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Working memory, the brain's ability to retain and manipulate information internally, has been 

traditionally associated with persistent neural firing in localized brain areas such as those in the 

frontal cortex (Fuster 1973, Funahashi et al., 1989; Goldman-Rakic 1995; Romo et al., 1999; 

Rigotti et al., 2013; Kopec et al., 2015; Inagaki et al., 2019). However, self-sustained neural 

persistent activity during working memory is present in multiple brain regions (Romo et al., 2004; 

Christophel et al., 2017; Leavitt et al., 2017; Sreenivasan and D'Esposito, 2019), the underlying 

mechanism is unknown. We developed an anatomically constrained large-scale computational 

model of the macaque cortex endowed with a macroscopic gradient of synaptic excitation, to 

investigate the origin of distributed working memory representation. We found that long-range 

inter-areal reverberation can support the emergence of persistent activity patterns across 

multiple cortical regions, by virtue of a robust bifurcation in space, even when none of isolated 

local areas is capable of generating persistent activity. The model uncovered a host of distinct 

persistent activity patterns (attractor states), and provides experimentally testable predictions 

that cannot be explained in local circuit models. Simulating cortical lesions reveals that 

distributed activity patters are resilient against simultaneous lesions of multiple cortical areas, 

but depend on areas that form the core of the entire cortex. This work provides a theoretical 

framework for identifying large-scale brain mechanisms and computational principles of 

distributed cognitive processes.   

 

Our computational model includes 30 cortical areas distributed across all four neocortical lobes 

(Fig. 1a; see Supplementary Methods for further details). The inter-areal connectivity is based on 

quantitative connectomic data from tract-tracing studies of the macaque monkey (Markov et al., 2013; 

Extended Data Fig. 1). Each of the cortical areas is modeled as a neural circuit which contains two 

selective excitatory populations and one inhibitory population (Fig. 1b) (Wang, 2001; Wong and Wang, 

2006). In addition, there is a macroscopic gradient of synaptic excitation (Chaudhuri et al., 2015; 

Joglekar et al., 2018; Extended Data Fig. 2), namely the number of spines, loci of excitatory synapses, 

per pyramidal cell (Elston 2007) was used as a proxy for the strength of recurrent and long-range 

excitation that increases along the cortical hierarchy (Felleman and van Essen, 1991; Markov et al., 

2014; Fig. 1c). To allow for the propagation of activity from sensory to association areas, inter-areal 

long-distance connections target more strongly excitatory neurons than inhibitory neurons for more 

feedforward pathways, but biased in the opposite direction for more feedback pathways, in a graded 

fashion (Mejias et al., 2016; Fig. 1b).  
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Figure 1: Scheme and anatomical basis of a multi-regional macaque neocortex model. (a) Lateral 

view of the macaque cortical surface with areas in color. (b) In the model, inter-areal connections are 

calibrated by mesoscopic connectomic data (Markov et al., 2012), each parcellated area is modeled by 

a population firing rate description with two selective excitatory neural pools and an inhibitory neural 

pool (Wong and Wang, 2006). (c) Correlation between spine count data (Elston, 2007) and anatomical 

hierarchy as defined by layer-dependent connections in Markov et al., (2014). 

 

In local circuit models of working memory (WM) (Wang, 2001; Compte et al., 2006), areas 

high in the cortical hierarchy make use of sufficiently strong synaptic connections (notably involving 

NMDA receptors, see Wang et al., 2013) to generate self-sustained persistent activity. Specifically, the 

strength of local synaptic reverberation must exceed a threshold level (in our model, the local coupling 

parameter JS must be larger than a critical value of 0.4655), for an isolated local area to produce 

stimulus-selective persistent activity states that coexist with a resting state of spontaneous activity 

(operating in a multistable regime rather than in a monostable regime (Fig. 2a)). However, there is 

presently no conclusive experimental demonstration that an isolated cortical area like dorsolateral 

prefrontal cortex (dlPFC) is indeed capable of generating mnemonic persistent activity. In this study, 

we first examined the scenario in which all areas, including dlPFC (9/46d) at the top of the hierarchy, 

have JS values below the critical value for multistability (Fig. 2a). In this case, any observed persistent 

activity pattern must result from inter-areal connection loops. In a simulated delayed response task, a 

transient visual input excites a selective neural pool in the primary visual cortex (V1), which yielded 

activation of other visual areas such as MT during stimulus presentation (Fig. 2b, upper left). After 

stimulus withdrawal, neural activity persists in multiple areas across frontal, temporal and parietal 

lobes (Fig. 2b, lower right). This activation pattern was stimulus specific, so only the neural pool 

selective for the shown stimulus in each cortical area displayed elevated persistent activity (Fig. 2c; 

Extended Data Fig. 3). The same result is obtained when stimulating other sensory modalities 

(Extended Data Fig. 4) and, if simplified AMPA dynamics is considered, also for brief stimuli 

(Extended Data Fig. 5). We observed cross-area variations of neural dynamics: while areas like TEpd 

displayed a sharp binary jump of activity, areas like LIP exhibited a more gradual ramping activity, 

resembling temporal accumulation of information in decision-making (Shadlen and Newsome, 2001).  

