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ABSTRACT 

Sorghum bicolor is a promising cellulosic feedstock crop for bioenergy because of its potential 
for high biomass yields. However, in its early growth phases, sorghum is sensitive to cold stress, 
preventing early planting in temperate environments. Cold temperature adaptability is vital for the 
successful cultivation of both bioenergy and grain sorghum at higher latitudes and elevations, and for 
early season planting or to extend the growing season. Identification of genes and alleles that enhance 
biomass accumulation of sorghum grown under early cold stress would enable the development of 
improved bioenergy sorghum through breeding or genetic engineering. We conducted image-based 
phenotyping on 369 accessions from the sorghum Bioenergy Association Panel (BAP) in a controlled 
environment with early cold treatment. The BAP is a collection of densely genotyped and racially, 
geographically, and phenotypically diverse accessions. The plants were weighed, watered, and imaged 
daily to measure growth dynamics and water use efficiency (WUE). Daily, non-destructive imaging 
allowed for a temporal analysis of growth-related traits in response to cold stress. We performed a 
genome-wide association study (GWAS) to identify candidate genomic intervals and genes controlling 
response to early cold stress. GWAS identified transient quantitative trait loci (QTL) strongly associated 
with each growth-related trait, permitting an investigation into the genetic basis of cold stress response at 
different stages of development. The analysis identified a priori and novel candidate genes associated 
with growth-related traits and the temporal response to cold stress.  
 
SIGNIFICANCE STATEMENT 

Genome-wide association study of bioenergy sorghum accessions phenotyped under early season 
cold stress revealed transient QTLs for highly heritable biomass and growth-related traits that appeared as 
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the temperature increased and plants developed. Sorghum accessions clustered into multiple groups for 
each heritable trait with distinct growth profiles. GWAS identified candidate genes associated with 
growth traits and cold stress responses. The top-performing accessions with the highest growth-related 
trait values over time and temperature shifts will be useful for further genetic analysis and breeding or 
engineering efforts directed at biomass yield enhancements. 
 
INTRODUCTION   

Sorghum bicolor (L.) Moench, a C4 crop native to Africa and known for its drought and heat 
tolerance, is a promising bioenergy crop because of its ability to grow in marginal environments and a 
high potential for biomass yield (1). Early season planting, which extends the growing season of 
bioenergy sorghum and potentially increases exposure to rainfall is a strategy to maximize biomass yield 
(2, 3). Cultivation in northern regions and at higher elevations could increase the land available for 
bioenergy sorghum production, without using land areas needed for food or feed crop production. 

However, early planting and cultivation in temperate areas will not lead to higher biomass yields 
if plant development stalls. Because of its cold-sensitivity, planting sorghum in temperatures below 12-
15°C will diminish the yield (4, 5, 6). Therefore, identification of sorghum accessions with enhanced 
tolerance to cold is needed to lengthen the growing season, expand growing regions, and to achieve 
higher total biomass yields. 

Increased cold tolerance is only one of several traits necessary for improved biomass yield. 
Identification of ‘ideotype-positive’ and ‘ideotype-negative’ accessions can prioritize germplasm with 
multiple positive characteristics that may contribute to increased yield and other desirable traits through 
breeding or engineering. For example, accessions with high biomass, reduced height, and high WUE may 
be more desirable for breeding bioenergy sorghum. Alternatively, accessions that are tall but have low 
biomass and low WUE may be the least desirable for multiple reasons, including a higher propensity for 
lodging (7). Crosses of lines exhibiting these different ideotypes can also be used to create resources such 
as nested association mapping (NAM) populations to elucidate the genetic architectures underlying the 
desired characteristics.  

The genetic basis of sorghum’s response to cold stress and its potential for cold adaptability must 
be better understood in order to breed or engineer sorghum lines that can thrive in the lower temperatures 
of early spring and in colder climates. Cold tolerance is a complex quantitative trait, and there is 
phenotypic variability for cold tolerance among sorghum accessions (8, 9). Natural genetic variation in 
sorghum’s response to cold stress has also been identified (10). Genome-wide association mapping of 
cold sensitivity traits in diverse germplasm is a promising approach to identify allelic variation that may 
be harnessed to improve the cold tolerance of sorghum.  
 The aim of this study was to analyze the phenotypic variability and genetic architecture of 
bioenergy sorghum’s response to early cold stress conditions in a controlled environment. We used a high 
throughput imaging-based system to collect daily phenotypic measurements from a set of 369 diverse 
accessions from the sorghum Bioenergy Association Panel (BAP) (1) genotyped with 232,303 high-
quality single nucleotide polymorphism (SNP) markers (S1). Daily phenotypic measurements are more 
beneficial than endpoint measurements because the response to cold stress can change over time and as 
plants develop. Therefore, regular imaging and phenotyping allowed for the comparison of the cold stress 
response in the BAP at different developmental stages.  
 High throughput image-based phenotyping was performed to track growth over time and under 
early cold stress in this sorghum panel. GWAS on the daily phenotypic data revealed genetic variation 
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underlying the response to early season cold stress and identified transient QTLs related to biomass, 
height, hull area, water use efficiency (WUE) and relative growth rate (RGR). Candidate genes associated 
with these phenotypes were identified and may prove useful for crop improvement through breeding or 
targeted genetic modifications.  

 
RESULTS 
 
Population Structure and Kinship 
 In this study, we tested 369 accessions of the BAP grown under early cold stress conditions. The 
BAP (1) comprises six subpopulations that represent a racial, geographic, and phenotypically diverse 
selection of sorghum accessions. The BAP was designed to limit variation in key bioenergy traits, such as 
height and sensitivity to photoperiod, within a range of desirable values (1) (S1). We generated a kinship 
matrix showing the genetic correlations in the BAP (S2). The kinship matrix revealed distinct groups of 
highly correlated accessions. In many of the highly correlated clusters, the individual accessions shared 
characteristics such as the country of origin and similar photoperiod sensitivity. For example, in one 
cluster, 47 of 48 accessions originated from Ethiopia. Another cluster comprised 29 accessions, and 25 of 
those originated from Ethiopia, while 26 were photoperiod-sensitive. One cluster was comprised entirely 
of photoperiod-insensitive accessions, while 29 of 30 accessions in another cluster were of the cellulosic 
type. These clusters reflect an uneven population distribution and illustrate the necessity for controlling 
for population structure in this study.  
 
Germination and Seedling Vigor 
 Seeds were sown in pots at 15°C and grown at that temperature for 31 days. The temperature was 
then increased to 24°C for seven days and then increased to 32°C for the final 18 days of the experiment. 
Plant growth and development were observed using daily, non-destructive imaging throughout the eight-
week experiment. Germination dates were determined for each plant by image analysis and manual 
validation. For 369 accessions, at least two plants germinated. Of these 369 accessions, 41 germinated 
within ten days after planting (DAP) during the 15°C cold treatment, and the remaining accessions 
germinated between 11 DAP and 46 DAP (S3). Accessions that failed to germinate or died by 46 DAP 
were excluded, leaving 309 accessions for subsequent phenotypic and genetic analyses (S3).  
 
