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Abstract 

Computational models of the musculoskeletal system are scientific tools used to study human 
movement, quantify the effects of injury and disease, and plan surgical interventions. 
Additionally, these models could also be used to intuitively link biological control signals and 
realistic high-dimensional articulated prosthetic limbs. However, implementing fast and accurate 
musculoskeletal computations that can be used to control a prosthetic limb in real-time is a 
challenging problem. As muscles typically span multiple joints, the wrapping over complex 
geometrical constraints changes their moment arms and length as a function of joint angle and, 
thus, their ability to generate joint torques. As a result of these biomechanical complexities, 
calculating these muscle state variables in real-time is a difficult simulation problem. Here, we 
report a method to accurately and efficiently calculate these variables for the forearm muscles 
that actuate the hand and wrist across multiple postures. The posture dependent muscle 
geometry, moment arms and lengths of modeled muscles, were captured using autogenerating 
polynomials that expanded their optimal selection of terms using information measurements. 
The iterative process approximated 33 musculotendon actuators, each spanning up to 6 DOFs 
in an 18 DOF model of the human arm and hand, defined over the full physiological range of 
motion. Using these polynomials, the entire forearm anatomy could be computed in <10 µs, 
which is far better than what is required for real-time performance, and with low errors in 
moment arms (below 5%) and lengths (below 0.4%). Moreover, we demonstrate that the 
number of elements in these autogenerating polynomials does not increase exponentially with 
the increase in complexity of muscles, increasing linearly instead. The similar structure and 
function of muscles are represented with specific invariant polynomial terms. Dimensionality 
reduction using the polynomial terms alone resulted in clusters comprised of muscles with 
similar functions, suggesting that the polynomials themselves captured biologically relevant 
features of muscle structure and function. We propose that this novel method of describing 
musculoskeletal biomechanics might further improve the applications of detailed and scalable 
models for the description of human movement.  
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Introduction 

The remarkable dexterity of the hand results from the coordinated motion of 27 kinematic 
degrees of freedom (DOF) actuated by arm and hand muscles. This problem of coordination is 
solved continuously by our neuromuscular system without perceived cognitive effort. Yet, for 
prosthetic applications, the current approaches, such as pattern recognition and mode switching 
require significant training time (Cordella et al., 2016). Moreover, the skill and cognitive load 
required for continuous prosthetic control increases with the number of available prosthetic 
DOFs (Deeny et al., 2014). This phenomenon is captured by the dimensionality curse problem 
in movement planning, which occurs due to the increasing volume of possible solutions with the 
increasing number of dimensions. Recently, machine learning statistical methods have gained 
popularity in computer vision and robotic control problems of comparable complexity. In 
particular, deep learning algorithms are capable of remarkable performance in vision and 
language tasks (Riesenhuber and Poggio, 1999) and significantly outperform the shallow 
networks that had been common for decades. These performance gains and the resistance to 
the dimensionality curse are enabled by the hierarchical processing inherent in these multilayer 
deep networks, which is a biomimetic property common to biological cortical networks (Poggio 
et al., 2017). However, training these deep networks requires large amounts of labelled data 
and usually results in a black-box transformation, without any transparent internal mechanisms 
that would generate insights into the underlying control scheme (reviewed in Lapuschkin et al., 
2019). In addition, machine learning solutions often require episodic model retraining (Hermann 
et al., 2015), and rely on a considerable memory space to store the necessary parameters 
(Weston et al., 2014). These constraints pose significant challenges for real-time control 
systems for both phenomenological and mechanistic models of human hand biomechanics. 
Overall, this approach limits our understanding of model boundaries, the reliable domain of 
operation, and, importantly, the principles of the modelled system that can be tested and 
improved further. Instead, using mechanistic alternatives based on known biology may 
overcome these limitations.  

Transforming biological signals into intended prosthetic movements using biomimetic principles 
may solve the problem of integration between the biological and technological control systems. 
These systems may often be at odds with each other due to the discord in expected and 
executed movement. Thus, the challenges of biomimetic approaches are in specifying and 
implementing valid motor control theories. One such dominant theory focuses on internal 
models expressed within the nervous system (Angelaki et al., 2004; Kawato, 1999; Wolpert et 
al., 1998); it embodies an engineering concept termed the Smith predictor (Smith, 1957). This 
theory relies on accurate estimates of the controlled plant to overcome both nonlinear dynamics 
and temporal delays. Another complimentary concept is neuromechanical tuning (Prochazka 
and Yakovenko, 2007; Sreenivasa et al., 2019; Ting et al., 2007), which deals with the nature of 
computed signals within the closed-loop control system and postulates reliance on the coupled 
interplay between neural and mechanical dynamics. The key idea of these theories is that body 
dynamics and musculoskeletal (MS) biomechanics are essential components that require valid 
models (Ting et al., 2015; Ting and Chiel, 2017) or good-enough biomimetic approximations 
within the design of a robotic prosthesis (Kumar et al., 2013). The recent use of MS models for 
human-machine interfaces (Crouch and Huang, 2016) shows promising results for this type of 
approach.  
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MS modelling is an important scientific tool in theoretical motor control (Berniker et al., 2009; 
Lillicrap and Scott, 2013; Winter, 2009) and its applications in human-machine interfaces 
(Crouch and Huang, 2016; Thorsen et al., 2001). MS models are typically comprised of 
geometrical descriptions of each joint’s degrees of freedom (DOFs) and muscle paths around 
these DOFs. A muscle’s contribution to joint torque depends on the distance to the DOF axis of 
rotation, called moment arm, and muscle state described by its length and velocity that alter 
force generation  (An et al., 1984; Zajac, 1989). Calculating these musculoskeletal kinematic 
variables in a specific posture requires computation of the shortest path between the points of 
attachment in the presence of objects like bones and other muscles around which a muscle 
wraps (Delp et al., 2007). Software packages like OpenSim (SimTK) provide tools for 
computation of kinematic variables based on a 3D model of a limb or whole body. These 
calculations are very computationally costly and can only be performed in real-time for simple 
models. However, models of increasing complexity are required in both research and 
applications, rapidly raising their computational cost to burdensome levels.  