 

Consistent with experimental observations (Leavitt et al., 2017), early sensory areas such as V1 

and MT did not display persistent activity. This is ensured in our model by a combination of two 
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factors. First, local synaptic coupling of early sensory areas at the bottom of the hierarchy are weak. 

Second, a certain level of preferential targeting inhibitory neurons by top-down projections prevents 

indiscriminate persistent activation across all cortical areas (Fig. 2d). Such bias towards inhibitory 

neurons of feedback projections, supported by experimental evidence (Tsushima et al., 2006), also 

allows the distributed WM patters to exist for a wide range of global scaling values for  long-range 

synaptic strengths (Fig. 2e).  

 

When we plotted the firing rate of stimulus-selective persistent activity across 30 areas along 

the hierarchy, our results revealed a gap that separated the areas displaying persistent activity and those 

that did not (Fig. 2f). This is a novel type of bifurcation or abrupt transition of behavior that takes place 

in space, rather than as a function of a network parameter like in Fig. 2a. As a matter of fact, the 

relevant parameter here is the strength of synaptic excitation that varies across cortical space (Extended 

Data Fig. 6), in the form of a macroscopic gradient. Therefore, bifurcation is robust and does not 

require precisely tuning a parameter to a threshold value. 

 

Figure 2: Distributed WM sustained via long-range loops in cortical networks. (a) Bifurcation 

diagram for an isolated area. Here, all areas (green circles) are in the monostable regime when 

isolated. (b) Spatial activity map during visual stimulation (upper left) and delay period (lower right). 

(c) Activity of selected cortical areas during the WM task. (d) Firing rate of areas at the bottom and top 

of the hierarchy (10 areas each, thick lines denote averages) as a function of the feedback preference to 

inhibitory neurons. (e) Number of areas in the example distributed activity pattern vs global coupling 

strength for inhibitory-preferred FB vs neutral FB. (f) Firing rate for all areas ranked by hierarchical 

position, for several global coupling values.  
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We recognized that a large-scale circuit can potentially display a large number of distributed 

persistent activity patterns (attractors), some of them may not be accessible by stimulation of a primary 

sensory area. Note that distinct attractor states are defined here in terms of their spatial patterns, not 

stimulus tuning; for the sake of simplicity we assumed only two selective neural pools per local area. 

We developed a numerical approach to identify and count distinct attractors. Our aim is not to 

exhaustively identify all possible attractors (as the parameter space is too large for that), but to get 

insight on how our estimations depend on relevant parameters such as the global scaling factor G of all 

local and long-range excitatory connections, or and the maximum area-specific synaptic strength Jmax. 

Five examples are shown in Fig. 3a. Our analysis included four cases; two of them with the strength of 

local and long-range connectivity above the bifurcation threshold for certain areas high in the hierarchy 

(Fig. 3b), so that some areas like dlPFC have strong enough local reverberation to sustain activity 

independently, while other areas like TEpd and LIP require long-range support to participate in WM. In 

all four cases, the number of attractors is a function of the scaling factor G, with an optimal G value 

maximizing the number of attractors (Fig. 3c). This optimal G value shifted towards lower values as the 

proportion of intrinsically multistable areas increased, with peak number of attractors simultaneously 

increasing (Fig. 3d). Across all four cases and G values considered, we found a significant positive 

correlation between the number of areas involved in a given attractor and the average activity level of 

these areas (Fig. 3e). With a high proportion of intrinsically multistable areas, attractors tend to be 

largely restricted to these multistable areas (located at the top of the hierarchy), while in cases with zero 

or low proportion of multistable areas attractors involve a larger number of areas and are more diverse 

in their area composition (Fig. 3f). 

 

Figure 3: Distributed and local WM mechanisms can coexist in the model. (a) Five example 

attractors of the network (Jmax=0.42). (b) Bifurcation diagram with the four cases considered. (c) 
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Normalized number of attractors found via numerical exploration as a function of the global coupling 

for all four cases. (d) Maximum (peak) number of attractors for each one of the cases. (e) Correlation 

between size of attractors and mean firing rate of its constituting areas for Jmax=0.45 and G=0.2. (f) 

Participation index of each area (left) and distribution of attractors according to their size (right). 

 

The distributed nature of WM has implications for the impact of perturbations on performance. 

We simulated a delayed response task with distractors (Fig. 4a), in which if the to-be-remembered cue 

is A, B is presented as distractor during the delay period (and vice versa), and found that only strong 

distractors (compared to the original visual cue) are able to destabilize the memory (Fig. 4b). This is 

due to the robustness of a distributed attractor compared to a local circuit mechanism, but also to the 

inhibitory effect of feedback projections which dampen the propagation of distractor signals (cf. 

responses in V1 and MT). 

