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ABSTRACT1

Experimental evolution is becoming a popular approach to study genomic selection responses2

of evolving populations. Computer simulation studies suggested that the accuracy of the sig-3

nature increases with the duration of the experiment. Since some assumptions of the com-4

puter simulations may be violated, it is important to scrutinize the influence of the experimen-5

tal duration with real data. Here, we use a highly replicated Evolve and Resequence study in6

Drosophila simulans to compare the selection targets inferred at different time points. At each7

time point approximately the same number of SNPs deviated from neutral expectations, but8

only 10 % of the selected haplotype blocks identified from the full data set could be detected in9

the first 20 generations. Those haplotype blocks that emerged already after 20 generations dif-10

fer from the others by being strongly selected at the beginning of the experiment and displaying11

a more parallel selection response. Consistent with previous computer simulations, our results12

confirm that only Evolve and Resequence experiments with a sufficient number of generations13

can characterize complex adaptive architectures.14

15

KEYWORDS: experimental evolution, evolve & resequence, Drosophila simulans, early adap-16

tation, replicated time series data, concordance of adaptation, window-based analysis17

INTRODUCTION18

Deciphering the adaptive architecture is a long-term goal in evolutionary biology. In contrast19

to natural populations, experimental evolution (EE) provides the possibility to replicate exper-20

iments under controlled, identical conditions and to study how evolution shapes populations21

in real time (Kawecki et al. (2012); Schlötterer et al. (2015)). The combination of EE with next-22
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generation sequencing - Evolve and Resequence (E&R) (Turner et al. (2011); Schlötterer et al.23

(2015); Long et al. (2015)) - has become a popular approach to study the genomic response to se-24

lection and to identify adaptive loci. E&R has been applied to various selection regimes, such as25

virus infection (Martins et al. (2014)), host-pathogen co-adaptation (Papkou et al. (2019)), ther-26

mal adaptation (Orozco-Terwengel et al. (2012); Barghi et al. (2019)), or body weight (Johansson27

et al. (2010)). A wide range of experimental designs have been used, which vary in census popu-28

lation size, replication level, history of the ancestral populations, selection regime, and number29

of generations (Garland and Rose (2009); Turner et al. (2011); Kawecki et al. (2012); Lang et al.30

(2013); Burke et al. (2014); Huang et al. (2014); Hardy et al. (2018); Castro et al. (2019); Michalak31

et al. (2019); Seabra et al. (2019)). The duration of E&R studies ranged from less than 20 (Kelly32

and Hughes (2018); Turner and Miller (2012); Rêgo et al. (2019)), over a few dozen (Orozco-33

Terwengel et al. (2012); Johansson et al. (2010)), up to hundreds of generations (Burke et al.34

(2010)). Computer simulations showed that the number of generations has a strong influence35

on the power of E&R studies, and increasing the number of generations typically improved the36

results (Baldwin-Brown et al. (2014); Kofler and Schlötterer (2014); Vlachos and Kofler (2019)).37

Since simulations make simplifying assumptions, it is important to scrutinize these conclu-38

sions with empirical data. Until recently no suitable data-sets were available, which included39

multiple time points and replicates. We use an E&R experiment (Barghi et al. (2019)), which40

reports allele frequency changes in 10 replicates over 60 generations in 10 generation intervals,41

to investigate the impact of the experimental duration on the observed genomic response. The42

time resolved genomic data of this experiment allows to contrast putative selection targets in-43

ferred at different time points. We show that only a subset of the selection targets are detected44

at earlier generations, which are not representative of the underlying adaptive architecture.45
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METHODS46

Experimental Drosophila simulans populations47

A detailed description of the Drosophila simulans E&R experiment can be found in Barghi et al.48

(2019) and Hsu et al. (2019). The pooled individuals (Schlötterer et al. (2014)) from the evolving49

populations were sequenced every 10th generation starting with the founder population (gen-50

eration 0) until generation 60. This E&R experiment started from 202 isofemale lines, which51

were collected in Tallahassee, Florida. 10 replicate populations evolved in the laboratory at a52