The computational load of MS models has led to the development of multiple approximation 
methods that improve computational efficiency. Menegaldo and colleagues (Menegaldo et al., 
2004) proposed a series of multidimensional polynomials describing the MS variables of human 
leg muscles. Later these polynomials were used to simulate the musculotendon dynamics of 
upper (Rankin and Neptune, 2012) and lower limbs (Chadwick et al., 2009). This approach 
supports very high computational performance with low requirements on the available memory 
and the number of mathematical operations. However, the generalizability of this method is 
limited by the hand-selected polynomial structure, which begins to have significant errors in the 
more complex biomechanical scenarios that occur in the hand. Addressing this limitation is not 
trivial. Defining the polynomial structure itself becomes considerably more difficult as the 
biomechanical complexity of the musculoskeletal system increases. For example, muscles 
actuating the thumb may cross seven DOFs (three wrist and four thumb), potentially resulting in 
a 7-dimensional polynomial to describe its behavior. Another approach developed by Sartori 
and colleagues (Sartori et al., 2012) emphasizes the quality of approximation using cubic 
splines. Albeit being computationally expensive, the ability of this approach to operate at real-
time has been shown in a 3-DOF per muscle model (Durandau et al., 2018). The drawback of 
cubic splines, however, are their limited scalability: the number of spline coefficients increases 
exponentially with the number of DOFs that the muscle crosses. Ultimately, both methods aim 
to simplify complex musculoskeletal calculations and exhibit problems with accommodating the 
increasing model complexity, severely limiting the possibility of MS structure analysis and 
application.  

In this study, we present an information theory-based algorithm of polynomial approximation of 
MS kinematic variables that scales linearly with the complexity of the model. The resolution of 
the dimensionality problem in the approximations is addressed with the search for the optimal 
structure of approximating functions. We assess the quality in terms of approximation error and 
evaluation time on a MS model with 33 musculotendon actuators crossing multiple DOFs each 
(up to 6 DOFs per muscle). Our mathematical model belongs to the class of phenomenological 
descriptions capturing the input-output relationship and, yet, it may also represent theoretical 
principles associated with muscle function as has been demonstrated for several models of this 
type (Frigg and Hartmann, 2018). Thus, the structure of the produced optimal polynomials is 
analyzed not only in terms of muscle anatomy but also its function. 
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Methods 

The approximation of muscle path kinematic variables consisted of three steps: i) creating a 
dataset describing muscle length and moment arm values for all physiological postures using 
the OpenSim model; ii) searching for a set of optimal polynomials approximating kinematic 
variables implemented with a physical constraint between muscle moment arms and muscle 
length; and iii) validating the produced polynomials. 

Dataset 
We used a previously developed model of the arm and hand to capture the relationship between 
muscle lengths and moment arms in all physiological postures (Boots et al., 2017; Gritsenko et 
al., 2016). The model contains 33 musculotendon actuators, some representing multiple heads 
of the same muscle, spanning 18 physiological DOFs (see Tables 1 and 2 in Appendix) and was 
implemented in OpenSim software (Delp et al., 2007). Similar to the previous study of Sartori et 
al. (Sartori et al., 2012) the values for the kinematic variables were obtained on a uniform grid 
with 9 points per DOF, resulting in the domain size of 9d data points per muscle, where d is the 
number of DOFs that a muscle crosses. The extreme positions were included so that 9 points 
were selected within the range from 0% to 100% of DOF range. For example, since the 
extensor carpi ulnaris muscle spans two DOFs (wrist flexion-extension and pronation-
supination) in our model (ulna deviation is not simulated) its moment arms and muscle lengths 
were sampled in 92=81 positions. This 9-point dataset contained 674,937 points. In addition, to 
compare the approximations achieved with different methods (described below), we generated 
the 8-point dataset containing 348,136 values that fits between data in the 9-point dataset.   

 

Figure 1. Upper-limb representation in OpenSim. The geometry of muscle paths is shown in red 
for the displayed posture. 

Model Structure 
Moment arms and muscle lengths were approximated with a polynomial described by Eq. 1. 

Equation 1 

���� � � � � � 	��,�� ,..,��
�

������..���


 ���
�

�

�

�

 

where a is an intercept, ρ is the selected maximum of polynomial power, d is the number of 
DOFs,  � � ��	 , . . , ���
  is the state vector with values of angles at each DOF, K is the 
multidimensional matrix of polynomial term coefficients, sum and product coefficients (p, i, and j) 
iterate from 1. The polynomial structure is then defined by the non-zero values of K and � 
parameters. For example, extensor carpi ulnaris moment arms (with  � 4 , � � 2 ) were 
described by the polynomial structures 
��, 		, 	�, 			, 		�, 	�� , 				 , 			� , 		�� , 	��� , 					 , 				� , 			�� , 		����   around elbow extension-
flexion (e-f) and ��, 		, 	�, 			 , 		� , 	�� , 				 , 			� , 		�� , 	��� , 					 , 				� , 			�� , 		��� , 	����� 
around wrist supination-pronation (s-p) (Fig. 2B), where indices 1 and 2 correspond to wrist 
pronation-supination and flexion-extension, respectively.  
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Figure 2. The example of kinematic approximation for extensor carpi ulnaris muscle. A. The 
muscle path length is shown as a function of wrist e-f and s-p DOFs, with points from OpenSim 
model fitted with the continuous functions plotted as a wireframe. B. The two corresponding 
moment arm relationships are shown for the same domain of postures.  

Model Physical Constraints 
Moment arms can be estimated as a partial differential of the muscle length in local coordinates 
(An et al., 1984; Brand et al., 1975): 

Equation 2 

����� � �����
���  

where i is the index of a DOF actuated by the muscle, ��  is the coordinate of ith DOF, ����� is 
the posture-dependent function of the moment arm around ith DOF, ���� is the muscle length 
function. The kinematic variables of a given muscle are then captured by a single function ���� 
and a set of functions ������� for muscles spanning multiple DOFs.  

The following algorithm finds a new function ���� and updates its set of moment arm functions 
���� in agreement with the relationship in Eq.2:    

1. Calculate a set of intermediate muscle length polynomials ������� � � ������. 
2. Combine the terms of ���� and  �������� : ���� � ������� ��������� �. 
3. Differentiate analytically the polynomial ���� (Eq.2) to update the complimentary set of 

moment arm functions, �������. 
4. Calculate a and K coefficients in ���� and ������� using the original dataset. 

For example, for an arbitrary muscle spanning two DOFs  � � ��	 , ��� with its length described 
by a function � � 2�	���, we have a polynomial term �	����, which is denoted by the term 		��. 
Similarly, the corresponding two moment arm functions �	 � 3�	� � 2  and �� � 5�	��  are 
described by the terms �				 , �� and �		��. The integrals of �	 , �� in step 1 are: �	 � �	 � 2�	 �
��� !  or structure ��, 		, 					� ; �� � 2.5�	��� � ��� !  or structure ��, 		��� . In step 2, the 
ensemble function ���� adhering to Eq. 2 will be � � "� � "	�	��� � "��	 � "��	, where "�  are 
scalar coefficients in the structure ��, 		, 		�� , 					� . This step embeds the differential 
relationship between path length and its moment arms. In step 3, the moment arms are 
�	 � "��� � "��	� � "�  or structure ��, 	�� , 				�  and �� � "��	��  or structure �		�� . We 
introduce this additional notation for constants to separate them from polynomial structures. We 
used a linear pseudoinverse on the original dataset to calculate the coefficients "���. These 
coefficients were used to evaluate the quality of fit (next section) and to analyze the nature of 
embedded information within the polynomials (see below, Kinematic Muscle Invariants).  