 

Finally, we tested the effect of lesioning cortical areas in WM tasks. Lesions of individual areas 

have only a local effect on the overall maintenance of the distributed attractor, even when lesioning 

prefrontal areas (Fig. 4c). The number of areas involved in the evoked attractor decreases only linearly 

with the number of simultaneously (randomized) lesioned areas (Fig. 4d) and decreases a bit more 

abruptly when lesioning areas in reverse hierarchical order (Extended Data Fig. 7). A more systematic 

evaluation revealed that lesioning most areas have limited consequences for the total number of 

available attractors, with the exception of several temporal and prefrontal areas for which the overall 

impact is large (Fig. 4e; Extended Data Fig. 7). Interestingly, the latter areas are part of the anatomical 

'bowtie hub' of the macaque cortex (Fig. 4f, Markov et al., 2013). 

 

In summary, we have presented a large-scale circuit mechanism of distributed working memory, 

realized by virtue of a new concept of robust bifurcation in space. The distributed WM scenario is 

compatible with recent observations of multiple cortical areas participating in WM tasks (Christophel 

et al., 2017; Leavitt et al., 2017; Sreenivasan and D'Esposito, 2019), even when such areas have not 

been traditionally associated with WM. Interestingly, the model uncovered a host of distinct persistent 

activity attractor states, defined by their spatial distributed patterns in the large-scale cortical system. 

Many of these persistent activity states are not produced by stimulation of primary sensory areas; they 

could represent various forms of internal computations and functions independent of direct sensory 

inputs. This model serves as a starting point for future research in several directions. First, the model 

presented here is limited to 30 areas, and can be expanded to include other cortical areas as their 

connectivity data become available. Second, the model can be improved by incorporating more 

biological detailed such as contributions of AMPA receptor and NMDA receptor mediated excitation, 

as well as various types of inhibitory neurons. Third, attractors do not have to be steady states, our 

model can be generalized to account for a rich repertoire of temporal dynamics during working 

memory (Mongillo et al., 2008; Lim and Goldman, 2013; Rigotti et al., 2013; Miller et al., 2018; 

Bouchacourt and Buschman, 2019). Our model yields several experimentally testable predictions in 

monkey and rodent experiments, including (i) the need of strong large-scale interactions to sustain 

distributed WM patterns, (ii) a positive correlation between the number of areas involved in a WM task 

and their average firing rate of persistent activity, and (iii)  robustness of working memory encoding 

against distractors via inter-areal inhibitory feedback. This model and its extensions can serve as a 

computational platform to elucidate complex experimental observations, such as inactivation by 

optogenetic method of various cortical areas in behaving animals performing a working memory task, 

in future research. Conceptually, this work showed a novel form of bifurcation in space as a mechanism 

to generate differential functions across different cortical areas, and represents the first large-scale 

cortical model for distributed cognitive processes.  
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Figure 4: Effects of distractors and lesions on the network. (a) Scheme of the WM task with 

distractors. (b) Activity traces of selected areas (color code denotes input selectivity). (c) Spatial 

activity maps during stimulation and delay periods for control (top) and 9/46d lesioned case (bottom). 

Traces on the right show the impact for selected areas. (d) Number of active areas in the example 

attractor as a function of the number of (randomly selected) lesioned areas. (e) Numerical exploration 

of the percentage of surviving attractors for area lesions in different lobes. (f) Lesions to areas at the 

center of the ‘bowtie hub’ have a stronger impact on WM (adapted from Markov et al., 2013). 
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Methods 

 

Anatomical data 

 

The anatomical connectivity data used has been gathered in an ongoing track tracing study in macaque 

and has been described in detail elsewhere (Markov et al., 2012; 2013; 2014; Mejias et al., 2016). 

Briefly, retrograde tracer injected into a given target area labels neurons in a number of source areas 

projecting to the target area. By counting the number of labeled neurons on a given source area, 

Markov et al. defined the fraction of labeled neurons (FLN) from that source to the target area. FLN 

can serve as a proxy for the 'connection strength' between two cortical areas, which yields the 

connectivity pattern of the cortical network (Extended Fig. 1a, b). In addition, Markov et al. also 

measured the number of labeled neurons located on the supragranular layer of a given source area. 

Dividing this number over the total number of labeled neurons on that source area, we can define the 

supragranular layered neurons (SLN) from that source area to the target area (Extended Fig. 1c, d). 

 

SLN values may be used to build a well-defined anatomical hierarchy (Felleman and Van Essen, 1991; 

Markov et al. 2014). Source areas located lower (higher) than the target area in the anatomical 

hierarchy, as defined by Felleman and Van Essen (1991), display a progressively higher (lower) 

proportion of labeled neurons in the supragranular layer. As a consequence, the lower (higher) the 

source area relative to the target area, the higher (lower) the SLN values of the source-to-target 

projection.  