Trait Heritability and Phenotypic Variation 
 To analyze the phenotypic response to early cold stress in the BAP, we evaluated five bioenergy-
related traits of interest: biomass, height, hull area, water use efficiency (WUE), and relative growth rate 
(RGR). Images captured daily from three angles and the amount of water each plant received daily 
enabled calculation of phenotypic measurements for each plant for each day of the experiment.  

We used the three replicates for each accession to calculate broad-sense heritability within the 
experiment for each of the traits at each DAP to determine the proportion of phenotypic variation 
explained by genetic variation in the BAP. The heritability for each trait changed over time and as the 
temperature increased (Fig. 1a), generally increasing through the early growth period and decreasing as 
the plants became larger and more root bound. Heritability estimates ranged from 0.544 to 0 (S4). Height 
at 44-54 DAP was the most heritable trait with a heritability range of 0.544 to 0.503. The heritability 
values were moderate (0.493 to 0.3) for height at 23-43 DAP, height at 55-56 DAP, WUE at 36-45 DAP, 
and hull area at 42-56 DAP. The remaining traits had low heritability (0.297-0).  
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Heritability of WUE increased between 10-20 DAP, remained relatively flat until 42 DAP, then
decreased. The decreased heritability of WUE was expected and coincides with an increased uncertainty
of biomass calculations and water use estimates during the final two weeks of the experiment. There was
a significant increase in the overlapping of leaves after 42 DAP, resulting in the underestimation of plant
biomass from the imaging data. The heritability for RGR had no discernable trend. The range of variation
observed for the phenotypes of interest is depicted in the density histogram (Fig. 1b). The density
histogram shows the frequency of the mean of the analyzed phenotypes at the DAP at which each trait
had the highest heritability.  

 
Figure 1. Traits of interest show distinct trends in heritability over time and temperature changes. (a)
Heritability of traits over time at each temperature (15°C, 24°C, and 32°C). (b) Density histograms of each trait
analyzed show the day at which each corresponding trait is most heritable (height at 48 DAP, WUE at 42 DAP, hull
area at 50 DAP, biomass at 50 DAP, and RGR at 24 DAP). Each trait was transformed into an approximately normal
distribution using the Box-Cox method. 
 

Trait Correlations 

The correlations among biomass, height, hull area, RGR, and WUE were evaluated at 51 DAP
(Fig. 2). The plants began to overlap and grow outside of the camera view after that date, making area
measurements based on pixel numbers less indicative of the actual plant size. Biomass was most highly
correlated to WUE with a r2 of 0.95 but also showed high correlations to hull area and height. The
correlation between biomass and RGR was negative, with a r2 of -0.52. 
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Figure 2. Correlations Among Traits at 51 DAP. Correlations among biomass, height, hull area, RGR, and WUE 

at 51 DAP. Dark blue represents the strongest correlation, and dark orange represents the weakest correlation. The r2 
for each correlation is in the corresponding box below the colored circles.  

 
Phenotypic Ranking of Accessions 
 The daily plant images were analyzed to quantify the biomass, hull area, height, and WUE 
phenotypes for each DAP. Based on the resulting values, for each trait, we ranked the accessions based on 
their performance. Some accessions were ranked high or low for multiple growth-related traits. The Venn 
diagram (Fig. 3) illustrates overlaps among the top or bottom 5% of accessions at 51 DAP. Table S5 
provides a complete ranking of accessions for each trait at 51 DAP. Five accessions (PI152771, PI55064, 
PI514456, PI569454, and PI534165) are represented in the bottom-ranked accessions for all four traits. 
PI154988, PI535794, PI569148, PI535792, PI329584, and PI535793 are among the lowest-ranked 
accessions for biomass, hull area, and WUE, while PI569457 is among the lowest-ranked accessions for 
biomass, hull area, and height. Six additional accessions ranked as poor performers for two traits of 
interest: PI452544, PI552851, PI570038, and PI570254 for biomass and WUE; PI157035 for hull area 
and height; and PI540518 for hull area and WUE. Among the top-ranked accessions, PI19770, PI329299, 
PI455301, and PI453106 were in the top 5% for biomass, height, hull area, and WUE. PI329403 and 
PI452619 were among the top accessions for biomass, hull area, and WUE, while PI92270 was a top 
performer for hull area, height, and WUE and PI563222 was among the top lines for biomass, height, and 
WUE. Finally, eight additional lines ranked among the top accessions for two traits.  
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Figure 3. Overlaps of High and Low Performing Accessions at 51 DAP. Venn diagrams depict numbers of
accessions represented in the lowest-performing accessions (a) or highest-performing accessions (b) that overlap for
biomass, WUE, hull area, or height at 51 DAP.  
 
Ideotype-Positive and Ideotype-Negative Accessions 

Comparisons of accession rankings among multiple traits facilitated the identification of
‘ideotype-positive’ and ‘ideotype-negative’ accessions. Accessions ranked within the top 10% for WUE
but with a height-to-biomass ratio in the bottom 5% of accessions were designated as ideotype-positive
(Fig. 4a). There were five ideotype-positive accessions in the early period of the experiment, from 15
DAP to 31 DAP at 15°C: PI329286, PI329517, PI329711, PI455221, and PI562730. There were three
ideotype-positive accessions in the late period of the experiment, from 39 DAP to 56 DAP after the
temperature had been increased to 32°C: PI329471, PI329517, and PI585461. Accession PI329517 was
ideotype-positive throughout the experiment. 

Accessions within the bottom 10% for WUE accessions but with a height-to-biomass ratio in the
top 5% of accessions were designated as ideotype-negative (Fig. 4b). There were four early ideotype-
negative accessions: PI329615, PI569444, PI569148, and PI570074, and five late ideotype-negative
accessions: PI329584, PI452544, PI534165, PI535792, PI569148. Accession PI569148 maintained an
ideotype-negative phenotype throughout both the 15 to 31 DAP and 39 to 56 DAP periods. Heatmaps
show the WUE (Fig. 4c) and height-to-biomass ratios (Fig. 4d) of the early and late ideotype-positive and
ideotype-negative accessions from 15 DAP through 56 DAP. 
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Figure 4. Ideotype-Positive and Ideotype-Negative Accessions for WUE and Biomass-Associated Traits. (a)
Early and late ideotype-positive radar plots show accessions within both the top 10% of WUE and lowest 5% of
height:biomass ratios. Each dashed square represents a percentile range: 0% is the center-most square, and 100% is
the outermost square. Accessions whose phenotypes fall within a given percentile range for a given trait (height,
height:biomass ratio, or WUE) reside on the inside of the corresponding square. (b) Early and late ideotype-negative
radar plots show accessions within both the lowest 10% of WUE and the highest 5% of height:biomass ratios. (c-d)
Heatmaps show the change in rank of early and late ideotype-positive and negative accessions over time and at each
temperature stage for WUE (c) and height:biomass ratios (d). Dark blue indicates the lowest WUE (an ideotype-
negative trait) and lowest height:biomass ratio (an ideotype-positive trait). Dark orange indicates the highest WUE
(an ideotype-positive trait) and highest height:biomass ratio (an ideotype-negative trait).  
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Temporal WUE Profiles and Clustering of Accessions 
The daily quantification of traits provided the opportunity to assess temporal changes in trait