Model generation and validation 
The geometries of muscle wrapping around joints vary greatly in their complexity and, 
consequently, their model representations. The simplest muscles can be approximated with a 
constant if their path is posture independent, and complex muscles may involve many 
polynomial terms. The search for the optimal model requires the evaluation of each additional 
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term from the domain of terms that grows exponentially with the number of actuated DOFs. 
Thus, muscles crossing 6 DOFs in our model were the most challenging. To solve this, we 
created an optimization algorithm similar to forward stepwise regression (Izenman, 2008). This 
method was adapted to include all possible polynomial terms and the constraint in Eq.2 in the 
process of expanding the polynomial structure with additional terms until the information tradeoff 
indicated overfitting. For this purpose, we used the corrected Akaike Information Criterion (AICc) 
for a finite sample size (Akaike, 1974; Burnham and Anderson, 2004): 

Equation 3 

#$"���� � #$"��� � 2%�% � 1�
' ( % ( 1 � 2% ( 2 )���� � 2%�% � 1�

' ( % ( 1 

where f is an approximation function, #$" is the Akaike Information Criterion, k is the number of 
parameters in the model, N is the number of data points, and L is a maximum likelihood 
estimation of the polynomial representing this dataset. The peak value of L for the normally 
distributed estimated residuals is )���� �  (0.5'�)��2+,�� � 1�  �  (' )��,� � ��� !, where , 
is the root-mean-square (RMS) error. The model-independent constants are ignored in the 
substitution of )���� in Eq.3 because we use AICc values to compare multiple models (see 
further details on pp. 62-67 in Burnham and Anderson, 2004): 

Equation 4: 

#$"���� � 2% � 2' )��,� � 2%�% � 1�
' ( % ( 1 

To remove potential differences between DOFs, we normalized the muscle length values to the 
range of motion and the moment arm values to their maximum across all physiological postures.  

The analysis selected the terms of the polynomial structure for a muscle as follows (Fig. 3A): 

1. Initialize a variable (empty polynomial without terms) for the functions approximating 
muscle length ���� and its set of moment arm functions,  �������. 

2. Make a list of potential candidates for the expansion of each polynomial using all 
possible combinations from the fifth degree polynomial: -���; �-������. 

3. Select optimal functions indicated by the smallest AICc values from the lists -�•� and 
append them to the current approximation: ���� � argmin�������;�� #$"���� , ����� �
argmin��������;���

#$"����. 

4. Use the algorithm, described above (Model Physical Constraints), to impose the 
relationship of Eq. 2. 

5. Return to step 2: i) if further expansion is possible (-��� or -���� are not empty), and ii) 
the change in AICc values is negative between iterations. 

The progression of model assembly with this algorithm can be seen in Fig. 3B showing the 
optimization of kinematic variables for flexor pollicis longus with the iterative expansion. The first 
evaluation of errors was performed relative to zero model (���� � 0; ������� � 0). The errors for 
the selected terms were evaluated in the following iteration step. In the first iteration, the muscle 
length was approximated by ��, 		, 	�, 	, 	�, 	���, where some terms came from the selection 
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of terms in step 3 and the rest from the integration in step 4. In the second iteration, the 
approximation was expanded using elements 			, 	 , 	�� , 	��� , 	���� , and the precision of 
muscle length fit decreases below 1%. In the fifth iteration, only thumb carpometacarpal (CMC) 
& metacarpophalangeal (MCP) moment arms required further optimization when other DOFs 
reached the minimum of AICc. In the tenth iteration, the evaluation of optimal parameter 
selection was finished with the high precision of 10-3 for the fit of muscle length across all 
physiological postures. Here, the worst moment arm fit of wrist extension-flexion (dashed blue 
line) was 1.05% in units normalized to the range of motion and the maximum magnitude of 
moment arm or 0.2 mm in absolute units. 

The accuracy of polynomial fit generally increases with the number of terms in the polynomial 
structure. For each iteration, the selection of potential candidates for expansion, Ψ78���9 , 
contains polynomials with all terms of 8��� and one additional term from the possible additional 
terms in a polynomial of the same power. For example, let 8���  be a two-dimensional 
polynomial with structure ��, 		, 			�, full 2-dimensional polynomial of power 2 has a structure 
��, 		, 	�, 			, 		�, 	��� . Then the list of potential candidates is: 
-�8���� � :��, 		, 	�, 			�; ��, 		, 			, 		��; ��, 		, 			 , 	���; . The size of Ψ�8����  increases 
when higher power terms are required.  

 

 

Figure 3. Optimal model generation algorithm. A. The optimization flow schematic showing the 
flow of calculations using the amalgamated algorithm of model generation with physical 
constraint. RMS errors of model performance are computed at the onset of each new iteration 
and followed by the expansion of polynomial candidates. The process continues while there are 
improvements in AICc metric. B. Example of generating the system of polynomial functions 
describing flexor pollicis longus. The decrease in RMS errors for all DOFs actuated by this 
muscle were plotted for each iteration of the algorithm. The progression of terms added to 
minimize AICc in 6 polynomials is shown below the plot. 

 

Similarity index 
Muscles with similar function may require similar approximation structures to capture their 
kinematics. To test this idea, we used a measure of similarity between polynomial structures.  
Consider polynomials ��  and ��  characterizing muscles A and B. Each polynomial can be 
described by a collection of shared or common terms (8�) and a collection of non-common 
terms (8 � ), so that �� � 8� � 8� �  and �� � 8� � 8� � , where 8� �  are the terms present in 
��  and not in �� and 8� �  are the terms present in ��  and not in ��. Then, the similarity index 
(SI) is calculated as: 

Equation 4 

<$�#, =� � '�
'� � � '� � � '� > 100% 
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where '� , '� � , '� �  are the number of terms in 8� , 8� � , 8� � , respectively. SI equals to 
100% when two polynomials have completely identical structures (K terms), and to 0% when 
they are completely different.  