 

Iterating these measurements across other anatomical areas yields and anatomical connectivity matrix 

with weighted directed connections and an embedded structural hierarchy. The 30 cortical used to build 

our data-constrained large-scale brain network are, in hierarchical order: V1, V2, V4, DP, MT, 8m, 5, 

8l, 2, TEO, F1, STPc, 7A, 46d, 10, 9/46v, 9/46d, F5, TEpd, PBr, 7m, LIP, F2, 7B, ProM, STPi, F7, 8B, 

STPr and 24c. Finally, data on wiring connectivity distances between cortical areas is available for this 

dataset as well, allowing to consider communication time lags when necessary (we found however that 

introducing time lags this way does not have a noticeable impact on the dynamics of our model). The 

connectivity data used here is available to other researchers from core-nets.org. 

 

The corresponding 30x30 matrices of FLN and SLN are shown in Extended Fig. 1b, d. Areas in these 

matrices are arranged following the anatomical hierarchy, which is computed using the SLN values and 

a generalized linear model (Chaudhuri et al., 2015; Mejias et al., 2016). Surgical and histology 

procedures were in accordance with European requirements 86/609/EEC and approved by the ethics 

committee of the region Rhone-Alpes. 

 

In addition to the data on FLN and SLN across 30 cortical areas, we used additional data to constrain 

the area-to-area differences in the large-scale brain network. In particular, we have collected data on the 

total spine count of layer 2/3 pyramidal neuron basal dendrites across different cortical areas, as the 

spine count constitutes a proxy for the density of synaptic connections within a given cortical area (see 

Elston, 2007 for a review). A full list of all area-specific values of spine densities considered and their 

sources is given below: 
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Rank in 

SLN 

hierarchy 

Area 

name 

Measured 

spine 

count 

Age 

correction 

factor* 

Source 

1 V1 643 1 Elston and Rosa, 1997; Elston et al., 1999, p1369 

2 V2 1201 1 Elston and Rosa 1997, p444 

3 V4 2429 1 Elston and Rosa, 1998b, p287 

4 DP - -  

5 MT 2077 1 Elston et al., 1999, p1369 

6 8m 3200 1.30 Elston and Rosa, 1998a, p128 

7 5 4689 1 Elston and Rockland, 2002, p1073 

8 8l 3200 1.30 Elston and Rosa, 1998a, p128 

9 2 - -  

10 TEO 4812 1 Elston and Rosa, 1998b, p287 

11 F1 - -  

12 STPc 8337 1 Elston et al., 1999, p1369 

13 7a 2572 1 Elston and Rosa, 1997, p444 

14 46d 6600 1.15 estim. Elston 2007 (fig. 17); Elston et al., Frontiers 

2011 

15 10 6488 1.15 Elston et al., Frontiers 2011 

16 9/46v 7800 1.15 estim. Elston, 2007 (fig. 17) 

17 9/46d 7800 1.15 estim. Elston, 2007 (fig. 17) 

18 F5 - -  

19 TEpd 7260 1 Elston et al., 1999, p1369 

20 PBr - -  

21 7m 2294 1.30 Elston, 2001, p146 

22 LIP 2316 1 Elston and Rosa, 1997, p444 

23 F2 - -  

24 7B 6841 1 Elston and Rockland, 2002, p1073 

25 ProM - -  

26 STPi 8337 1 Elston et al., 1999, p1369 

27 F7 - -  

28 8B - -  

29 STPr 8337 1 Elston et al., 1999, p1369 

30 24c 6825 1.15 Elston et al., 2005, p67 

 

The age correction factor is meant to correct for the decrease of spine counts with age for data obtained 

from old monkeys. A plausible estimate would be a ~30% decrease for a 10y difference (Duan et al., 

2003, p955; Young et al., 2014, p36). See Extended Fig. 2 for the effect of this correction on the overall 

gradient established by the spine count data, and the correlation of such gradient with the SLN 

hierarchy. 
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Computational model 

 

Local neural circuit 

 

We describe the neural dynamics of the local microcircuit representing a cortical area with the Wong-

Wang model (Wong and Wang, 2006). In its three-variable version, this model describes the temporal 

evolution of the firing rate of two input-selective excitatory populations as well as the evolution of the 

firing rate of an inhibitory population. All populations are connected to each other (see Fig. 1a). The 

model is described by the following equations: 

 
𝑑𝑆𝐴

𝑑𝑡
= −

𝑆𝐴

𝜏𝑁
+ 𝛾 (1 − 𝑆𝐴) 𝑟𝐴      (Eq. 1) 

 
𝑑𝑆𝐵

𝑑𝑡
= −

𝑆𝐵

𝜏𝑁
+ 𝛾 (1 − 𝑆𝐵) 𝑟𝐵      (Eq. 2) 

