1.7 Decimation Rule “sub”

If instead of the majority rule the decimation rule is used, the
blocking procedure does not alter the correlation between spins
before and after the transformation (Fig. S3D). As a conse-
quence, the magnetization remains unaltered in general. How-
ever, in the disordered phase, we still notice a systematic devia-
tion from the unblocked system (with 𝐿 = 64). This deviation
can be fully attributed to finite-size effects: The distribution
of realizable magnetizations in the disordered phase follows a
Gaussian with mean zero and variance proportional to the (ef-
fective) number of spins. Due to the definition of the magne-
tization with absolute value, the expectation value of the mag-
netization for 𝑇 → ∞ is determined by the (effective) system
size.

As was the case when sub-sampling neuronal systems, the
increase in correlation that ultimately leads to biased observ-
ables is caused by integrating weighted contributions from var-
ious sources. This is not the case when the decimation rule is
applied. Note that the impact of different block-transformation
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rules on 𝑚(𝑇 ) will not hold for all other canonical observables
such as the energy 𝐸(𝑇 ) [7].
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FiguRe S4: Effect of changing the electrode contribution ∼ 1/𝑑−𝛾 of a spiking neuron at distance 𝑑, for different network topologies and
𝑑E = 200 µm. Dynamic states are Subcritical (left), Reverberating (center) and Critical (right). Topologies are Local (top), Orlandi (middle) and
Random (bottom). Local corresponds to the topology used in the main paper, Orlandi corresponds to the model described in [1], and Random
corresponds to a completely random topology. Increasing 𝛾 (decreasing electrode FOV) results in a loss of the cut-off for 𝑝(𝑆) ∼ 𝑁E as the
coarse-sampling becomes more spike-like. Bin-size for all distributions is 𝛥𝑡 = 4ms.
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FiguRe S5: Effect of changing the electrode contribution ∼ 1/𝑑−𝛾 of a spiking neuron at distance 𝑑, for different network topologies and
𝑑E = 400 µm. Dynamic states are Subcritical (left), Reverberating (center) and Critical (right). Topologies are Local (top), Orlandi (middle) and
Random (bottom). Local corresponds to the topology used in the main paper, Orlandi corresponds to the model described in [1], and Random
corresponds to a completely random topology. Increasing 𝛾 (decreasing electrode FOV) results in a loss of the cut-off for 𝑝(𝑆) ∼ 𝑁E as the
coarse-sampling becomes more spike-like. Bin-size for all distributions is 𝛥𝑡 = 8ms.
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FiguRe S6: Avalanche-size distributions 𝑝(𝑆) dependence on time-bin size 𝛥𝑡 for 𝑑E = 200 µm. Coarse-sampled (left) and sub-sampled
(right) results from an array of 64 virtual electrodes with time bin sizes between 2ms ≤ 𝛥𝑡 ≤ 16ms. Dynamics states are Poisson (A-B),
Subcritical (C-D), Reverberating (E-F) and Critical (G-H). Distributions are fitted to 𝑝(𝑆) ∼ 𝑆−𝛼. Insets: Dependence of 𝛼 on 𝛥𝑡, fitted as
𝛼 ∼ 𝛥𝑡−𝛽. Fit values are shown in Table. 3.
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