Kinematic Muscle Invariant  
Additional details describing polynomial composition was captured using muscle representation 
in a Euclidean space formed by the basis of unique polynomial power terms (K, Table 1). Here, 
the obvious similarity due to mechanical actions around the same DOFs was removed (using v-
axis index, Table 1)  to test if the approximations contained additional functional relationships. 
Whether or not functional information is embedded in the pattern of polynomials could then be 
tested by examining the distance between muscles in this space. For the full polynomial of 
power  � 5  and maximum muscle dimensionality � � 6  these unique combinations are the 
following: [(1, 1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 1), (1, 2, 2), (1, 
2), (1, 3), (1, 4), (1), (2, 2), (2, 3), (2), (3), (4), (5)], where (1, 1, 1, 1, 1) is, e.g., �	������� and 
(5) is ���. The coefficients for these ordered 18 combinations defined the coordinates of a vector 
representing a given muscle-length polynomial. We converted all polynomials into unit vectors 
with the normalized sums of coefficients of the same terms from different DOFs, AB �
�A	 , … , A!�
/E�A	 , … , A!�
E. For example, for � � "	�	��� � "��	��� � "��	� � "�	 � "��� � "�, the 
vector has nonzero elements :A" � |"	| � |"�|;  A	� � |"| � |"�|;  A	� � |"�|; . Structural 
difference of two polynomials can then be obtained as a distance between their vectors. We call 
vectors of each muscle in the basis of A-axes as muscle invariants. The structural difference 
between muscles is minimal when power composition of all terms and their absolute coefficients 
are similar in both polynomials even if they cross different DOFs, and large when their power 
compositions do not have the same terms. 

 

Table 1. Polynomial term notation and kinematic muscle invariants. ��	, �� , �� , ��  are 
coordinates. 

v-axis index Unique 
combination 

Examples of 
polynomial terms 

K-notation 

1 (1) ��, �� K1, K2 
2 (2) ��

�
 

K11 
3 (3) ��

�
 

K111 
4 (4) ��

�
 

K1111 
5 (5) ��

�
 

K11111 
6 (1,1) ����, ���� K12, K23 
7 (1,2) ��

�
��, ����

� K112, K233 
8 (1,3) ����

� K1222 
9 (1,4) ����

� K12222 
10 (2,2) ��

�
��
�
 

K1122 
11 (2,3) ��

�
��
�
 

K11222 
12 (1,1,1) ������ K123 
13 (1,1,2) ������

�
 

K1233 
14 (1,1,3) ������

�
 

K12333 
15 (1,2,2) ����

�
��
�
 

K12233 
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16 (1,1,1,1) �������� 

K1234 
17 (1,1,1,2) ��������

�
 

K12344 
18 (1,1,1,1,1) ���������� K12345 

 

Memory and Time 
The computer memory required for spline approximation was calculated as a size of MATLAB's 
‘.mat’ files that contained single-precision spline parameters saved using '-v7.3' flag which 
enables compression. The computer memory required for polynomials was calculated as the 
size of executable ‘.mexw64’ files compiled with Visual Studio 2017 C++ with ‘/O2’ optimization. 
Evaluation time was obtained using MATLAB’s Profiler. Individual samples for mean and 
standard deviation of evaluation time were obtained per muscle’s dataset during estimation of fit 
quality. All computations were done on DELL Precision Workstation T5810 XL (Intel Xeon 
processor E5-2620 v3 2.4 GHz, 64 GB DDR4 RAM, SK Hynix SH920 512 GB SSD) running 
Windows 10. 

Statistics 
The accuracy of polynomials was analyzed with standard statistical tools. The RMS error values 
were used to evaluate errors in the approximated values relative to the dataset used for fitting 
and the independent testing dataset (see above, Dataset). We detected outliers using a method 
similar to (Sartori et al., 2012), which resulted in the removal of less than 0.09% of values from 
the 9-point dataset. We estimated maximum expected error using Chebyshev’s theorem with 
1% significance level. Linear regression was used to test the relationship between the 
complexity of functions represented by the number of DOFs a muscle spans and the complexity 
of the approximating polynomials.  

The similarity of muscle invariants ( AB ) across multiple muscle groups was tested with 
dimensionality reduction analyses, i.e. principle component analysis (PCA) and hierarchical 
clustering. The Euclidean distance between vectors was first analyzed with the average linkage 
hierarchical clustering implemented in SciPy. Then, the dominant relationships in this 
distribution of muscle invariants were analyzed with PCA (Arisman, 2014; Scikit-learn module in 
Pedregosa et al., 2011). 

The representation of structural and functional information within the muscle length invariants 
was further tested by comparing the distributions of the distances between muscle pairs with 
similar structure or similar function to muscles with different structure or different function. These 
distributions were shown to be non-normal using D’Agostino’s K-squared test (D’Agostino and 
Pearson, 1973) that measures deviation from the normal skewness and kurtosis. We used one-
tailed Mann-Whitney U test (Mann and Whitney, 1947) to assess the two hypotheses that 
functional and structural similarities are represented in the colocalization of the muscle 
invariants. In general, this test was used to assess the likelihood of observing a smaller distance 
between the randomly selected pairs of muscle invariants with matching function or structure 
than the distance between the randomly selected pairs with shuffled function or structure. The 
smaller distances between the pairs in matched populations than the larger distances between 
the pairs from the shuffled populations were also tested with one-sided sign test (Conover, 
1999). The symmetrical distribution of samples around the mean is not assumed in the sign test; 
thus, it is a better choice for this problem then Wilcoxon signed-rank test. All tests were 
performed with the conservative value of  α set at 0.01. 
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Results 

We developed a precise and efficient method to describe the MS kinematics of a human 
forearm and hand, extending previous work with approximation functions (Menegaldo et al., 
2004; Sartori et al., 2012). Here, we formalized the dynamic selection of terms in a best-fit 
polynomial function using a quantitative tracking of overfitting. Moreover, we used the 
differential relationship between muscle length and moment arms within the derivation algorithm 
to generate mutually consistent analytical models of these two variables. We tested if the 
composition of polynomials embedded information about muscle structure and/or function.  

 
Figure 4. The distributions of normalized errors in the estimation of muscle lengths (A) and 
moment arms (B) are shown for two models (splines and polynomials). The histogram 
frequency was normalized to the total count of samples.  

 
Approximation of muscle lengths and moment arms 
We subdivided values in the dataset (see above) into two groups for creating models and their 
testing. All best-fit models, splines and polynomials, approximated moment arms with <5% error 
and muscle length with <0.4% error, as shown in Fig. 4 and Table 2.  