values as the temperature increased and plants developed. For brevity, we only refer to the five top and
bottom-ranked accessions for WUE, a key trait. Table S6 provides the complete ranked list of accessions
for each trait. Figure 5 shows the temporal WUE profiles for the five highest- and lowest-ranked
accessions at each temperature stage. The top-ranked accessions for WUE at each temperature exhibited a
WUE profile over time distinct from the profiles of the accessions ranked lowest for WUE accessions,
and the separation became more apparent as the plants developed and the temperature increased (Fig. 5).
Even at 15°C, the highest-ranked accessions for WUE are distinguishable with a steeper increase in WUE
over time compared to the bottom-ranked accessions. Some accessions were ranked high or low for WUE
at one temperature stage only, whereas others were ranked high or low for WUE across temperatures. For
example, PI550604 was among the bottom-ranked accessions for WUE at each temperature, and
PI534165 was among the bottom-ranked at 24°C and 32°C. PI455221 was a top-ranked accession for
WUE at both 15°C and 24°C, while PI329403 was among the highest-ranked accessions at 15°C and
32°C. 

Figure 5. Temporal Profiles of WUE for the Highest and Lowest WUE Accessions at Each Temperature
Phase. Each panel depicts the five highest and five lowest WUE accessions at each temperature phase. The colored
lines show the changes in WUE for each of those accessions throughout the experiment as the plant developed and
temperature changed. (a) WUE profiles for the five highest and the five lowest WUE accessions at 15°C. (b) WUE
profiles for the five highest and the five lowest WUE accessions at 24°C. (c) WUE profiles for the five highest and
the five lowest WUE accessions at 32°C.  
 

For each accession, we analyzed the profile of each phenotype over time and at different
temperatures. Again, for brevity, here we only refer to WUE. For example, the temporal WUE profiles for
the BAP accessions separate into seven clusters, each represented by a growth curve represented by the
average of all accessions in that cluster (Fig. 6a). The temporal WUE profile for each of the seven groups
is distinct. The mean WUE for accessions that comprise Cluster 1 is low at 15°C, shows a minimal
increase at 24°C, and increases steadily at 32°C, but never reaches levels as high as several other clusters.
Cluster 2 shows a slightly higher WUE at 15°C compared to Cluster 1 and an increase in WUE at 24°C
and 32°C, but never exceeds moderate levels of WUE. In Cluster 3 there is little increase in WUE until
the temperature increases to 32°C and this cluster eventually reaches moderate WUE. WUE for Cluster 4
is low at 15°C, increases at 24°C and 32°C. Cluster 5 exhibits a modest increase in WUE at 15°C, a rapid
increase at 24°C, but WUE increases slowly at 32°C. Cluster 6 has an early and robust increase in WUE
across all three temperatures in the experiment and reaches the maximum peak WUE of all seven clusters.
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Finally, WUE for Cluster 7 is moderate at 15°C and increases steadily at 24°C and 32°C, but ultimately
peaks at a moderate level. Cluster analysis for each additional trait is in S7. The dendrogram tree (Fig. 6b)
depicts the hierarchical clustering of the BAP accessions into seven groups based on their temporal WUE
profiles, with each cluster represented by a different color. The clustergram of the PCA-weighted mean
(Fig. 6c) illustrates the divergence of the temporal WUE profiles of the BAP accessions into the seven
stable clusters which captured the maximum phenotypic difference for this trait. 
 

 
Figure 6. BAP Accessions Separate into Seven Distinct Temporal WUE Clusters. (a) The temporal WUE
profiles of BAP accessions from 12 DAP to 56 DAP separate into seven clusters. The growth curves represent the
average WUE profile over time for each cluster. (b) Hierarchical dendrogram tree showing the segregation of the
BAP accessions into 7 clusters, each represented with a different color. (c) Clustergram of the PCA-weighted mean
of each cluster showing the divergence of the BAP accessions into the seven clusters, and the distances between the
clusters. The cluster numbers and colors correspond to the dendrogram (b) and temporal WUE profiles (a).  
 
Genome-Wide Association Study 
 A genome-wide association study (GWAS) was performed to characterize the genetic
architecture underlying response to early cold stress conditions in the BAP. GWAS was performed using
the multi-locus mixed model (MLMM) algorithm (11). MLMM uses multiple loci in the model to yield a
higher detection power and lower the potential of false discoveries. Figure 7 illustrates the detection of
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highly significant signals related to each trait of interest on all ten sorghum chromosomes. Each
significant SNP has a maximum corrected p-value of 0.05. This analysis identified 2,305 highly
significant SNPs associated with biomass, height, hull area, WUE, and RGR. 
 

Figure 7. Manhattan Plot of GWAS on Biomass, Growth, and WUE Traits. The Manhattan plot depicts
significant SNPs for each trait of interest and the corresponding -log10(p) of the GWAS mixed linear model with no
other SNPs included in the model.  
 

To identify SNPs significantly correlated with phenotypes at a specific DAP and correlated with
temperature changes, we also used the values for each phenotype at each DAP (Fig. 8) for the GWAS.   

Figure 8. Temporal Manhattan Plot of GWAS on Biomass, Growth, and WUE Traits Reveals Transient
QTL. The plot depicts highly significant SNPs corresponding to the traits of interest at specific DAP. The y-axis
denotes the DAP, and the x-axis represents the sorghum chromosome. Black boxes highlight transient QTL that
“turn on/off” with developmental stage and as the temperature increases. 
 
This analysis revealed several QTL that displayed a transient response, appearing at specific times and
developmental stages, and as temperatures increased. (Fig. 8). For example, the highly significant hull
area SNP 7:2,934,702 was transiently detected from 27 to 30 DAP and again from 34 to 35 DAP (Fig. 9). 
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Figure 9. A Transient QTL Associated with the Hull Area Trait. The boxed region represents a transient hull
area QTL at SNP 7:2,934,702 that “turns on/off” with developmental stage and as temperature increases. There are
five genes within 15kb of the transient QTL. SNP 7:2,934,702 is directly on candidate gene Sobic.007G033300.  
 
