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Abstract:  

Bacterial swarming is a conserved and distinct form of bacterial motility that is often oppositely 

regulated and antagonistic to biofilm formation(1). To-date, while bacterial biofilms have been 35 

associated with pathogenesis and pathobiology of human diseases(2-4), there are very few 

examples of swarming behaviors that uniquely define or align with human pathophysiology(5-7). 

Here we report that swarming bacteria protects against intestinal inflammation in a murine model 

of colitis. Using feces in soft-agar plate assay we showed bacterial spreading harboring swarmers 

is highly predictive of the presence of intestinal stress in mice, pigs and humans. From murine 40 

feces, we isolated a novel Enterobacter swarming strain, SM3, which demonstrated significant 

protection from intestinal inflammation and promoted restitution in DSS-induced colitic mice. 

Known commensal swarmers also protected against intestinal inflammation when compared to 

swarming deficient isogenic mutants. Mechanistically, SM3 significantly reduced luminal oxygen 

concentration in colitic mice leading to a favorable anaerobic environment conducive to the growth 45 

of beneficial anaerobes. This work identifies a new paradigm in which intestinal stress, specifically 

inflammation, allows for emergence of swarming bacteria, which in turn has the ability to protect 

and heal from intestinal inflammation. 

 

One Sentence Summary: 50 

Bacterial swarming reduce intestinal inflammation. 
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Main Text: 

Swarming, driven by flagella, is a fundamental process in certain groups of bacteria characterized 

by collective and rapid movement across a surface(8, 9). This process offers bacteria a competitive 55 

advantage in occupying certain niches (e.g., seeding colonization)(10); however, the cost-benefits 

to bacteria(11, 12) and consequences to its host or the environment remain largely unknown(7). 

Here we show that bacterial swarming is a hallmark of a stressed intestine. When swarming 

bacteria are present in sufficient abundance, the act of swarming per se suppresses intestinal stress 

in mammals. We posit that this occurs via the creation of a conducive anaerobic environment that 60 

leads to induction of beneficial anaerobes, which are associated with mucosal healing. 

To test whether bacterial swarming is associated with human and rodent gut health, we developed 

a modified swarming assay using feces based on an established soft-agar plate assay utilized for 

single species(13). Since prototypical swarming bacteria (e.g., Proteus mirabilis, Pseudomonas 

aeruginosa) are associated with virulence(7, 14), we surmised that bacterial swarming might be 65 

well represented in colonoscopy samples and feces from humans with bacterial virulence 

associated pathologies (e.g., intestinal inflammation)(15). Colonoscopy aspirates were obtained 

from individuals with an active illness (inflammatory bowel disease - Crohn’s and ulcerative colitis 

and other common forms of intestinal stress like intestinal polyps(16, 17) as well as age and gender 

matched controls (those without a clinically active illness). Within our sampling pool, bacterial 70 

collective spreading on soft agar was over-represented in cases with overt or clinically active 

intestinal stress (Fig. S1a-b). As a preliminary assessment, the presence of bacterial swarmers in 

feces was judged by the bacterial spread with a surfactant layer on soft-agar followed by isolation, 

identification by MALDI-TOF and validation of its swarming motility (Table S1). Nevertheless, 

this approach might have precluded selection of swarmers that do not produce surfactant(8). In 75 
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this pilot evaluation, the specificity and positive predictive value of the test for disease as defined 

was approximately, 88 and 89 %, respectively, while the sensitivity and negative predictive value 

of the test was only approximately 56 and 52 %, respectively (Fig. S1c). Similarly, feces collected 

from pigs with active inflammatory bowel disease also showed an increased prevalence of 

collective spreading and swarming as compared to control pigs (Fig. S1d). Together, these pilot 80 

data indicate that collective spreading and swarming is a specific feature, and potentially a 

biomarker of an intestinal pathology as defined by harboring active intestinal inflammation or 

polyps.  