"cycling hot" temperature regime (12 hours light and 28 °C, 12 hours dark and 18 °C). The cen-53

sus size of the replicates was 1,000 individuals with non-overlapping generations (Barghi et al.54

(2017, 2019); Hsu et al. (2019)).55

Genomic analysis hierarchy56

We investigated the genomic response of the experimental Drosophila populations on three dif-57

ferent levels: candidate SNPs, candidate SNPs in a window of fixed length and candidate SNPs58

shared with reconstructed selected haplotype blocks. A detailed description for each level is59

given below. Reasoning that the most reliable signal is detected at the most advanced genera-60

tion (60), we performed the same analysis at earlier time points and determined to what extent61

the same selection targets were identified as in generation 60.62

Identification of candidate SNPs63

Barghi et al. (2019) applied various filtering steps to obtain a robust SNP set from the ancestral64

population. In short, SNPs were called applying the following criteria: base quality of 40 in at65

least one replicate, a coverage between the 2nd and 98th percentile, and the minor allele is sup-66
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ported by at least ten reads. Repeats, transposable elements, SNPs specific to Y-translocated67

genes (Tobler et al. (2017)) and 5-bp regions around indels were excluded from the analysis to68

increase the robustness of the SNP set (for further details, see Barghi et al. (2019)), resulting in69

5,096,200 SNPs on chromosome X, 2, 3, and 4.70

To study the selection response at different time points, we identified "candidate SNPs" based71

on the frequency difference between the ancestral and evolved populations for each of the six72

time points. Following Barghi et al. (2019), replicates were tested separately (Fisher’s exact test)73

and jointly (Cochran-Mantel-Haenszel test, CMH) to identify SNPs with pronounced allele fre-74

quency change (AFC) using PoPoolation2 (Schlötterer et al. (2011)). Minimum and maximum75

coverage restrictions were not imposed because outlier SNPs with extreme coverage had already76

been removed. Neither the CMH test nor the Fisher’s exact test account for AFC due to genetic77

drift. To detect SNPs that show more AFC than expected under drift, we performed neutral78

simulations with Nest (Jónás et al. (2016)) using estimates of the effective population size (Ne )79

between generation 0 and the focal time point (Table S1- S3). The simulations further used the80

empirical starting allele frequencies and sequencing coverages. For the CMH test, Ne estimates81

were averaged across replicates for autosomes and the X chromosome separately. For Fisher’s82

exact test, we used replicate-specific Ne estimates of the autosomes. Based on these neutral83

simulations we determined candidate SNPs with a false discovery rate smaller than 5 % (Barghi84

et al. (2019)).85

We identified 56,166 candidate SNPs in generation 60, compared to 55,199 in Barghi et al. (2019).86

This small discrepancy can be explained by stochastic differences arising from the neutral sim-87

ulations used to determine the significance threshold. We excluded six haplotype blocks (3.17,88

2.27, 3.21, 3.48, 3.49 and 3.54) (Barghi et al. (2019)) with less than 90% of the previously reported89

candidate SNPs.90
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Identification of candidate windows91

The number of candidate SNPs is inflated as a result of linkage disequilibrium in the experi-92

mental populations (Nuzhdin and Turner (2013); Tobler et al. (2014)). To account for93

non−independence of candidate SNPs we used a window based approach. We split the main94

chromosomes (X, 2 and 3) into non-overlapping windows of 5,000 SNPs that are segregating in95

all generations and replicates. We chose SNPs instead of base pairs as window size measure to96

allow for variation in SNP density along the genome. To determine if a given window contains97

more candidate SNPs than expected, we sampled the same number of random SNPs as candi-98

date SNPs in this window (1,000 iterations). "Candidate windows" contained at least as many99

candidate SNPs as the 99th percentile of randomly sampled SNPs. Applying the procedure in-100

dependently to candidate SNPs from all time points provides time point specific candidate win-101

dows (Figure S1). We evaluated the similarity of two time points with the Jaccard index (for both102

candidate SNPs, and candidate windows).103

The number of candidate SNPs in a window is a summary statistic which ignores the signifi-104

cance of the candidate SNPs. If a signal is robust between two time points, we expect the same105