Although the approximation error with splines was the lowest, the implementation of splines 
required the highest number of parameters – eight orders of magnitude difference (compare 
cubic splines and constrained polynomials in Table 1). The large number of parameters in the 
cubic spline model exceeded the number of values in the dataset, which corresponded to 
impractical AICc values. We used AIC values instead to compare the relative quality of models: 
the constrained polynomial values were -6.7*106 and -5.7*105, as compared to the cubic spline 
values 2.2*109 and 3.2*1010. This difference indicates the preference of AIC metric to the 
constrained polynomial model. The addition of model physical constraints (Eq. 2) to the 
polynomial generation algorithm did not significantly change the precision of the polynomial 
model (p>0.9) with similar errors and AIC values in Table 2. The histograms of error 
distributions were superimposed in Fig. 4. The length approximation errors in Fig. 4A were 
smaller than those of moment arm errors in Fig. 4B, as expected from Eq.2. In general, the 
differentiation process increases the magnitudes of errors.  

A small portion of values in the datasets were marked as outliers and removed from further 
analyses: unconstrained polynomials had 0.08% muscle length outliers and 0.03% moment arm 
outliers; constrained polynomials had 0.08% and 0.03%, respectively. No spline errors were 
marked as outliers. 

Table 2. Model performance comparison. Cubic spline (CS) and two polynomial approximations 
with and without the constraint linking muscle lengths and moment arms (constrained and 
unconstrained polynomials, CP and UP), as described by algorithm in Model Physical 
Constraints in Methods. L is length, MA is moment arms. 

Method RMS error ± standard deviation, % Total number of 
parameters 

AIC, au 
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L MA L MA L MA 

CS 1.34*10-5 ± 1.56*10-5 1.84*10-6 ± 2.47*10-6 1.1*109 1.64*1010 2.2*109 3.2*1010 

UP 0.0383 ± 0.0918 0.757 ± 1.477 610 705 -6.7*106 -5.7*105 

CP 0.0382 ± 0.0910 0.757 ± 1.477 661 783 -6.7*106 -5.7*105 

 

Both polynomial models were over 7000 times faster than the cubic spline (Table 3) and 
required 2.8*105 times less memory. The search time for the constrained polynomials was 3.3 
times faster than that for the unconstrained polynomials with the increase in performance 
gained when the selection of polynomial terms originated in the relationship between muscle 
length and moment arms.  

Table 3. Time and memory requirements of approximations methods for kinematic variables. 

Method Evaluation, µs Generation, 
min 

Memory, 
KB 

CS 7.8*104± 0.7*104 32  20.6*106 

UP 9.7±2.9 243  69  

CP 9.9 ±2.0 74  73  

 
Structure of Approximating Polynomials 
Both the constrained and unconstrained polynomial models were similar in composition as 
determined by the high similarity between the two models (Fig. 5A). Because the constrained 
muscle length function has higher polynomial power than its moment arm functions, we used 
 � 4 to generate Ψ����, and  � 5 to generate Ψ���. The similarity index is high when both 
models contain the same polynomial terms, which is indicated by the predominance of high 
similarity indices for all muscles in Fig. 5A. It takes about 20 terms per muscle to achieve high 
accuracy (Fig. 5B). The average similarity between muscles was 87.1%, and the biggest 
difference was observed in three muscles biceps brachii short head, flexor carpi radialis, and 
adductor pollicis transversus with similarity indices at about 60%. This indicates that the 
compositions of constrained and unconstrained polynomial models were similar. 

The increase in anatomical complexity indicated by the number of DOFs actuated by a muscle 
was predicted to correspond to the exponential increase in the number of terms required. This 
type of relationship was evident in the cubic spline model, where thumb muscles spanning up to 
6 DOFs required the highest number of parameters. It is remarkable that the relationship 
between the number of terms in the muscle length polynomial and the number of DOFs the 
muscle spans is instead linear (G � 0.74, Fig. 5C). Moreover, the model fractional complexity, 
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measured as the ratio of terms selected to all possible terms available, decreased as the 
number of DOFs controlled by a muscle increased (Supplementary Fig. 1, G � (0.83). The most 
complex muscles in our model were the thumb muscles (ADPT, FPB, APB, EPB, APL, FPL, 
EPL), and they appeared above the regression line (Fig. 5C). Instead, the finger muscles 
(FDS2-5, FDP2-5, ED2-5, EDM, EIND) were below the line (Fig. 5C), suggesting that these 
muscles have a lower relative complexity than the thumb muscles.  

 

Figure 5. Complexity of muscle structures. A. Similarity index between functions approximating 
muscle lengths generated with and without the physical constraint imposed by Eq. 2 in step 4 of 
the above algorithm. B. The distribution of polynomial complexity expressed as the number of 
terms. C. The relationship between the number of terms in the muscle length polynomial 
(circles) and the number of DOFs the muscle spans (line, J � 6.73� ( 0.16, G � 0.74, K L 2 >
10��). 
 
Structure and Function 
We hypothesized that the generated models capture structural and functional features of 
muscles and developed a measure of embedded muscle attributes, coined muscle invariants. 
These muscle invariants represent each muscle in the space of polynomial term powers. To 
avoid trivial relationships where similarity could be simply determined by the index of DOF 
actuated by a pair of muscles, we removed DOF identity information and preserved only the 
power signature of each term. The difference between muscles was captured as Euclidean 
distances between their vectors. To visualize the 18-dimensional space of all power terms 
(Table 1), the distance heatmap was calculated between all muscle pairs (Fig. 6A), and the 
corresponding vectors were plotted in the axes of two main principle components computed with 
PCA (Fig. 6B). The clustering algorithm generated the dendrogram based on these distances. A 
selection of distal thumb muscles (ADPT, APB, OP, APL) was visibly separated from about 6 
other subgroups, with the closest subgroup formed by another subset of thumb muscles (EPL 
and EPB). These groups were separated by the dashed line in the dendrogram of Fig. 6A. The 
thumb muscles were followed (top to bottom) by: extensor carpi radialis and wrist flexors 
(ECR_LO, ECR_BR, FCR, PL), flexor pollicis brevis and extensor carpi ulnaris (FPB and ECU), 
finger and wrist flexors and extensors, wrist rotators located in the forearm (FDP2-4, FDS3-5, 
ED2, ED4, ED5, EIND, PL, FCR, PQ, PT, SUP), the rest of digit muscles with flexor carpi 
ulnaris (ED3, EDM, FDS2, FDP5, FCU, FPL), and biceps brachii (BIC_SH, BIC_LO).  