 
𝑑𝑆𝐶

𝑑𝑡
= −

𝑆𝐶

𝜏𝐺
+ 𝛾𝐼 𝑟𝐶       (Eq. 3) 

 

Here, SA and SB are the NMDA conductances of selective excitatory populations A and B respectively, 

and SC is the GABAergic conductance of the inhibitory population. Values for the constants are τN=60 

ms, τG=5 ms, γ=1.282 and γI=2. The variables rA, rB and rC are the mean firing rates of the two 

excitatory and one inhibitory populations, respectively. They are obtained by solving the transcendental 

equation 𝑟𝑖 = 𝜙𝑖(𝐼𝑖) at each time step, with Ii being the input to population I, given by 

 

𝐼𝐴 = 𝐽𝑠𝑆𝐴 + 𝐽𝑐𝑆𝐵 + 𝐽𝐸𝐼𝑆𝐶 + 𝐼0𝐴 + 𝐼𝑛𝑒𝑡
𝐴 + 𝑥𝐴(𝑡)   (Eq. 4) 

 

𝐼𝐵 = 𝐽𝑐𝑆𝐴 + 𝐽𝑠𝑆𝐵 + 𝐽𝐸𝐼𝑆𝐶 + 𝐼0𝐵 + 𝐼𝑛𝑒𝑡
𝐵 + 𝑥𝐵(𝑡)   (Eq. 5) 

 

𝐼𝐶 = 𝐽𝐼𝐸𝑆𝐴 + 𝐽𝐼𝐸𝑆𝐵 + 𝐽𝐼𝐼𝑆𝐶 + 𝐼0𝐶 + 𝐼𝑛𝑒𝑡
𝐶 + 𝑥𝐶(𝑡)   (Eq. 6) 

 

In these expressions, Js, Jc are the self- and cross-coupling between excitatory populations, respectively, 

JEI is the coupling from the inhibitory populations to any of the excitatory ones, JIE is the coupling from 

any of the excitatory populations to the inhibitory one, and JII is the self-coupling strength of the 

inhibitory population. The parameters I0i with i=A, B, C are background inputs to each population. 

Parameters are Js=0.3213 nA, Jc=0.0107 nA, JIE=0.15 nA, JEI=-0.31 nA, JII=-0.12 nA, I0A=I0B=0.3294 

nA and I0C=0.26 nA. Later we will modify some of these parameters in an area-specific manner (in 

particular Js and JIE) to introduce a gradient of properties across the cortical hierarchy. The term Ii
net 

denotes the long-range input coming from other areas in the network, which we will keep as zero for 

now but will be detailed later. Sensory stimulation can be introduced here as extra pulse currents of 

strength Ipulse =0.2 and duration Tpulse =0.5 sec (unless specified otherwise). 

 

The last term xi(t) with i=A, B, C is an Ornstein-Uhlenbeck process, which introduces some level of 

stochasticity in the system. It is given by 

 

𝜏𝑛𝑜𝑖𝑠𝑒  
𝑑𝑥𝑖

𝑑𝑡
= −𝑥𝑖 + √𝜏𝑛𝑜𝑖𝑠𝑒 𝜎𝑖 𝜉𝑖(𝑡)     (Eq. 7) 

 

Here, ξi(t) is a Gaussian white noise, the time constant is τnoise=2 ms and the noise strength is 

σA,B=0.005 nA for excitatory populations and σC=0 for the inhibitory one. 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/760231doi: bioRxiv preprint 

https://doi.org/10.1101/760231
http://creativecommons.org/licenses/by-nc/4.0/


 12 

 

The transfer function ϕi(t) which transform the input into firing rates takes the following form for the 

excitatory populations (Abbott and Chance, 2005): 

 

𝜙𝐴,𝐵(𝐼) =  
1

2
 

𝑎𝐼−𝑏

1−exp[−𝑑 (𝑎𝐼−𝑏)]
      (Eq. 8) 

 

The values for the parameters are a=135 Hz/nA, b=54 Hz and d=0.308 s. For the inhibitory population 

a similar function can be used, but for convenience we choose a threshold-linear function: 

 

𝜙𝐶(𝐼) =  
1

𝑔𝐼
 (𝑐1𝐼 − 𝑐0) + 𝑟0      (Eq. 9) 

 

The values for the parameters are gI=4, c1=615 Hz/nA, c0=177 Hz and r0=5.5 Hz. Finally, it is 

sometimes useful for simulations (although not a requirement) to replace the transcendental equation 

𝑟𝑖 = 𝜙𝑖(𝐼𝑖) by its analogous differential equation, of the form 

 

𝜏𝑟
𝑑𝑟𝑖

𝑑𝑡
= −𝑟𝑖 + 𝜙𝑖(𝐼𝑖)       (Eq. 10) 

 

The time constant can take a typical value of τr=2 ms. 