p-value based ranking of candidate SNPs. Thus, we also evaluated whether candidate SNPs106

in a given window had a similar relative significance. For each candidate window we created107

a ROC-like curve (similar to Jakšić and Schlötterer (2016)) by ranking the candidate SNPs by108

their p-values - the most significant SNP was assigned rank 1 - and calculating the overlap in109

top-ranked SNPs between two time points.110

HAplotype block Discovery Rate (HADR)111

Barghi et al. (2019) clustered candidate SNPs from F60 into selected haplotype blocks based on112

similar allele frequency trajectories over time and replicates113
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(Franssen et al. (2016)). The reconstructed haplotype blocks were further validated with ex-114

perimentally phased haplotypes from ancestral and evolved populations (Barghi et al. (2019))115

and 96 % of the reconstructed haplotype blocks could be confirmed. This suggests that recon-116

structed haplotype blocks provide a reliable set of linked candidate SNPs.117

Taking advantage of this additional confirmation of the candidate SNPs in a selected haplotype118

block we developed a third measure of similarity between time points. We determined the frac-119

tion of candidate SNPs comprising a haplotype block that were also discovered at a given time120

point (haplotype block discovery rate, HADR) using the poolSeq R-package (Taus et al. (2017)).121

We note that inference of selected haplotype blocks at each generation does not provide a good122

alternative to HADR, as the ability to cluster SNPs into haplotype blocks is dependent on the123

number of time points (Franssen et al. (2016)), resulting in less power at early time points com-124

pared to later ones.125

Early Detected HAplotype blocks (EDHAs)126

We applied hierarchical clustering (Pollard and Laan (2005)), PCA and kmeans (Hartigan and127

Wong (1979)) to group haplotype blocks based on their HADR patterns. The hyper-parameter128

k, which determines the number of clusters, was set to 5 based on the gap statistic approach129

(Tibshirani et al. (2001)). The k-means clustering resulted into a group of 10 haplotype blocks130

with elevated HADR in generation 20 (Figure S2). This group of 10 haplotype blocks can also131

be separated from other haplotype blocks by the first principal component of a PCA applied132

to HADR from F10 to F50 (Figure S3). We refer to the haplotype blocks in this cluster as early133

detected haplotype blocks (EDHAs). We evaluated whether EDHAs have distinct characteristics134

compared to all other haplotype blocks using the following features: haplotype block length,135

median starting allele frequency, average recombination rate (D. simulans recombination map136
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from Howie et al. (2019)), selection coefficient (s, estimated with poolSeq (Taus et al. (2017)))137

in generation 20, s in generation 60, selection coefficient ratio rs = s20
s60

, and number of rising138

replicates in generation 20. Following Barghi et al. (2019) , we classified a haplotype block as139

replicate specific, if the allele frequency of candidate SNPs from a haplotype block increases on140

average by at least 10%. We also used AFC thresholds of 5, 15, and 20% to determine whether141

these haplotype blocks were rising in a given replicate. Selection coefficients were averaged142

(mean) over replicates that passed the AFC threshold.143

RESULTS & DISCUSSION144

Subsequent time points are more similar for advanced generations145

We studied the similarity of selection signatures for different time points using 10 replicates of146

a D. simulans population, which evolved for 60 generations to a novel hot environment (Barghi147

et al. (2019)). With Pool-Seq data from every 10th generation, we evaluated the selection sig-148

nature on three different levels: candidate SNPs, candidate SNPs in a window of fixed length149

and candidate SNPs shared with reconstructed selected haplotype blocks. The similarity of two150

time points was determined by the Jaccard index, a dimensionless parameter ranging from 0151

(no overlap between two sets) to 1 (sets are identical). We found that all candidate SNP sets are152

more similar than expected by chance. The Jaccard index ranged from 0.08 (generation 10 vs153

generation 60) to 0.40 (generation 50 vs generation 60), where subsequent time points are more154

similar than those separated for more than 10 generations (e.g. J=0.15 (generation 10 vs gen-155

eration 20); J=0.08 (generation 10 vs generation 60)). Furthermore, the similarity of candidate156