The differences between muscle invariants were largely captured by the first two principal 
components (86% of variance explained). Their largest coefficients were associated with linear 
(AB#$% � (0.68) and square (AB#$�% � 0.84) powers of polynomial terms. The linear relationship 
between joint angle and muscle length corresponds to a semi-circle muscle path around a joint. 
This simplistic behavior is characteristic for 1-DOF finger joints, muscles in the bottom-left 
corner and the insert of Fig. 6B. Muscles in the bottom-right corner, e.g., thumb muscles, used 
less linear terms than other muscles. Overall, the space of muscle invariants has a nonrandom 
and hierarchically structured pattern.  

Figure 6. Kinematic muscle invariants. A. Average-linkage dendrogram computed from the 
heatmap of pairwise distances between muscle invariants. Horizontal dashed lines indicate 
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subgroups described in text. B. The representation of muscle invariants in the space of their 
main two principle components. Insert: expanded view of a portion of the plot. 

 

We tested if muscle invariants contain information about their anatomical location by comparing 
Euclidian distances between the invariants with shared DOFs. Since there is a limited set of 
muscles that do not span the same joints, we tested the idea that those pairs of muscles that 
share a given DOF would be closer to each other than those that do not share that DOF. We 
assigned phalangeal DOFs (MCP, PIP, DIP) to be different to each other, but the same across 
fingers 2-5 because of their similarity and the lack of intrinsic hand muscles (e.g., lumbricals) in 
the model. This selection ensured local structural similarity in the group with a shared DOF (Fig. 
7A, blue) and local difference in the group without a shared DOF (Fig. 7A, red), but it did not 
prevent the selection of muscle pairs in each group based on their structure relative to other 
DOFs. Fig. 7A shows the probability of observing a given distance between a pair of muscles 
with a shared DOF and without a shared DOF based on 1306 and 1862 pairs, respectively. The 
selection of muscles into these groups was executed sequentially by examining all muscles for 
each DOF in the model. The difference distribution between the two distributions in Fig.7A 
shown in Fig. 7B was computed by examining the difference between each pair with a shared 
DOF and comparing it with each pair that had one of the two muscles in the group without a 
shared DOF, resulting in 20,746 comparisons.  

The median of difference was significantly different from zero (-0.10, sign test K L 10�&). Both 
groups were not normally distributed (D’Agostino’s K-squared test of normality, K L 10�&) and 
similar anatomical pairs were closer to each other which was evident from the non-equal 
distribution of the two groups (Mann-Whitney U test: M � 7 > 10�, K L 10�&). We found that the 
muscle invariants capture the structural information related to the identity of their actuated 
DOFs.  

We tested if the muscle invariants contain functional information beyond that explained by the 
anatomical similarities. For this purpose, we defined seven functional categories based on their 
primary mechanical function: wrist supinators (BIC_LO, BIC_SH, SUP), pronators (PT, PQ), 
extensors (ECR_LO, ECR_BR, ECU), flexors (FCR, FCU, PL), finger flexors (FDS2-5, FDP2-5), 
extensors (ED2-5, EDM, EIND), and thumb muscles (APL, OP, APB, EPL, EPB, FPB, FPL, 
ADPT). We tested the idea that two muscles from the same category are closer together than 
those from different categories even when all these muscles actuate the same DOF. For this 
reason, we selected all pairs of muscles with (490 pairs) and without (816 pairs) a shared 
function selected from the seven categories and computed the distance between these pairs, 
shown in Fig. 7C. Next, we computed the distance between the two groups based on the 
combinations of all these pairs (3496 samples), shown in Fig. 7D. The distributions in Fig. 7C 
were also not normal ( K L 10�& ). While distributions of the two groups were overlapping 
(K � 0.61), the median difference between them was significantly different from zero (-0.02, sign 
test K L 10�&). This supports the hypothesis that DOF-independent functional differences are 
captured by the muscle invariants. 

 

Figure 7. The structural and functional information embedded in muscle invariants. A. The 
probability distributions of observing the distance between the pairs of muscle invariants with 
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(blue) and without (red) a shared DOF. B. The test of difference between the two groups. C. 
The probability distributions of the distance between the pairs with the shared structural 
information and with (blue) and without (red) shared functions. D. The test of difference between 
the two groups. Box plots indicate a median and 25th-75th quantile region. The significant 
differences between the overlap of distributions tested with Mann-Whitney U test is marked with 
(*). The sign test significance is marked with (†). 

 

Discussion 

We approximated MS kinematics of the human forearm and hand with a new type of 
autogenerating model that embeds biomechanical constraints between muscle parameters. The 
model reached optimal performance with polynomial simulations showing high precision and 
computational efficiency. While the model was developed as a descriptive tool, the fine details 
captured within the muscle-posture relationships include the differential connection between 
moment arms and muscle lengths and reflect the high-level mechanistic properties of forearm 
and hand muscle function. The composition of terms in these models was objectively 
determined by the embedded information and demonstrated the patterns associated with 
anatomy and function. The mechanical specification of muscles for the control of different hand 
DOFs and different functions has not been previously demonstrated.  

All models are simplifications or approximations of reality, but some approximations are useful. 
The complex geometric interactions—sliding and wrapping—between muscles and other 
mechanical body structures pose a considerable computational challenge for real-time 
applications (Blana et al., 2017). The engineering trade-off between complexity, performance, 
and accuracy pushed the development of simplified biomechanical limb models that assumed 
constant moment arm and posture relationships (Crouch and Huang, 2016) or reduced the span 
of musculotendon anatomy to ease computational demand (Durandau et al., 2018). Here, we 
report a method of capturing the kinematic MS transformations within the biomechanical model 
of the forearm and hand that does not require these simplifications. The approximating models 
can be mechanistic or phenomenological. The goal of phenomenological model is to capture the 
input-output relationship without the effort of describing the mechanistic explanation present 
within this transformation. We show that our objective method of generating the approximations 
captured structural and functional features of MS organization in the phenomenological model. 

Autogenerating models 
Interest in MS approximations has been steadily increasing with the development of 
computational tools for human motion analysis, e.g., OpenSim (Delp et al., 2007). Accuracy of 
these approximations has been demonstrated with B-spline models (Durandau et al., 2018; 
Sartori et al., 2012) and computational efficiency has been achieved with polynomial models 
(Chadwick et al., 2009; Menegaldo et al., 2004). The optimal polynomials derived in this 
manuscript have the benefits of both accuracy and computational efficiency.  