To identify the relevance of swarmers on host health, we focused on isolating endogenous 

swarming bacteria residing in rodents and humans. An initial approach was to determine if a 85 

singular dominant swarming species could always be isolated from a polymicrobial culture (such 

as mammalian feces). In a competitive swarming assay a mix of different pure bacterial cultures 

gave rise to a single bacterial species populating the leading edge of the swarm colony on agar 

(Fig. S2a-b). Similarly, swarming assays using pooled mouse or individual human feces yielded 

single species of a dominant swarmer as identified by MALDI-TOF (Table S1; Fig. S1e). To test 90 

whether swarming bacteria are also present in preclinical models, we screened feces of mice 

exposed to DSS, a chemical colitogen causing acute colonic inflammation(18, 19). In a single 

experiment, we found three identical isolates from two different mouse fecal specimens- Strain 1 

from mice exposed to water and, Strain 2 and 3 from mice exposed to dextran sulphate sodium 

(DSS), respectively (Fig. 1a). Swarming (in feces) was uniformly absent in vehicle exposed mice 95 

(Fig. S1e). The edge of the swarm colonies (as marked on Fig. 1a) were picked, serially passaged 

twice on 1% agar from a single colony and subsequently re-tested for swarm behavior on 0.5% 

agar plates (Fig. 1b). Strain 3 swarmed significantly faster compared to Strain 1 and 2. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 7, 2019. ; https://doi.org/10.1101/759886doi: bioRxiv preprint 

https://doi.org/10.1101/759886


5 
 

Interestingly, 16S rRNA gene analysis and Multi Locus Sequence Typing (Fig. 1c) identified the 

isolated strains to be closest to Enterobacter asburiae. A whole genome sequence comparison of 100 

these Enterobacter strains (Fig. 1d) with related taxa Enterobacter asburiae and Enterobacter 

cloacae, revealed that all the three strains isolated here were  “nearly identical” ( >99% identical, 

Supplementary Discussion) and phylogenetically distinct from the reference strains. Taken 

together, using an agar-based assay to isolate dominant swarmers from a heterogenous culture, we 

were able to isolate nearly identical strains with striking difference in their swarming potential. 105 

Strain 1 (Enterobacter sp. SM1) originated from feces of vehicle (water) treated mice, while strain 

2 (Enterobacter sp. SM2) and strain 3 (Enterobacter sp. SM3) originated from feces of DSS-

induced colitic mice. Interestingly, a quantitative PCR sequencing-based approach to specifically 

identify SM1 or SM3 like bacteria in feces showed increase in its abundance during the evolution 

of DSS-induced colitis. The proportion of mice with high copy number values (>10,000 DNA 110 

copy/μL PCR reaction) was significantly higher in DSS group than water only group (Fig. S1f).  

To determine the functional consequence of bacterial swarming in the host, DSS-induced colitic 

mice were administered the “near identical” swarming competent SM1 or SM3 strains. Both 

strains possess same growth rate and swim speed; however, unlike SM1, SM3 is a hyperswarmer 

(Fig. S3a-e; Supplementary Video 1). In contrast to that observed with SM1, SM3 significantly 115 

protected mice from intestinal inflammation (Fig. 2a-f). Specifically, SM3 significantly protected 

from body weight loss (Fig. 2a), increased colon length (Fig. 2b), reduced the colonic 

inflammation score (Fig. 2d), and had reduced expression of pro-inflammatory mediators 

compared to vehicle treated colitic mice (Fig. 2e-f). To test the mucosal healing capacity of 

swarming bacteria, we administered strains SM1 and SM3 to mice during the recovery phase of 120 

DSS exposure(20). When compared to vehicle, SM3 significantly improved weight gain and colon 
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length with reduced total inflammation and fibrosis at microscopic level (Fig. S4). To compare 

strict isogenic strains that only differed in swarming potential but not growth rate, surfactant 

production, or swimming speed (Fig. S3f-j), SM3 and isogenic mutants (SM3_18 and SM3_24) 

were administered to mice exposed to DSS. SM3, but not the swarming deficient mutants (SM3_18 125 

and SM3_24), showed significant protection against weight loss, colon length and inflammation 

(Fig. 2g-i). Together, these data indicated that swarming per se is necessary for anti-inflammatory 

activity by SM3.  