SNP sets from subsequent time points increases with time until it ultimately more than doubles157

for the last two generations (J=0.15 (generation 10 vs generation 20); J=0.34 (generation 50 vs158
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generation 60), Figure 1A). The monotonic increase in similarity with time shows that selection159

patterns are more reliably detected at later generations.160

Since the analysis of single SNPs suffers from considerable stochasticity, and neighboring SNPs161

are not independent (Tobler et al. (2014); Howie et al. (2019)), we also repeated the analysis of162

different time points using non-overlapping windows of 5,000 SNPs. Reasoning that windows163

containing a target of selection will harbor multiple candidate SNPs, we defined selected win-164

dows as those, which harbor more candidate SNPs than expected by chance. Consistent with165

higher stochasticity on the SNP level, a higher similarity was observed for candidate windows166

(from J=0.26 (generation 10 vs generation 60) to J=0.62 (generation 40 vs generation 50)). Again,167

adjacent time points have a higher Jaccard index than time points farther apart (J=0.26 (genera-168

tion 10 vs generation 60) J=0.39 (generation 10 vs generation 20)). The similarity of subsequent169

time points also increases with the duration of the experiment (J=0.39 (generation 10 vs gen-170

eration 20) ; J=0.59 (generation 50 vs generation 60), Figure 1A). In contrast to the SNP level,171

the set of selected windows after 10 generations is only significantly similar to generation 20,172

but not to any other generation. Thus, the pattern of less reliable selection targets in the early173

generations is confirmed on the window level, albeit with different significance levels.174

For an alternative measure of similarity we used the ranking of candidate SNPs in a specific win-175

dow based on their p-values and compared it between different time points. If a signal is robust176

between two time points, we expect the same SNP ranking in a selected window. Consistent177

with the other tests, we found that the congruence in candidate SNP ranking increases with178

time (Figure 2). To rule out that rare SNPs are responsible for the dissimilarity between early179

and late time points, we calculated similarity measures based on SNPs that are segregating at180

all generations and time points. Nevertheless, including SNPs which were lost in at least one181

replicate during the experiment did not result in a pronounced decrease in similarity (Figure182
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S4).183

The analysis of selected haplotype blocks provides another possibility to control for non-independence184

of single candidate SNPs. We calculated the haplotype block discovery rate (HADR) - the frac-185

tion of candidate SNPs in a haplotype block that are rediscovered at a given time point. Similar186

to the other analyses, we observe higher similarity between later time points (Figure 1B), with a187

pronounced increase of median HADR between generation 30 (< 25 %) and 40 (> 50 %).188

Independent of the measure of similarity between time points, we consistently find that selec-189

tion signatures at early time points are less reliable than those from later time points. With the190

limitation that the true targets of selection are not known, this observation highlights that a191

more reliable identification of selection targets strongly benefits from additional generations of192

selection. Given that fewer "real" selection targets were identified in the first time points, it is193

remarkable that a similar number of candidate SNPs was detected at each time point (Table S4).194

This may imply that earlier time points harbor more false positives, but it is also possible that195

these targets were only selected during the first generations. To distinguish between these two196

alternative explanations, the analysis of haplotypes will be required to separate linked hitchhik-197

ers from selected sites. Furthermore, experimental validation of selection targets in secondary198

E&R studies (Burny et al. (2019)) may be another route to confirm selection signatures beyond199

statistical testing.200
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Figure 1: Similarity measures for candidate SNPs, candidate SNPs in a window of fixed length and can-
didate SNPs shared with reconstructed selected haplotype blocks
(A): Jaccard index for pairwise comparisons of candidate sets. The top triangle shows candidate window
sets, the bottom triangle candidate SNP sets. Significant similarities (p-value <0.05 after multiple testing
correction, 10,000 bootstraps) are marked in pink.
B:The rate at which selected SNPs of 93 haplotype blocks from generation 60 were already discovered at
earlier generations (HADR).
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Figure 2: The rank of candidate SNPs becomes more congruent with time. In this ROC-like graph the
ranking of all candidate SNPs in candidate windows is compared. Each panel shows one intermediate
time point compared to generation 60. The percent overlap for each candidate window is indicated by
a separate line. The median overlap (turquoise line) monotonically increases with experimental dura-
tion, demonstrating that the ranking of candidate SNPs is more robust for advanced generations. The
expected overlap is shown as dashed, grey line.