The manual subjective selection of polynomial terms for each muscle is usually based on the 
number of DOFs the muscle crosses, the quality of simulation, and the numerical cost of 
evaluating functions. In contrast, our optimization algorithm chooses the polynomial terms 
objectively based on the information criterion to reflect objective dependencies within the data. 
The information criterion is a type of cost function that allows comparison between different 
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polynomial models and prevents overfitting with an excessive number of terms. The latter is 
possible when using the subjective desired precision of fit, as in (Chadwick et al., 2009). Similar 
to (Menegaldo et al., 2004) the number of terms in the optimized polynomial grows with the 
number of muscle’s DOFs, but the term composition varies to reflect the diverse anatomy and 
function.  

We found multiple levels of structure embedded in the power composition of polynomial terms.  
A linear relationship between muscle length and joint angle is characteristic for 1-DOF finger 
joints. The near-linear relationship between moment arm profile and joint angle we showed in 
thumb muscles has been commonly observed in other studies (Loren et al., 1996; Menegaldo et 
al., 2004). The physiological function of this relationship could be associated with compensation 
for the muscle force-length relationship at the edges of the range of motion. The diverse 
function and behavior of thumb muscles found during movement (Kaufman et al., 1999) is 
mirrored in our results by their separation from other muscles and high variability between each 
other.  

Previously we have examined the grouping of muscles based on their length-posture 
relationships where the similarity between muscles was determined by common muscle length 
shortening and lengthening in response to postural changes (see Fig.7 in Gritsenko et al., 
2016). The current analysis of muscle organization does not separate antagonistic muscles, 
with the focus only on the polynomial sets that shape muscle paths. Similar to the previous 
analysis, thumb muscles are clearly separated from other finger muscles. We have also 
included muscles with antagonistic functions in separate groups in the analysis of muscle 
properties captured by the polynomials (Fig. 7C,D). This test indicated a functional difference 
between the muscle invariants even when the differences accounted for by muscle location 
were removed; albeit, this difference was small. This result supports the idea that the commonly 
observed muscle synergies during movement can be at least in part explained by the structure 
and function embedded in the musculotendon paths.  

Real-time high-dimensional musculoskeletal computations  
The optimal polynomials efficiently compute highly complex MS kinematics for real-time 
applications. The polynomials describing 33 musculotendon actuators each crossing up to 6 
DOFs can be evaluated within 10 µs, requiring less than 75 KB of RAM. To contrast, the 
previous state-of-the-art performance for a lower-limb model with 13 musculotendon actuators, 
each crossing up to 3 DOF was shown to be less than 2.5 ms (Durandau et al., 2018). Our more 
than hundred-fold time efficiency improvement on the method was also accompanied by a 
similar improvement in required memory (about 10MB worth of coefficients in (Durandau et al., 
2018) based on (Sartori et al., 2012)). The improvements are largely due to the exponential rise 
in the required computational resources with the dimensionality increase of the spline model, as 
previously shown (Sartori et al., 2012) and by our implementation. This ‘dimensionality curse’ 
may prevent the application of splines in complex models recently developed for offline 
analyses (Holzbaur et al., 2005; Paclet and Quaine, 2012; Rajagopal et al., 2016). Our optimal 
polynomial approach shows linear scaling of the model (Fig. 5C) allowing these models to be 
used in real-time applications.  

The described optimization algorithm is structurally similar to stepwise regression (Izenman, 
2008), but has several important differences. First, it automatically constructs and explores all 
possible polynomial combinations of the input variables within reasonable power limitations.  
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Second, our algorithm uses AIC (Akaike, 1974; Burnham and Anderson, 2002) instead of F-
statistic as the objective measure of improvements. The additional term in AIC takes into 
account the trade-off between the quality of fit and the increased model complexity. This is a 
novel use of information measures (Akaike, Bayesian and other) that have been previously used 
mostly as a stopping criterion (Bendel and Afifi, 1977). An information criterion allows flexibility 
when choosing the tradeoff between quality of fit and the measure of model complexity. For 
example, using the number of processor commands instead of the number of variables for each 
term is useful for the development of extremely high-performing routines or for computationally 
costly devices, like portable chips or graphics processing units. Third, our approximation 
algorithm embeds the differential relationship between muscle length and its moment arms in 
the search for the best polynomial coefficients. This novel approach of using the formulation of 
structural constraints within the algorithm decreased model assembly time. These 
approximations are ready to be used on a portable device that requires a real-time simulation of 
MS variables, e.g., a biomimetic prosthesis or a medical assessment device. 

Limitations 
We chose to implement the fitting algorithm with the use of polynomial sequences as the most 
accurate representation of the MS relationships. The alternative implementations could use 
sequences of trigonometric or exponential terms. For example, any data with periodic 
relationships would be efficiently represented by trigonometric functions, and any data with 
sigmoidal transitions or limits of range could be represented by exponential functions. However, 
the relationships between moment arms and posture are smooth because of soft tissue 
properties. In this case, we can rely on the theoretical conclusion from Taylor’s theorem stating 
that any smooth function can be described with a polynomial approximation. Then the only 
potential failures would be the observations of discontinuities in the muscle properties. We have 
indeed observed sharp transitions which are always associated with geometric model failures 
where a muscle path slipped off a wrapping surface. These behaviors were detected and 
corrected prior to the approximation (Boots et al., 2017). Thus, our model is appropriate for the 
physical system it represents. 

The autogenerating polynomials were iteratively created with the selection of a single term per 
equation at a time. This enabled fast optimization of the full system of equations describing 
moment arms and muscle lengths. It is possible that multiple terms can be more optimal than a 
single term. This would be indicated by the premature termination of the optimization routine 
even when a more optimal solution is available for multiple terms selected in the same iteration. 
We tested this eventuality by repeating the model generation with an algorithm capable of 
adding one or two terms per iteration per equation. This method produced the same solutions 
for our dataset (data not shown), but the evaluation time increased by an order of magnitude as 
compared to the standard method.  

The current method is limited to the description of forearm muscles in a generic representation 
of the human hand. Future analysis of validated models that span the shoulder will improve our 
understanding of muscle specialization. We expect to see new functional groups with the 
structure different from that of any of the hand functional groups because of the unique 
biomechanics of the shoulder joint (Lucas, 1973; Voisin, 2006). These functional groups can be 
then further refined by their evaluation on models with subject-specific segment scaling and 
morphometric differences (Akita and Nimura, 2016). It will be also illuminating to compare the 
muscle organization of the upper limb to that of the lower limb, considering their proposed 
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coevolution (Rolian et al., 2010), covariability in developmental modules (Hallgrímsson et al., 
2002) and high observed topological similarity (Diogo et al., 2013) in humans. However, 
accurate and valid lower-limb models are still under development.  