 

Gradient of synaptic strengths 

 

Before considering the large-scale network and the inter-areal connections, we look into the area-to-

area heterogeneity to be included in the model.  

 

Our large-scale cortical system consists of N=30 local cortical areas, for which inter-areal connectivity 

data is available. Each cortical area is described as a Wong-Wang model of three populations like the 

ones described in the previous section. Instead of assuming areas to be identical to each other, here we 

will consider some of the natural area-to-area heterogeneity that has been found in anatomical studies. 

For example, work from Elston (2007) has identified a gradient of dendritic spine density, from low 

spine numbers found in early sensory areas to large spine counts found in higher cognitive areas. This 

may reflect an increase of local recurrent strength as we move from sensory to association areas. In 

addition, cortical areas are distributed along an anatomical hierarchy (Felleman and Van Essen, 1991; 

Markov et al. 2012). The position of a given area within this hierarchy can be computed via a logistic 

regression of the SLN (fraction of supragranular layer neurons) projecting to and from that area (as in 

Chaudhuri et al., 2015). 

 

In the following, we will assign the incoming synaptic strength (both local and long-range) of a given 

area as a linear function of the dendritic spine count values observed in anatomical studies, with age-

related corrections when necessary. Alternatively, when spine count data is not available for a given 

area, we will use its position in the anatomical hierarchy, which displays a high correlation with the 

spine count data, as a proxy for the latter. After this process, the large-scale network will display a 

gradient of local and long-range recurrent strength, with sensory/association areas showing weak/strong 

local connectivity, respectively. We denote the local strength value of a given area i in this gradient as 

hi, and this value normalized between zero (bottom of the gradient, area V1) and one. 

 

We assume therefore a gradient of values of Js, with its value going from Jmin to Jmax. Having large 

values of Js for association areas strongly affects the spontaneous activity of these areas, even without 
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considering inter-areal coupling. A good way to keep the spontaneous firing rate of these areas within 

physiologically realistic limits is to impose that the spontaneous activity fixed point is the same for all 

areas (Murray et al., 2017b). To introduce this into the model, we take into account that the solutions in 

the spontaneous state are symmetrical: SA=SB=S (we assume zero noise for simplicity). The current 

entering any of the excitatory populations is then (assuming I0A=I0B=I0): 

 

𝐼 = (𝐽𝑠 + 𝐽𝑐)𝑆 + 𝐽𝐸𝐼𝑆𝐶 + 𝐼0      (Eq. 11) 

 

Assuming a fast dynamics for rC and SC (mediated by GABA) as compared to SA and SB (mediated by 

NMDA) we can obtain the approximate expression for SC: 

 

𝑆𝐶 ≃ 𝜏𝐺 𝛾𝐼 𝑟𝐶 = 2𝑆𝐽𝐼𝐸𝜁 + 𝛽      (Eq. 12) 

 

with 

 

𝜁 =
𝜏𝐺 𝛾𝐼 𝑐1 

𝑔𝐼−𝐽𝐼𝐼 𝜏𝐺 𝛾𝐼 𝑐1
       (Eq. 13) 

 

𝛽 = 𝜏𝐺 𝛾𝐼  
𝑐1 𝐼0𝐶+𝑔𝐼 𝑟0−𝑐0

𝑔𝐼−𝐽𝐼𝐼 𝜏𝐺 𝛾𝐼 𝑐1
      (Eq. 14) 

 

The equation for the excitatory current has then the form 

 

𝐼 = (𝐽𝑠 + 𝐽𝑐) 𝑆 + 2 𝐽𝐸𝐼 𝐽𝐼𝐸𝜁 𝑆 + 𝐽𝐸𝐼  𝛽 + 𝐼0    (Eq. 15) 

 

To maintain the excitatory input (and therefore the spontaneous activity level S) constant while varying 

Js across areas, we just have to keep the quantity 𝐽𝑠 + 𝐽𝑐 + 2 𝐽𝐸𝐼 𝐽𝐼𝐸  𝜁 ≡ 𝐽0 constant (for the original 

parameters of the isolated area described above, we obtain J0=0.2112 nA). A good choice, but not the 

only one, is to assume that the excitatory synapses to inhibitory neurons, JIE, also scales with the ranks 

and with Js accordingly: 

 

𝐽𝐼𝐸 =
1

2 𝐽𝐸𝐼 𝜁
 (𝐽0 − 𝐽𝑠 − 𝐽𝑐)      (Eq. 16) 

 

This linear relationship ensures that the spontaneous solution is the same for all areas in the network. 

Since JIE needs to be non-negative, this imposes a minimum value of Jmin=0.205 nA for Js. The 

particular maximum value of Js, namely Jmax, will determine the type of WM model we assume. Since 

the bifurcation point of an isolated area is at Js=0.4655 nA for this set of parameter values, setting Jmax 

below that value implies that all areas in the network are monostable in isolation. In this situation, any 

persistent activity displayed by the model will be a consequence of a global, cooperative effect due to 

inter-areal interactions. On the other hand, having Jmax above the bifurcation point means that some 

areas will be multistable when isolated, e.g. they will be intrinsically multistable and compatible with 

classical WM theories. 