To determine if the anti-inflammatory role of SM3 is dependent on the conventional intestinal 

microbiome composition, germ-free mice transferred to specific pathogen free conditions 130 

(GF/SPF) and exposed to DSS-induced colitis, were treated with SM3. This strain was unable to 

protect against intestinal inflammation in GF/SPF mice (Fig. 3a). Fecal samples of colitic mice 

(conventional and GF/SPF) with SM3 administered were sent for microbiota analysis using 16S 

rRNA gene profiling. In contrast to GF/SPF mice, conventional mice feces showed specific 

enrichment of anaerobes belonging to the family S24-7 and Lactobacillaceae within SM3 treated 135 

mice when compared to vehicle mice (Fig. 3b). Specifically in conventional mice, we found 

significant increase in the abundance of S24-7 with SM3 gavage compared to vehicle in DSS 

exposed mice (Fig. 3c). SM3 does not affect the microbiota of non DSS treated mice, and the levels 

of S24-7 bacteria remains stable in SM3 treated group compared with untreated group (Fig. 3c). 

Within DSS exposed conventional mice, we observed that enriched S24-7 negatively co-occured 140 

with pathogenic taxa such as the Peptostreptococcaceae and Enterobacteriaceae (Fig. 3d). 

The enrichment of certain specific anaerobes when treated with SM3 suggests a reduction in 

oxygen content in the intestine, however, during inflammation the median oxygen concentration 

increases (Fig. S5b). Swarming behavior of SM3 is dependent on oxygen concentration (Fig. S5a), 
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which in turn creates a reduced immediate environment at a significantly higher rate than the slow 145 

swarming variants (Fig. S5d). We hypothesized that swarming activity of SM3 may also reduce 

luminal oxygen concentrations in vivo. We determined the oxygen concentrations within the 

intestinal lumen of mice at various lengths along the colon. In control conventional C57BL/6 mice, 

the colonic lumen is uniformly “hypoxic and/or anoxic”; however, in colitic mice, we found a 

significant increase in the oxygen levels (ppm) in the colonic lumen (measured at different lengths 150 

from 0.5 to 2 cm proximal to the anal verge) (Fig. S5b). SM3 significantly reduced oxygen 

concentration compared to controls (vehicle); SM1 and the swarming deficient mutant strains did 

not significantly affect oxygen concentrations compared with controls (Fig. S5c). These results 

show that SM3, a hyperswarmer relative to SM1, but not swarming deficient strains or less 

dominant swarmers (i.e. SM1), consume oxygen rapidly. This may likely suggest that swarming 155 

activity in vivo reduces the oxygen content in the colonic lumen, which would aid in establishing 

an anaerobic (micro)environment. 

To generalize this concept across multiple strains, mice with DSS induced colitis were 

administered B. subtilis 3610 (wildtype)(21) or its swarming deficient swrA isogenic mutant 

DS215(22) using the identical protocol as that used for SM3. In comparison with strain DS215, 160 

the wildtype significantly protected mice from intestinal inflammation (Fig.4a-e). Similarly, 

swarming Serratia marcescens Db10, in contrast to the swarming deficient JESM267 isogenic 

mutant, protected against inflammation in the identical mouse model (Fig. 4f-h). Incidentally, a 

clinical strain of S. marcescens (isolated from the surface washing of a human dysplastic polyp) 

also protected against DSS induced inflammation in mice (Supplementary Discussion). Similar to 165 

SM3, the swarming strains of Bacillus and Serratia deplete oxygen significantly faster than the 

isogenic non-swarming strains (Fig. S5e-f). These data suggest that a common mechanism might 

exist among swarmers, in that, via depletion of local oxygen concentrations they all induce a 
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favorable anaerobic environment. In addition, considering that the intestinal mucosa is relatively 

uneven during inflammation due to loss of mucin(23), we conjectured that swarmers may have an 170 

added advantage in niche dominance on inflamed tissue. Indeed, a mucosal race assay 

(Supplementary Discussion) showed that swarming bacteria finds advantage in motility on a colitic 

mucosa compared to normal mucosa (Fig. S6, Supplementary Video 2-4).  