For the transient QTL that were detected, we also examined the phenotypic differences for the alternative
alleles at a particular SNP. For the hull area SNP 7:2,934,702 shown in Figure 9, allele boxplots (Fig. 10,
S8) shows that a “G” at the position corresponds to a significantly higher value for hull area than a “C”
for 27 to 30 DAP and 34 to 35 DAP. SNP 7:2,934,702, within gene Sobic.007G033300, encodes a
plastocyanin-like protein. Plastocyanins are copper-containing chloroplast-localized proteins involved in
photosynthesis and function in electron transfer between photosystem II and photosystem I (12). This
putative plastocyanin, Sobic.007G033300, is highly expressed in sorghum shoots, leaves, and early
inflorescences (https://phytozome.jgi.doe.gov/pz/portal.html) (13). We examined other sequence variation
existing within this gene using public re-sequencing data and found seven SNP variants resulting in
nonsynonymous (NS) amino acid substitutions and an additional inframe three basepair deletion
segregating within individuals in the BAP (S9a). Eighty of the phenotyped BAP accessions contain no
variants in Sobic.007G033300 relative to the reference sequence, while the remaining accessions contain
between one to eight of the variants summarized in S9a. When grouped, individuals carrying at least one
variant in Sobic.007G033300 have a significantly larger hull area from 27 DAP compared to accessions
containing no variants (S9b).  
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Figure 10. Phenotypic Differences in Hull Area Associated with a SNP in a Plastocyanin-like Gene. The allele
boxplot shows the correlation of a “G” at SNP 7:2,934,702 with a significantly larger hull area at 27 DAP. S8
contains additional boxplots showing this correlation for 28-30 DAP and 34-35 DAP.  
 

The GWAS also identified pleiotropic QTL. A transient QTL on chromosome two (SNP 2:1,199,928)
was significant for WUE and biomass from 14 to 19 DAP. SNP 4:64256235 on chromosome four was a
significant transient QTL for WUE and biomass from 14 to 19 DAP, and height at 34 DAP. Transient
QTLs on chromosomes six and nine (SNP 6:42,116,590 and SNP 9:55067080, respectively) were
significant for WUE and biomass at 35 to 36 DAP. S10 shows the traits and DAP associated with each
SNP. 
 
Candidate Gene Identification 

We conducted a genome scan of the 15 kb upstream and 15 kb downstream of each significant
SNP to identify candidate genes. Functional annotations, putative homologs, and polymorphisms within
the candidate genes based on public genomic re-sequencing data were analyzed using Phytozyme
(https://phytozome.jgi.doe.gov/pz/portal.html). GWAS identified highly significant QTL near 72
candidate genes (S11) with putative functions potentially related to biomass, height, hull area, WUE, and
RGR, and in response to cold. Many of these candidate genes are close to pleiotropic QTL implicated in
cold stress response in addition to the biomass-associated phenotypes. 

For brevity, here we will only refer to one a priori candidate gene. GWAS identified SNP
6:40,312,463 which was significantly associated with RGR at 33 DAP and is located within the gene
Sobic.006G057866, which encodes PSEUDO-RESPONSE REGULATOR 7 (PRR37) / MATURITY 1
(Ma1) and is involved in flowering time regulation in sorghum (14). SNP 6:40,312,463 causes a non-
synonymous amino acid substitution (Asn184Lys) within Ma1, and although accessions carrying this
polymorphism show a slightly reduced mean RGR at 33 DAP, they were not significantly different
(S12a). This observation suggests that allelic variation at SNP 6:40,312,463 is not likely to be a robust
contributor to phenotypic variation in RGR. However, interestingly, most accessions (~90%) including
both BAP accessions and lines from other diversity panels carry a polymorphism in Ma1 resulting in loss
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of the annotated reference stop codon, which could drastically increase the protein size and affect its 
function (S12b). 

 
DISCUSSION 

Sorghum is attractive as a bioenergy feedstock crop because it is heat and drought tolerant and 
can thrive in marginal environments. It is an ideal target for accelerated improvement through breeding 
and engineering because it has extensive genetic and phenotypic diversity but has not yet benefited from 
genomics or genetic modification like some other crops such as maize. Early season planting of sorghum 
provides the opportunity for an extended growing season with higher potential accumulation of biomass. 
However, as a tropical crop, sorghum is sensitive to cold stress. Identification of accessions that exhibit 
the highest WUE, RGR, height, hull area, and biomass under early cold stress conditions could facilitate 
genetic improvement of bioenergy sorghum for early season planting and cultivation in colder 
temperatures. 

Our results identified the top performing BAP accessions for bioenergy-related traits under early 
cold stress. We identified the accessions with the highest and lowest rankings for each trait and multiple 
bioenergy-related traits. Accession PI329299 was among the top accessions for hull area and height, 
PI452619 was a top accession for hull area and WUE, PI329403 was a top accession for hull area and 
WUE, and PI585461 was among the top accessions for both biomass and WUE. These top-performing 
accessions, particularly the accessions that possess multiple advantageous traits, are promising candidates 
for sorghum bioenergy breeding programs and the development of additional genetic resources such as 
mapping populations (e.g., NAMs). 

We defined ideotype-positive and ideotype-negative accessions as accessions that ranked high or 
low, respectively, for multiple traits or exhibited beneficial trait combinations. The ideotype-positive 
phenotype is the combination of high WUE with a low height-to-biomass ratio, i.e., a plant that achieves 
high biomass but does not grow tall. This ideotype is desirable for bioenergy sorghum because the 
required biomass accumulation is attained with reduced water use and without the increased risk of 
lodging associated with taller plants. Five accessions were ideotype-positive in the early phase of the 
experiment when the temperature was 15°C. These accessions may be beneficial for breeding bioenergy 
sorghum that can be planted early in the season or grown in colder environments. Accession PI329517, 
which attained the ideotype-positive phenotype early under cold stress, and maintained it after the 
temperature increased, may be beneficial for early season planting, for long growth periods, or under 
conditions of reduced water availability. In contrast, ideotype-negative accessions that have relatively low 
biomass accumulation, ranked low for WUE, and are tall may be undesirable for bioenergy sorghum 
because more water would be required and with a higher risk of lodging and decreased biomass 
accumulation. Even though these accessions may not be desirable for breeding, identification of these 
extreme ideotypes may be useful for the development of structured populations for further genetic 
analysis.  

The profiles of the traits over time and in response to temperature changes could be discerned, 
ranked, and clustered using the phenotypic data collected with single-day resolution. The BAP clustered 
into 6 to 8 distinct temporal profiles for each trait, identifying accessions that perform best under early 
cold stress, and at different temperatures and development stages. For example, accessions in WUE 
clusters two, six, and seven have the highest WUE at 15°C. Similarly, cluster six not only attains high 
WUE under 15°C but is the cluster with the highest WUE attained under increased temperatures and 
therefore may perform well under drought conditions. Accession PI455221 was among the top-
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performing accessions for WUE at both 15°C and 24°C, and PI329403 was among the top-performing 
accessions for WUE at 15°C and 32°C, demonstrating that high WUE can be maintained as the plants 
develop and as the temperature increases. 

GWAS revealed 2,305 highly significant SNPs associated with biomass, hull area, WUE, RGR, 
and height phenotypes. We also identified significant SNPs that colocalized for multiple traits, suggesting 
that these polymorphisms may be near tightly linked genes or genes with pleiotropic effects. By using the 
daily values for each phenotype in the GWAS, we determined the temporal correlations of SNPs to traits. 
With this approach, we identified transient QTL that "turn on/off" at a specific developmental stage or 
with a change in temperature. 