 

Unless specified otherwise, we assume a range of Jmin=0.21 nA and Jmax=0.44 nA (i.e. below the critical 

value), so that the model displays distributed WM. 

 

Inter-areal projections 

 

We now consider the inter-areal projections connecting isolated areas to form the large-scale cortical 
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network. Assuming that inter-areal projections stem only from excitatory neurons (as inhibitory 

projections tend to be local in real circuits) and that such projections are selective for excitatory 

neurons, the network or long-range input term arriving at each of the populations of a given area y from 

all other cortical areas is given by 

 

𝐼𝐴,𝑛𝑒𝑡
𝑦

= 𝐺 ∑ 𝑊𝑥𝑦𝑆𝐿𝑁𝑥𝑦𝑆𝐴
𝑦

𝑥       (Eq. 17) 

 

𝐼𝐵,𝑛𝑒𝑡
𝑦

= 𝐺 ∑ 𝑊𝑥𝑦𝑆𝐿𝑁𝑥𝑦𝑆𝐵
𝑦

𝑥       (Eq. 18) 

 

𝐼𝐶,𝑛𝑒𝑡
𝑦

=
𝐺

𝑍
 ∑ 𝑊𝑥𝑦(1 − 𝑆𝐿𝑁𝑥𝑦)(𝑆𝐴

𝑦
+ 𝑆𝐵

𝑦
)𝑥     (Eq. 19) 

 

Here, a superindex denotes the cortical area and a subindex the particular population within each area. 

The sum in all equations runs over all cortical areas of the network (N=30). Excitatory populations A 

and B receive long-range inputs from equally selective units from other areas, while inhibitory 

populations receive inputs from both excitatory populations. Therefore, neurons in population A of a 

given area may be influenced by A-selective neurons of other areas directly, and by B-selective neurons 

of other areas indirectly, via local interneurons.  

 

G is the global coupling strength, which controls the overall long-range projection strength in the 

network (G=0.48 unless specified otherwise). Z is a factor that takes into account the relative balance 

between long-range excitatory and inhibitory projections. Setting Z=1 means that both excitatory and 

inhibitory long-range projections are equally strong, but this does not guarantee that their effect is 

balanced in the target area, due to the effect of local connections. Following Murray et al., (2017b), we 

choose to impose a balance condition that guarantees that, if populations A and B have the same 

activity level, their net effect on other areas will be zero –therefore highlighting the selectivity aspect of 

the circuits. Considering that the transfer function of inhibitory populations is linear and their 

approximately linear rate-conductance relationship, it can be shown that  

 

𝑍 =
2𝑐1𝜏𝐺𝛾𝐼𝐽𝐸𝐼

𝑐1𝜏𝐺𝛾𝐼𝐽𝐼𝐼−𝑔𝐼
        (Eq. 20) 

 

Aside from global scaling factors, the effect of long-range projections from population x to population 

y is influenced by two factors. The first one, Wxy, is the anatomical projection strength as revealed by 

tract-tracing data from Markov et al. (2013). We use the fraction of labelled neurons (FLN) from 

population x to y to constrain our projections values to anatomical data. We rescale these strengths to 

translate the broad range of FLN values (over five orders of magnitude) to a range more suitable for our 

firing rate models. We use a rescaling that maintains the proportions between projection strengths, and 

therefore the anatomical information, that reads 

 

𝑊𝑥𝑦 = 𝑘1 (𝐹𝐿𝑁𝑥𝑦)𝑘2      (Eq. 21) 

 

Here, the values of the rescaling are k1 =1.2 and k2 =0.3. The same qualitative behavior can be obtained 

from the model if other parameter values, or other rescaling functions, are used as long as the network 

is set into a standard working regime (i.e. signals propagate across areas, global synchronization is 

avoided, etc). FLN values are also normalized so that ∑ 𝐹𝐿𝑁𝑥𝑦
𝑦 = 1. In addition, and as done for the 

local connections, we introduce a gradient of long-range projection strengths using the spine count 

data: 𝑊𝑥𝑦 → 𝜆𝑥 𝑊𝑥𝑦 , where λx is one for the target area x with the maximal spine count, and 

decreases for other areas with the same slope as the gradient of the local connectivity presented above. 
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The second factor that needs to be taken into account is the directionality of signal propagation across 

the hierarchy. Feedforward (FF) projections that are preferentially excitatory constitute a reasonable 

assumption which facilitate signal transmission from sensory to higher areas. On the other hand, having 

feedback (FB) projections with a preferential inhibitory nature contributes to the emergence of realistic 

distributed WM patterns (Fig. 2d,e) (see also Markov et al., 2014; Tsushima et al., 2006). This feature 

can be introduced, in a gradual manner, by linking the different inter-areal projections with the SLN 

data, which provides a proxy for the FF/FB nature of a projection (SLN=1 means purely FF, and 

SLN=0 means purely FB). In the model, we assume a linear dependence with SNL for projections to 

excitatory populations and with (1-SLN) for projections to inhibitory populations, as shown above. 