Together these studies demonstrate that intestinal inflammation promotes a niche conducive for 

bacterial swarming. The inflammatory milieu provides a permissive environment for stress 175 

adaptation and swarming behavior. Provided sufficient colonies form during inflammation, 

swarming strains deplete luminal oxygen content and allow for the intestine to re-establish 

conditions conducive to the growth of beneficial anaerobes. Consequently, swarming behavior 

could in turn suppress host inflammation by re-establishing homeostatic anaerobiosis in the gut 

(Fig. S7). Furthermore, our studies demonstrate the potential for a new personalized “probiotic” 180 

approach stemming from the ability to isolate and bank swarming microbes during colitis flares. 

These could be stored and provided back to the same individuals to prevent colitic episodes or as 

a therapeutic during acute colitis. In summary, our work demonstrates the unique and 

unprecedented role that bacterial swarming plays in intestinal homeostasis and in the potential 

clinical treatment of inflammatory bowel diseases. 185 
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Figure 1│Isolation and characterization of Enterobacter sp. a, Five replicate fecal spots from pooled fecal pellets of mice administered 

water (above black line) or 3% DSS water (below black line) (n = 3, day 7). The white arrows indicate 1, swarm edge isolation from control 
feces (SM1); 2, swarm edge isolation from feces of mice exposed to DSS (SM2); 3, swarm colony isolation from spontaneous “burst” activity 

from feces at 24h from plating (SM3). The mouse experiments were repeated at least twice. b, The bacterial clones isolated from a were re-

plated as pure strains on 0.5% LB agar and the swarming assay performed over time. Two solid black marker lines divide each plate into 3 
regions, holding spots of the 3 strains – Top: Strain 1 (SM1), Middle: Strain 2 (SM2), Bottom: Strain 3 (SM3). These strains have been 

repeatedly (≥25 times) plated in swarming assays from all aliquots stored from the original isolation (August 2014) and the results confirm 

that SM3 is a stable hyperswarmer. c, Phylogenetic tree showing multi-locus sequencing typing-based genetic relatedness between 
Enterobacter sp. SM1, SM3 and reference genomes. Tree was generated with autoMLST (CITE) and drawn using iTOL (CITE). Red dots 

indicate bootstrap support > 0.8. Stars represent related strains used for comparison with the genome sequences of SM1 and SM3 in panel d. 

d, Genome comparison of related Enterobacter strains. Enterobactersp. SM1 was compared to Enterobactersp. SM3 (purple) and the related 

strains Enterobacter asburiae ATCC 35953 (violet) and Enterobacter cloacae ATCC 13047 (cyan), and plotted in BLAST Ring Generator 

(BRIG) http://brig.sourceforge.net/ PMID: 21824423. DSS, Dextran Sulfate Sodium; LB, Luria-Bertani broth. 
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Figure 2│Effects of Enterobacter sp. SM strains on DSS induced colitis in C57BL/6 mice. a-f, 8-weekold mice were exposed to DSS water 

and treated with vehicle (LB), SM1 or SM3 by oral gavage for 10 days. a-b indicates weight loss (a) and colon length (b) (n = 21 per treatment 
group). c, Representative images (100x magnification) of H&E stained colonic section treated with vehicle (left), SM1 (middle) and SM3 

(right). d, Inflammation score (n = 21 per treatment group). e-f, In a separate experiment, myeloperoxidase (MPO) enzyme activity was 

determined (n= 3, each in duplicate) (e). Colon total RNA (n = 4) was isolated and reverse transcribed to cDNA. RT-qPCR data show fold 

induction of mRNA (TNFα, IL10, TNFR2, IL6). PCR was repeated in quadruplicate. The expression was normalized to internal control, TBP. 