Only few selection targets are shared across all generations201

More than 27,000 candidate SNPs can be identified at each time point (Table S4), but only a202

small (4.8 %) subset is consistently detected at every generation (Figure 3; including rare SNPs203

see Figure S5). Independent of the importance of more reliable selection signatures with an in-204

creasing number of generations, this analysis raises an important concern about the usefulness205

of meta-analyses on the SNP level. With less than 5% of the SNPs being shared in the same se-206

lection experiment, it will be extremely difficult to compare studies that started from different207

founder populations and were selected for a different number of generations.208

We repeated the analysis for windows and determined the number of selected windows that209

are shared across all generations. With 18 out of 74 candidate windows in generation 60 (24.3210

%, Figure 3) being detected at all generations, the window analysis shows more consistency211
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across time points than a SNP-based analysis. This observation is independent of window size212

(Table S5- S6) and the inclusion of rare SNPs into the analysis (Figure S5). We propose that213

meta-analyses of E&R data should be performed on the level of windows, or probably based on214

selected haplotype blocks to avoid false negatives due to the high stochasticity of SNP-based215

analyses.216

Figure 3: Less than 5% of candidate SNPs in generation 60 are detected consistently at every generation.
The bars depict the fraction candidate SNPs (purple) and candidate windows (yellow) at generation 60,
which are candidates in all subsequent generations (e.g. 40.1% of generation 60 candidate SNPs are can-
didates in generation 50 and 40). Candidate windows are more consistent than candidate SNPs. Figure
S5 depicts the ratios for candidate sets that are not restricted to SNPs segregating in all generations and
time points.
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Selection signatures detected early in the experiment are not representative217

of the underlying adaptive architecture218

This study focused on the comparison of selection targets detected at early and late time points.219

Since analyses based on single SNP are very stochastic, we investigated the fraction of candidate220

SNPs comprising a haplotype block that were also discovered at earlier time points (HADR). We221

detected 10 haplotype blocks with elevated HADR in generation 20 (EDHAs, Figure S3). 10 ED-222

HAs were detected based on kmeans clustering (see Material & Methods and Figures S2-S3). We223

found that EDHAs do not differ in their starting allele frequency, haplotype block length, aver-224

age recombination rate or absolute selection coefficients from other haplotype blocks (Figure225

S6). EDHAs are, however, more strongly selected at the beginning of the experiment, but do not226

differ from the remaining haplotype blocks at later generations. The comparison of the rela-227

tive selection intensity of early and late time points identified significant differences of EDHAs228

from the other haplotype blocks (Figure 4A). Consistent with stronger selection at earlier time229

points, the selection signature of EDHAs is significantly more parallel across replicates after 20230

generations of adaptation. (Figure 4B). All statistical tests, which are evaluating a parallel selec-231

tion signature across replicates, are more likely to detect selection signatures, which are shared232

across replicates, even with only moderate allele frequency changes. This could result in a bi-233

ased picture of the underlying genetic architecture. The analysis of selection signatures in repli-234

cated experiments running for only a moderate number of generations is more likely to detect235

parallel than replicate specific selection signatures. This bias is not restricted to our study, but236

also an experimental study of D. simulans populations adapting 10 to 20 generations to a new237

temperature regime (Kelly and Hughes (2018)) found more parallel selection responses. We pro-238

pose that additional analyses contrasting selection signatures of early and late time points are239

needed to confirm the enrichment of parallel selection signatures in short-term experiments.240
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Figure 4: Early Detectable HAplotype blocks (EDHAs) differ from the other selected haplotype blocks.
The ratio of selection coefficients determined for early generations (generation 20) and late generations
(generation 60) is significantly higher for EDHAs (A). EDHAs rise in more replicates (B) than other hap-
lotype blocks. Both observations are robust to different AFC thresholds. Values above the boxplots rep-
resent the two-tailed Mann-Whitney test p-values corrected for multiple testing with the Benjamini-
Hochberg procedure.
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