The highly significant SNPs identified by GWAS revealed 72 candidate genes with putative 
functions related to the bioenergy-relevant and cold-stress-responsive traits of interest. A transient QTL 
for RGR at 33 DAP mapped to the gene Sobic.006G057866, which encodes PRR37/Ma1 an a priori 
candidate gene that represses flowering in long days (14). The observation that this transient QTL for 
RGR “turns on” at 33 DAP, a critical time for the transition to flowering in sorghum, and immediately 
after the temperature increased from 15°C, is consistent with a role for PRR37/Ma1 in growth and 
biomass accumulation through regulation of the transition from vegetative to reproductive development. 
Another transient QTL associated with hull area was significant from 27 to 30 DAP and again from 34 to 
35 DAP. This transient QTL mapped to the gene Sobic.007G033300, which encodes a putative 
plastocyanin that may function in photosynthetic electron transfer. Additional sequence variation in this 
gene correlated with a significantly larger hull area from 27 to 30 DAP. These observations suggest that 
Sobic.007G033300 is important for biomass accumulation, consistent with known deleterious effects of 
cold on photosynthesis, in particular, the capacity for electron transport and photosystem protection (15). 
Studies have also implicated that plastocyanins affect yield in crops such as rice (16). 

In summary, we tracked growth over time and under early season cold temperature stress in a 
genetically diverse sorghum population using daily image-based phenotyping. We analyzed the changes 
in traits over time, which would not have been possible with the collection of endpoint phenotypes alone. 
The BAP segregated into distinct clusters for each trait, identifying accessions that performed best under 
early cold stress, and at different temperatures and development stages. GWAS on the daily phenotypes 
revealed transient QTLs for highly heritable bioenergy-relevant traits. In some cases, we could identify 
putative causative alleles in candidate genes that correlated to a significant difference in phenotype. These 
findings may facilitate targeted genetic modifications or genomics-driven breeding efforts for the 
improvement of bioenergy sorghum.  
 
METHODS AND MATERIALS 
 
Plant Materials 

This study used the sorghum Bioenergy Association Panel (BAP) (1). Details about the panel 
design, GBS genotyping, marker distribution, population structure, and linkage disequilibrium (LD) 
decay have been previously described (1). We selected 369 BAP accessions genotyped at 232,303 SNPs. 
The BAP accessions represent a racially, geographic, and phenotypically diverse selection of sorghum 
accessions, but is limited to accessions exhibiting key bioenergy traits, such as height, sensitivity to 
photoperiod, and delayed flowering.  
 
Experimental Conditions 
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Three replicates of 369 BAP accessions (1131 plants) were planted in 600 g of Turface® in 8-
inch tall tree pots, with +14-14-14 Osmocote (1.5 lb/cubic yard) fertilizer. The potted seeds were held
overnight in a growth chamber at 32°C (day)/22°C (night). The next day, the pots were loaded into a
carrier on an automated phenotyping system within a controlled-environment plant growth chamber. The
phenotyping system moved the plants on a closed-loop conveyor path to stations for daily watering,
weighing, and imaging. The plants were positioned in the growth chamber in a randomized block design
and were rotated one-half lane each day to reduce edge effects. To study the impact of cold stress on these
accessions, plants were grown at 15°C (day)/15°C (night) for 31 days, 24°C (day)/19°C (night) for 7
days, and 32°C (day)/22°C (night) for 18 days. The soil was maintained at 100% field water capacity by
watering the plants twice daily to a target mass of 1192 grams. The target mass was calculated by adding
the mass of the plant carrier (342g), the water mass at saturation (250g), and the mass of the Turface®-
filled pot (600g). Water was added after each potted plant in its carrier was weighed, and the volume of
water added to reach the target mass of 1192 grams was recorded. 
 
Image Collection and Phenotyping  

Each plant passed through a visible light imaging chamber daily while on the automated
phenotyping system. The imaging cameras recorded two side views (sv) and one top view (tv) image. As
the plants grew, the fields of view on the cameras were adjusted so that the entire plant could be captured
in each image. The optical zoom level was reduced for the top view and side view images at 19 DAP and
40 DAP. Scaling factors were calculated for both area and height using a reference object of known size,
so that pixel areas across zoom levels were comparable. After eight weeks (56 DAP), the plants were
removed from the phenotyping system. The shoot of each plant was cut at the base of the stem. Fresh
weight measurements of the shoots were collected immediately.  

 The images were analyzed using Plant Computer Vision (PlantCV), an image-processing tool
coded in Python (17). The pixel areas from the daily top view and two side view images of each plant
were analyzed with PlantCV to generate measurements of the area, hull area, height, RGR, and WUE.  

The area was calculated by adding the pixel count from the top view image to the two side view
images. Endpoint fresh weight measurements were correlated with area calculations at 51 DAP to
estimate biomass (17) (S13). The values at 51 DAP were used for the correlation because, after that date,
plants began to overlap and grow outside of the camera’s field of view, and the resulting pixel counts
were less indicative of the actual plant size. 

The hull area is the convex hull calculated from the pixel count in the smallest area that includes a
set of given points in a plane. WUE was calculated by dividing the derived area by the cumulative water
added to each plant. Height was determined from the side view images.  

The relative growth rate (RGR) was calculated as described in Hoffmann and Poorter, using
estimator 2 to determine the RGR for each distinct time point (18). Briefly, we calculated the natural log
of all replicate area values in the experiment, then calculated the mean of the log-transformed values for
two time points, t1 and t2. The mean value of the log-transformed areas for t2, W2, was subtracted from
the mean value of the log-transformed areas for t1, W1, and then divided by the difference between t2 and
t1 as shown:  

 
Germination dates were determined for each plant based on the top view area measurements. The

earliest DAP with a top view area measure was considered the germination date. The resulting

15

-
ld 
 a 
he 
g, 
gn 
se 
 7 
by 
ng 

-
 of 

ed 
As 
ed 
nd 
ze, 
re 
sh 

ol 
nt 

ew 
to 
te, 
nts 

s a 
ter 

ng 
og 
for 
m 
nd 

he 
ng 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/760025doi: bioRxiv preprint 

https://doi.org/10.1101/760025
http://creativecommons.org/licenses/by/4.0/


 

 16

germination date for the three replicates of each accession was averaged to determine the germination 
date for each accession. 
 
Data Processing and Analysis 

Image-derived phenotypic data were generated for 309 of the BAP accessions (S1). Phenotypic 
analysis was performed on the image-derived data using the R statistical software (R). Plants that never 
germinated or that died by 46 DAP were excluded from the analysis. A conservative initial outlier 
removal step was performed on each phenotype to remove likely artifacts from the image analysis. A data 
point was considered an outlier and excluded from further analysis if its value was greater than 40 median 
absolute deviations (MAD) from the median (19). Raw measurements from PlantCV were smoothed 
using predicted values from a loess smoothing fit. These fitted values were used as the phenotypes for 
further analyses (20). 