The entire experiment was repeated n = 2 for reproducibility (f).g-i, In a separate experiment, C57BL/6 mice (8-week old) were exposed to 

DSS water and administered vehicle (LB), SM3, or its mutants (SM3_18 or SM3_24) for 10 days. g-i indicates weight loss (g), colon length 
(h) and inflammation score (i) (n = 10 per treatment group). Unless otherwise noted, data are represented as mean and 95% CI, and significance 

tested using one-way ANOVA followed by Tukey's post hoc test. c, data represented as median and interquartile range, and significance tested 

using Kruskal-Wallis followed by Dunn’s multiple comparisons test. * P < 0.05; ** P < 0.01; *** P < 0.001; ns, not significant. H&E, 

Hematoxylin and Eosin; TBP, TATA-Box Binding Protein; CI, Confidence Interval. 
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Figure 3│Effects of SM3 on the intestinal microbiota of GF/SPF and conventional mice. a, C57BL/6 GF/SPF mice (5-week old) were 
exposed to DSS water and treated with vehicle (LB) or SM3 for 6 days. a indicates weight loss (left), colon length (middle), and inflammation 

score (right) (n = 10 per treatment group). b, Linear discriminant analysis (LDA) Effect Size (LEfSe) plot of taxonomic biomarkers identified 

using feces of SM3 treated conventional (n = 10) (upper) and GF/SPF (n = 10) (lower) colitic mice on day 12 and day 6, respectively, as 
compared to vehicle (n = 10). Green and red bars indicate bacterial enrichment within SM3 treated and vehicle group respectively. All taxa 

that yielded an LDA score >3.0 are presented. c, Relative abundance of S24-7 in the feces from DSS (right) and control (left) mice treated with 

SM3 or vehicle (n = 8 per treatment group). Linear regression line was fit to show the trend of the change (dotted lines show the 95% confidence 
bands). The slope of the SM3 treated group is similar to vehicle in water control group (P = 0.7827), but significantly different in DSS group 

(P = 0.0182). d, Co-occurrence network plot showing strong positive and negative correlations (Spearman’s |ρ| > 0.7) between OTU 

abundances. Each node represents a single OTU and the size of each node is proportional to the relative abundance of each OTU. Green lines 
connecting two nodes indicate a strong positive correlation (spearman’s ρ > 0.7) between the taxa, whereas red lines indicate a strong negative 

correlation (spearman’s ρ < – 0.7) between the taxa. Unless otherwise noted, data are represented as mean and 95% CI, and significance tested 

using a two-tailed Student’s t-test. OTU, Operational Taxonomic Unit; GF/SPF, Germ-Free mice transferred to specific pathogen free 
conditions. 
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Figure 4│Effects of B. subtilis and S. marcescens on DSS induced colitis in C57BL/6 mice. a-e, 8-week old mice were exposed to DSS 

water and treated with vehicle (LB), B. subtilis 3610 or B. subtilis DS215 by oral gavage for 10 days. a, Weight loss (n = 16 per treatment 

group). b, Representative images (100x magnification) of H&E stained colonic section treated with vehicle (left), 3610 (middle) and DS215 
(right). c, Inflammation score (n = 16 per treatment group). d-e, In a separate experiment, myeloperoxidase (MPO) enzyme activity was 

determined (n = 3, each in duplicate) (d). Colon total RNA (n = 4) were isolated and reverse transcribed to cDNA. RT-qPCR data show fold 

induction of mRNA (TNFα, IL10, TNFR2, IL6). PCR was repeated in quadruplicate. The expression was normalized to internal control, TBP. 
The entire experiment was repeated n = 2 for reproducibility (e). f-h, In a separate experiment, C57BL/6 mice (8-week old) were exposed to 

DSS water and administered vehicle (LB), S. marcescens Db10 or S. marcescens JESM267 for 10 days. f-h indicates weight loss (f), colon 

length (g) and inflammation score (h) (n = 10 per treatment group except for h, for which n = 8; two colon specimens per group were used for 
other experiments). Unless otherwise noted, data represented as mean and 95% CI, and significance tested using one-way ANOVA followed 

by Tukey's post hoc test. g, data represented as median and interquartile range, and significance tested using Kruskal-Wallis followed by 

Dunn’s multiple comparisons test.  
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