Conclusions 
We approximated the kinematic variables for human hand and forearm muscles with both high 
precision (<5% error across 18 DOFs) and efficiency (<75 KB, <10 μs). Adding the differential 
relationship between moment arms and muscle lengths improved solutions and the speed of 
their calculations. The approach overcomes the curse of dimensionality and scales linearly with 
increased complexity for large MS models. The structural content of optimal polynomials reflects 
muscle anatomy and function. This novel description can be further applied in neuromechanics 
and its applications.   
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Supplementary information 

The validity of selecting the sampling rate of the relationship between posture and muscle 
parameters was tested by comparing the quality of approximation with three different rates, i.e., 
the training datasets were sampled at 3, 5, and 9 values per degree of freedom (DOF). The 
corresponding three testing datasets with data points residing between the training data points 
were used for validation. The overall fitting errors were not significantly different between 5- and 
9-point datasets. However, infrequent failures in the 5-point model were effectively resolved with 
the 9-point model. It is likely that further increases in the sampling rate are not likely to increase 
model performance and may lead to the overfitting by exceeding the quality of the 
musculoskeletal representation in OpenSim. Since the 5-point model had a very similar 
performance to the 9-point model, it can be effectively used as an intermediate fast 
approximation for iterative adjustments needed to validate muscle geometry against 
experimental data (as in Boots et al., 2017).  Overall, the 9-point model was deemed to be 
optimal.  

Supplementary Table 1 
The list of simulated DOFs. Each label describes both a DOF and the direction of axis using the 
following structure: <LIMB>_<JOINT>_<MIN>_<MAX>, where LIMB corresponds to the limb 
where the joint is located, i.e. ‘ra’ stands for ‘right arm’, JOINT is the joint of this DOF, e.g., ‘wr’ 
is ‘wrist’. Digit joints have their identifying number: 1 thumb; 2 index; 3 middle; 4 ring; and, 5 
pinky. The last two suffixes MIN and MAX indicate the anatomical direction of axis, 
 e.g., ‘ra_wr_s_p’ indicates the range of the wrist pronation-supination DOF (-1.5708 rad for the 
supinated posture and the maximum 1.5708 rad for the pronated posture). 
 

DOF ID Label Range  Description of action 
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[MIN, MAX], rad 

1 ra_wr_s_p -1.5708, 1.5708 wrist pronation/supination motion 

2 ra_wr_e_f -1.2217, 1.2217 wrist flexion/extension motion 

3 ra_cmc1_f_e 0, 0.8727 thumb proximal flexion/extension motion 

4 ra_cmc1_ad_ab 0, 0.8727 thumb proximal abduction/adduction motion 

5 ra_mcp1_f_e -0.7854, 0 thumb central flexion/extension motion 

6 ra_ip1_f_e -1.5708, 0 thumb distal flexion/extension motion 

7 ra_mcp2_e_f 0, 1.5708 index proximal flexion/extension motion 

8 ra_pip2_e_f 0, 2.0944 index central flexion/extension motion 

9 ra_dip2_e_f 0, 1.5708 index distal flexion/extension motion 

10 ra_mcp3_e_f 0, 1.5708 middle proximal flexion/extension motion 

11 ra_pip3_e_f 0, 2.0944 middle central flexion/extension motion 

12 ra_dip3_e_f 0, 1.5708 middle distal flexion/extension motion 

13 ra_mcp4_e_f 0, 1.5708 ring proximal flexion/extension motion 

14 ra_pip4_e_f 0, 2.0944 ring central flexion/extension motion 

15 ra_dip4_e_f 0, 1.5708 ring distal flexion/extension motion 

16 ra_mcp5_e_f 0, 1.5708 pinky proximal flexion/extension motion 

17 ra_pip5_e_f 0, 2.0944 pinky central flexion/extension motion 

18 ra_dip5_e_f 0, 1.5708 pinky distal flexion/extension motion 

The list of simulated DOFs. The last two suffixes separated by underscores indicate the 
direction of the motion, e.g., “_s_p” indicates the motion from supinated to pronated posture. 

 

Supplementary Table 2 
The list of simulated musculotendon actuators. Brief labels used in figures are shown with their 
anatomical names and the corresponding information about number and identity of actuated 
DOFs, as described in Supplementary Table 1. 
 
Muscle ID Label Musculotendon actuator  Number of 

DOFs 
DOF IDs 

1  BIC_LO  Biceps brachii long head 1  1 

2  BIC_SH  Biceps brachii short head 1  1 

3  SUP  Supinator 1  1  
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4  PT  Pronator teres 1  1  

5  PQ  Pronator quadratus 1  1  

6 ECR_LO  Extensor carpi radialis longus 2  1 2 

7 ECR_BR  Extensor carpi radialis brevis 2  1 2 

8  ECU  Extensor carpi ulnaris 2  1 2 

9  FCR  Flexor carpi radialis 2  1 2 

10  FCU  Flexor carpi ulnaris 2  1 2 

11  PL  Palmaris longus 2  1 2 

12  FDS5  Flexor digitorum superficialis (pinky finger) 3  2 16 17  

13  FDS4  Flexor digitorum superficialis (ring finger) 3  2 13 14  

14  FDS3  Flexor digitorum superficialis (middle finger) 3  2 10 11  

15  FDS2  Flexor digitorum superficialis (index finger) 3  2 7 8  

16  FDP5  Flexor digitorum profundus (pinky finger) 4  2 16 17 18 

17  FDP4  Flexor digitorum profundus (ring finger) 4  2 13 14 15 

18  FDP3  Flexor digitorum profundus (middle finger) 4  2 10 11 12 

19  FDP2  Flexor digitorum profundus (index finger) 4  2 7 8 9 

20  EDM  Extensor digiti minimi 4  2 16 17 18 

21  ED5  Extensor digitorum (pinky finger) 4  2 16 17 18  

22  ED4  Extensor digitorum (ring finger) 4  2 13 14 15 

23  ED3  Extensor digitorum (middle finger) 4  2 10 11 12 

24  ED2  Extensor digitorum (index finger) 4  2 7 8 9 

25  EIND  Extensor indicis 4  2 7 8 9 

26  EPL  Extensor pollicis longus 5  1 2 4 3 5 6 

27  EPB  Extensor pollicis brevis 4  2 4 3 5 

28  FPB  Flexor pollicis brevis 3  4 3 5  

29  FPL  Flexor pollicis longus 5  2 4 3 5 6  

30  APL  Abductor pollicis longus 4  1 2 4 3  

31  OP  Opponens pollicis 2  4 3  

32  APB  Abductor pollicis brevis 3  4 3 5  
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33  ADPT  Adductor pollicis transversus 3  4 3 5  
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