The ‘lmer’ function in the lme4 R package was used to estimate variance components for broad-
sense heritability (21). Heritability was calculated based on the subset of accessions that had three 
replicates that germinated. Broad-sense heritability was calculated as: 

 
After the heritability calculation, the median value of the replicates for each accession was used 

for further analysis. Traits were tested for normality and transformed as necessary using the Box-Cox 
procedure as implemented in R with the ‘boxcox’ function in the MASS package (22). 
 
Hierarchical Clustering 
 Hierarchical clustering of each trait from 12 to 56 DAP was performed using the ‘hclust’ R 
function using a Euclidean distance matrix and the Ward agglomeration method (23). Clustering results 
were visualized both as a dendrogram using the R package ‘dendextend’ and as a clustergram using the 
function ‘clustergram.R’ (24, 25). 
 
Ideotype Selection 

Height-to-biomass ratios were calculated for each day and converted to a percentile with values 
between 0 and 100. The average percentile of the accessions for height-to-biomass ratio and WUE over 
the growing period, DAP 15 to 31 or DAP 39 to 56, for the early and late periods, respectively, was used 
to select ideotype accessions. Ideotype-positive accessions were defined as those with a height-to-biomass 
ratio in the bottom 5 percent of the population and a WUE in the top 10 percent of the population. 
Ideotype-negative accessions have a height-to-biomass ratio in the top 5 percent of the population and a 
WUE in the bottom 10 percent. Radar plots of the ideotype accessions were generated with the R package 
‘fmsb’ (26). Heatmaps were generated using the R package ‘pheatmap’ (27). 
 
Genome-wide Association Study  

Genotyping-by-sequencing (GBS) SNP markers for the BAP have been previously described (1). 
GWAS was performed using a multi-locus mixed linear model (MLMM) in R to identify loci associated 
with each trait of interest. The first three principal components of the genotype matrix were included as 
covariates in the mixed model to control for population structure (28). A kinship matrix, calculated from 
the genotype matrix using the Astle-Balding method in the ‘synbreed’ package, was also included as a 
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random effect to control for familial and cryptic relatedness between accessions (29, 30) (S2). 
MLMM tests for association with the phenotype using a stepwise mixed model regression. In 

each step, the SNP with the most significant association to the phenotype is added to the model as a 
covariate. Stepwise addition of SNPs continues until the heritable variance estimate (pseudo-heritability) 
reaches 0 (11). A final set of high-confidence SNPs were selected as those that were included as 
covariates in either of the two optimal models chosen by the MLMM software: the multiple-Bonferonni 
model or the extended BIC model (11). In the multiple-Bonferroni model, all cofactors with a p-value 
below a Bonferroni corrected threshold are selected. Multiple-Bonferroni was the more stringent of the 
two models (11). The extended BIC model selects a model based upon BIC penalized by the model 
complexity (1, 31). 
 The temporal GWAS results were analyzed using ZBrowse, an interactive browser that runs using 
R (32). Using ZBrowse, we were able to view the SNPs for multiple traits simultaneously and plot those 
traits over time to determine the DAP on which each SNP was significant and thus identify transient QTL 
peaks that turn “on/off” at specific DAP.  
 
Candidate Gene Identification  

The BTx623 sorghum reference genome version 3.1 was used to identify genes colocalizing with 
or adjacent to the associated SNPs. A genome scan of 15 kb upstream and 15 kb downstream of each 
significant SNP was performed to identify candidate genes. Phytozome 
(https://phytozome.jgi.doe.gov/pz/portal.html) was used to analyze the functional annotation of the 
candidate genes and to identify putative homologs in other species. Analysis of polymorphisms within 
candidate genes was done using three diversity panels of re-sequencing data available for sorghum via 
Phytozome (33-35). VCFtools was used to generate final variant calls after merging the three diversity 
VCFs, based on a minor allele frequency cutoff of >0.05, and to create distinct VCFs for the accessions 
used in this study (36). Variant effects were estimated using the SNPeff pipeline and the v3.1 sorghum 
reference to assess the potential impact of sequence variants on annotated gene models (37). 
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FIGURE LEGENDS 
 
Figure 1. Traits of interest show distinct trends in heritability over time and temperature changes. 
(a) Heritability of traits over time at each temperature (15°C, 24°C, and 32°C). (b) Density histograms of 
each trait analyzed show the day at which each corresponding trait is most heritable (height at 48 DAP, 
WUE at 42 DAP, hull area at 50 DAP, biomass at 50 DAP, and RGR at 24 DAP). Each trait was 
transformed into an approximately normal distribution using the Box-Cox method. 
 
Figure 2. Correlations Among Traits at 51 DAP. Correlations among biomass, height, hull area, RGR, 
and WUE at 51 DAP. Dark blue represents the strongest correlation, and dark orange represents the 
weakest correlation. The r2 for each correlation is in the corresponding box below the colored circles.  
 
Figure 3. Overlaps of High and Low Performing Accessions at 51 DAP. Venn diagrams depict 
numbers of accessions represented in the lowest-performing accessions (a) or highest-performing 
accessions (b) that overlap for biomass, WUE, hull area, or height at 51 DAP.   
 
Figure 4. Ideotype-Positive and Ideotype-Negative Accessions for WUE and Biomass-Associated 
Traits. (a) Early and late ideotype-positive radar plots show accessions that are within both the top 10% 
of WUE and lowest 5% of height:biomass ratios. Each dashed square represents a percentile range: 0% is 
the center-most square, and 100% is the outermost square. Accessions whose phenotypes fall within a 
given percentile range for a given trait (height, height:biomass ratio, or WUE) reside on the inside of the 
corresponding square. (b) Early and late ideotype-negative radar plots show accessions that are within 
both the lowest 10% of WUE and the highest 5% of height:biomass ratios. (c) Heatmaps show the change 
in rank in the population of WUE and height:biomass ratios of the early and late ideotype-positive and 
ideotype-negative accessions over time and at each temperature stage. Dark blue indicates the lowest 
WUE (an ideotype-negative trait) and lowest height:biomass ratio (an ideotype-positive trait). Dark 
orange indicates the highest WUE (an ideotype-positive trait) and highest height:biomass ratio (an 
ideotype-negative trait).   
 
Figure 5. Temporal Profiles of WUE for the Highest and Lowest WUE Accessions at Each 
Temperature Phase. Each panel depicts the five highest and five lowest WUE accessions at each 
temperature phase. The colored lines show the changes in WUE for each of those accessions throughout 
the experiment as the plant developed and temperature changed. (a) WUE profiles for the five highest and 
the five lowest WUE accessions at 15°C. (b) WUE profiles for the five highest and the five lowest WUE 
accessions at 24°C. (c) WUE profiles for the five highest and the five lowest WUE accessions at 32°C.  
 
Figure 6. BAP Accessions Separate into Seven Distinct Temporal WUE Clusters. (a) The temporal 
WUE profiles of BAP accessions from 12 DAP to 56 DAP separate into seven clusters. The growth 
curves represent the average WUE profile over time for each cluster. (b) Hierarchical dendrogram tree 
showing the segregation of the BAP accessions into 7 clusters, each represented with a different color. (c) 
Clustergram of the PCA-weighted mean of each cluster showing the divergence of the BAP accessions 
into the seven clusters, and the distances between the clusters. The cluster numbers and colors correspond 
to the dendrogram (b) and temporal WUE profiles (a).  
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Figure 7. Manhattan Plot of GWAS on Biomass, Growth, and WUE Traits. The Manhattan plot 
depicts significant SNPs for each trait of interest and the corresponding -log10(p) of the GWAS mixed 
linear model with no other SNPs included in the model. 
 
Figure 8. Temporal Manhattan Plot of GWAS on Biomass, Growth, and WUE Traits Reveals 
Transient QTL. The plot depicts highly significant SNPs corresponding to the traits of interest at 
specific DAP. The y-axis denotes the DAP, and the x-axis represents the sorghum chromosome. Black 
boxes highlight transient QTL that “turn on/off” with developmental stage and as the temperature 
increases. 
 
Figure 9. A Transient QTL Associated with the Hull Area Trait. The boxed region represents a 
transient hull area QTL at SNP 7:2,934,702 that “turns on/off” with developmental stage and as 
temperature increases. There are five genes located within 15kb of the transient QTL. SNP 7:2,934,702 is 
directly on candidate gene Sobic.007G033300. 
 
Figure 10. Phenotypic Differences in Hull Area Associated with a SNP in a Plastocyanin-like Gene. 
The allele boxplot demonstrates the correlation of a “G” at SNP 7:2,934,702 with a significantly larger 
hull area at 27 DAP. 
 
 
SUPPLEMENTARY FILES 
 
S1. Table of Bioenergy Association Panel accessions used in this study (adapted from Brenton et al., 
2016) with image-derived phenotypic data. 
 

S2. Heatmap of a kinship matrix showing correlation analysis among the 369 BAP accessions. The color 
histogram shows the distribution of coefficients of coancestry values in the whole kinship matrix. The 
color scale shows the degree of correlation (white-yellow, low correlation; orange-red, strong 
correlation). C1: 25/29 accessions from Ethiopia, 26/29 photoperiod-sensitive. C2: 47/48 accessions from 
Ethiopia. C3: All photoperiod-insensitive accessions. C4: All cellulosic accessions; 29/30 photoperiod-
sensitive. 
 
S3. Table of Germination Data. (a) Accessions with an average germination time within 10 DAP. (b) 
Plants that did not germinate. (c) Average germination times of accessions that germinated after 10 DAP, 
calculated from the three replicates for each BAP accession. 
  
S4. Heritability of Traits. 
 
S5: Table ranking accessions for each trait at 51 DAP. 
 
S6. Table ranking accessions for each trait at each temperature. 
 
S7: Cluster analysis for biomass, height, hull area, and RGR. 
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S8: Allele Boxplots show the correlation of a “G” at SNP 7:2,934,702 with a significantly larger hull area 
for 27-30 and 34-35 DAP. 
 
S9. (a) The table shows all variants resulting in non-synonymous amino acid substitutions within the 
coding sequence of Sobic.007G033300 within BAP accessions and summarizes the potential impacts of 
variants based on SNPeff predictions. Variants with minor allele frequency < 5% were removed. i Denotes 
the percentage of accessions within the BAP that carry the particular variant. (b) Boxplot showing hull 
area (27 DAP) for BAP accessions based on the presence of 1 to 8 moderate effect SNPs in gene 
Sobic.007G033300 resulting in non-synonymous amino acid substitutions (Alternate) versus accessions 
with no variants compared to reference (Reference). The analysis excluded accessions containing 
heterozygous alleles. Alternate accessions have significantly larger hull area (p = 0.019) compared to 
reference accessions according to Welch’s t-test.  
 
S10: Table of SNPs with correlated traits.  
 
S11: Table of 72 candidate genes. 
 
S12. (a) Boxplot showing the relative growth rate for individuals within the BAP based on the presence of 
a missense allele resulting in a non-synonymous amino acid substitution (Chr 6:40312463, Asn184Lys). 
Accessions heterozygous at the SNP were not different according to Welch's t-test. 
(b) The table shows all variants within the coding sequence of Sobic.006G057866 (PRR37/Ma1) in the 
BAP accessions and summarizes the potential impacts of variants based on SNPeff predictions. Variants 
with minor allele frequency < 5% were removed. I Denotes the percentage of accessions within the BAP 
that carry the particular variant. 
 
S13. Scatterplot and regression show the correlation of area at 51 DAP to endpoint fresh weight. 
 
REFERENCES  
 
1. Brenton, Z. W., Cooper, E. A., Myers, M. T., Boyles, R. E., Shakoor, N., Zielinski, K. J., Rauh, B. L., 
Bridges, W. C., Morris, G. P., Kresovich, S. (2016) A genomic resource for the development, 
improvement, and exploitation of sorghum for bioenergy. Genetics, 204(1): 21-33. 
  
2. Yu, J., Tuinstra, M. R. (2001) Genetic analysis of seedling growth under cold temperature stress in 
grain sorghum. Crop Science, 41(5): 1438-1443. 
  
3. Upadhyaya, H. D., Wang, Y. H., Sastry, D. V., Dwivedi, S. L., Prasad, P. V., Burrell, A. M., Morris, G. 
P., Klein, P. E. (2015) Association mapping of germinability and seedling vigor in sorghum under 
controlled low-temperature conditions. Genome, 59(2): 137-145. 
  
4. Burow, G., Burke, J. J., Xin, Z., Franks, C. D. (2011) Genetic dissection of early-season cold tolerance 
in sorghum (Sorghum bicolor (L.) Moench). Molecular Breeding, 28(3): 391-402. 
  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/760025doi: bioRxiv preprint 

https://doi.org/10.1101/760025
http://creativecommons.org/licenses/by/4.0/


 

 21

5. Salas Fernandez, M. G., Schoenbaum, G. R., Goggi, A. S. (2014) Novel germplasm and screening 
methods for early cold tolerance in Sorghum. Crop Science, 54(6): 2631-2638. 
  
6. Chopra, R., Burow, G., Hayes, C., Emendack, Y., Xin, Z., Burke, J. (2015) Transcriptome profiling 
and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with 
contrasting responses to cold stress. BMC Genomics, 16(1): 1040. 
 
7. Esechie, H. A., Maranville, J. W., Ross, W. M. (1977) Relationship of Stalk Morphology and Chemical 
Composition to Lodging Resistance in Sorghum 1. Crop Science, 17(4): 609-612. 
  
8. Chopra, R., Burow, G., Burke, J. J., Gladman, N., Xin, Z. (2017) Genome-wide association analysis of 
seedling traits in diverse Sorghum germplasm under thermal stress. BMC Plant Biology, 17(1): 12. 
  
9. Yu, J., Tuinstra, M. R., Claassen, M. M., Gordon, W. B., Witt, M. D. (2004) Analysis of cold tolerance 
in sorghum under controlled environment conditions. Field Crops Research, 85(1): 21-30. 
 
10. Ortiz, D., Hu, J., Salas Fernandez, M. G. (2017) Genetic architecture of photosynthesis in Sorghum 
bicolor under non-stress and cold stress conditions. Journal of Experimental Botany, 68(16): 4545-4557. 
  
11. Segura, V., Vilhjálmsson, B. J., Platt, A., Korte, A., Seren, Ü., Long, Q., Nordborg, M. (2012) An 
efficient multi-locus mixed-model approach for genome-wide association studies in structured 
populations. Nature Genetics, 44(7): 825. 
 
12. Sigfridsson, K. (1998) Plastocyanin, an electron-transfer protein. Photosynthesis Research, 57(1): 1-
28. 
 
13. Makita, Y., Shimada, S., Kawashima, M., Kondou-Kuriyama, T., Toyoda, T., Matsui, M. (2014) 
MOROKOSHI: transcriptome database in Sorghum bicolor. Plant and Cell Physiology, 56(1): e6-e6. 
 
14. Murphy, R. L., Klein, R. R., Morishige, D. T., Brady, J. A., Rooney, W. L., Miller, F. R., Dugas, D. 
V., Klein, P. E., Mullet, J. E. (2011) Coincident light and clock regulation of pseudoresponse regulator 
protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proceedings of the National Academy 
of Sciences, 108(39): 16469-16474. 
 
15. Liu, X., Zhou, Y., Xiao, J., Bao, F. (2018) Effects of Chilling on the Structure, Function and 
Development of Chloroplasts. Frontiers in Plant Science, 9: 1715. 
  
16. Zhang, J. P., Yu, Y., Feng, Y. Z., Zhou, Y. F., Zhang, F., Yang, Y. W., Lei, M.Q., Zhang, Y.C., Chen, 
Y. Q. (2017) miRNA MiR408 regulates grain yield and photosynthesis via a phytocyanin protein. Plant 
Physiology, 175: 1175–1185. 
 
17. Fahlgren, N., Feldman, M., Gehan, M. A., Wilson, M. S., Shyu, C., Bryant, D. W., Hill, S. T., 
McEntee, C. J., Warnasooriya, S. N., Kumar, I., Ficor, T., Turnipseed, S., Gilbert, K. B., Brutnell, T. P., 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/760025doi: bioRxiv preprint 

https://doi.org/10.1101/760025
http://creativecommons.org/licenses/by/4.0/


 

 22

Carrington, J. C., Mockler, T. C., Baxter, I. (2015) A versatile phenotyping system and analytics platform 
reveals diverse temporal responses to water availability in Setaria. Molecular Plant, 8(10): 1520-1535. 
 
18. Hoffmann, W. A., & Poorter, H. (2002) Avoiding bias in calculations of relative growth rate. Annals 
of Botany, 90(1): 37-42. 
 
19. Davies, L., Gather, U. (1993) The Identification of Multiple Outliers. Journal of the American 
Statistical Association, 88(423): 782–792. 
 
20. Feldman, M. J., Paul, R. E., Banan, D., Barrett, J. F., Sebastian, J., Yee, M. C., Jiang, H., Lipka, A. E., 
Brutnell, T. P., Dinneny, J. R., Leakey, A. D. B., Baxter, I. (2017) Time dependent genetic analysis links 
field and controlled environment phenotypes in the model C4 grass Setaria. PLoS Genetics, 13(6): 
e1006841. 
 
21. Bates, D., Mächler, M., Bolker, B., Walker, S. (2015) Fitting Linear Mixed-Effects Models Using 
lme4. Journal of Statistical Software., 67(1): 1-48. 
  
22. Venables, W. N., Ripley, B. D. (2002) Random and mixed effects. Modern applied statistics with S 
Statistics and Computing, pp. 271-300.  
  
23. Murtagh, F., Legendre, P. (2014) Ward’s hierarchical agglomerative clustering method: which 
algorithms implement Ward’s criterion? Journal of Classification, 31(3): 274-295. 
 
24. Galili T (2010) Clustergram: visualization and diagnostics for cluster analysis. http://www.r-
statistics.com/2010/06/clustergram-visualization-and-diagnostics-for-cluster-analysis-r-code/. 
  
25. Schonlau, M. (2002) The clustergram: A graph for visualizing hierarchical and non-hierarchical 
cluster analyses. The Stata Journal, 3: 316-327. 
 
26. Nakazawa, M., & Nakazawa, M. M. (2018) fmsb: Functions for Medical Statistics Book with some 
Demographic Data. R package version 0.6.3. 
 
27. Kolde, R., & Kolde, M. R. (2018) pheatmap: Pretty Heatmaps. R package version 1.0.10.  
 
28. Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., Reich, D. (2006) 
Principal components analysis corrects for stratification in genome-wide association studies. Nature 
Genetics, 38(8): 904. 
  
29. Wimmer, V., Albrecht, T., Auinger, H. J., Schön, C. C. (2012) Synbreed: a framework for the analysis 
of genomic prediction data using R. Bioinformatics, 28(15): 2086-2087. 
  
30. Astle, W., Balding, D. J. (2009) Population structure and cryptic relatedness in genetic association 
studies. Statistical Science, 24(4): 451-471. 
  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/760025doi: bioRxiv preprint 

https://doi.org/10.1101/760025
http://creativecommons.org/licenses/by/4.0/


 

 23

31. Chen, J., Chen, Z. (2008) Extended Bayesian information criteria for model selection with large 
model spaces. Biometrika, 95(3): 759-771. 
 
32. Ziegler, G. R., Hartsock, R. H., & Baxter, I. (2015) Zbrowse: an interactive GWAS results browser. 
PeerJ Computer Science, 1: e3. 
 
33. Paterson, A. H., Bowers, J. E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, 
G., Hellsten, U., Mitros, T., Poliakov, A., Schmutz, J. (2009) The Sorghum bicolor genome and the 
diversification of grasses. Nature, 457(7229): 551. 
 
34. Mace, E. S., Tai, S., Gilding, E. K., Li, Y., Prentis, P. J., Bian, L., Campbell, B.C., Hu, W., Innes, 
D.J., Han, X., Cruickshank, A. (2013) Whole-genome sequencing reveals untapped genetic potential in 
Africa’s indigenous cereal crop sorghum. Nature Communications, 4: 2320. 
 
35. McCormick, R. F., Truong, S. K., Sreedasyam, A., Jenkins, J., Shu, S., Sims, D., Kennedy, M., 
Amirebrahimi, M., Weers, B.D., McKinley, B., Mattison, A. (2018) The Sorghum bicolor reference 
genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome 
organization. The Plant Journal, 93(2): 338-354. 
 
36. Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R., 
Lunter, G., Marth, G., Sherry, S. T., McVean, G., Durbin, R. (2011) The variant call format and 
VCFtools. Bioinformatics, 27(15): 2156-2158. 
  
37. Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., Ruden, D. 
M. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, 
SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6(2): 80-92. 
  
 
 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/760025doi: bioRxiv preprint 

https://doi.org/10.1101/760025
http://creativecommons.org/licenses/by/4.0/