 

We limit the modulation of the FB projections between frontal areas to a maximum of 0.25 so that 

interactions between frontal areas are never strongly inhibitory, in agreement with evidence of frontal 

networks having strong excitatory loops (Markowitz et al., 2015). This consideration is important to 

allow FEF (areas 8l and 8m) to exhibit some level of persistent activity during distributed WM –as 

their hierarchical position and recurrent strength are not strong enough to sustain activity otherwise –

but it does not affect the behavior of our model otherwise. 

 

 

Data analysis 

 

We developed a numerical method to estimate the number of stable distributed WM attractors for a 

particular set of parameters values of our large-scale model. This method is used to obtain the results 

shown in Figs. 3 and 4. To allow for a cleaner estimation, we do not consider noise in the neural 

dynamics during these simulations. 

 

Our large-scale cortical model has 30 areas, with each of them having two selective excitatory 

populations A and B. Simply assuming that each of the areas can reach one of three possible states 

(persistent activity in A, persistent activity in B, or spontaneous activity) means that our model can 

potentially display up to 330 attractor combinations. This number can be even larger if we refine the 

firing rate reached by each area rather than simply its persistent/non-persistent activity status. Since it is 

not possible to fully explore this extremely large number of possible attractors, we devised a strategy 

based on the exploration of a sample of the input space of the model. The core idea is to stimulate the 

model with a certain input pattern (targeting randomized areas) and registering the fixed point that the 

dynamics of the model converges to. By repeating this process with a large number of input 

combinations and later counting the number of different attractors from the obtained pool of fixed 

points, we can obtain an estimate of the number of attractors for a particular set of parameter values. 

 

Stimulation protocol 

 

A given input pattern is defined as a current pulse of fixed strength (Ipulse =0.2) and duration (Tpulse =1 

sec) which reaches a certain number P of cortical areas. Only one population (A or B, randomized) in 

each area receives the input, and the P cortical areas receiving the input are randomly selected across 

the top 16 areas of the spine count gradient. This decreases the amount of potential input combinations 

we have to deal with by acknowledging that areas with stronger recurrent connections (such as 9/46d) 

are more likely to be involved in distributed WM patterns than those with weaker connections (such as 

MT). P can take any value between one and Pmax =16, and we run a certain number of trials (see below) 

for each of them. Different values of Ipulse and Tpulse, as well as setting the randomly selected areas at a 

high rate initial condition instead of providing an external input, have been also explored and lead to 
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qualitatively similar results. 

 

It is also important to consider that not all values of P have the same number of input combinations. For 

example, P=1 allows for 16*2=32 different input combinations (if we discriminate between populations 

A and B), while P=2 allows for 16*(16-1)*2=480 input combinations, and so on. For a given value of 

P, the number of possible input combinations Nc is given by 

 

𝑁𝑐 = 2𝑃  (
𝑃𝑚𝑎𝑥

𝑃
) = 2𝑃 𝑃𝑚𝑎𝑥!

(𝑃𝑚𝑎𝑥−𝑃)! 𝑃!
     (Eq. 22) 

 

By summing all values of Nc for P=1, …Pmax, we obtain around 43 million input combinations, which 

are still too many trials to simulate for a single model configuration. To simplify this further, we 

consider a scaling factor Fc on top of Nc to bring down these numbers to reasonable levels for 

simulations. We use Fc =0.0002 (or 0.02% of all possible combinations) for our calculations, which 

brings down the total number of simulated input combinations to around 9000. Other options, such as 

decreasing Pmax and using a larger scaling factor (Pmax =12, Fc =0.01 or 1% or all possible 

combinations) give also good results. Since the rescaling can have a strong impact for small P (yielding 

a number of trials smaller than one), we ensure at least one trial for these cases. 

 

To guarantee the stability of the fixed points obtained during these simulations, we simulate the system 

during a time windows of 30 seconds (which is much larger than any other time scale in the system), 

and check that the firing rates have not fluctuated during the last 10 seconds before we register the final 

state of the system as a fixed point. 

 

Estimating the number of attractors 

 

The final step is to count how many different attractors have been reached by the system, by analyzing 

the pool of fixed points obtained from simulations. A simple way to do this is to consider that, for any 

fixed point, the state of each area can be classified as persistent activity in population A (i.e. mean 

firing rate above a certain threshold of 10 spikes/s), persistent activity in population B, or spontaneous 

activity (both A and B are below 10 spikes/s). This turns each fixed point into a vector of 30 discrete 

states, and the number of unique vectors among the pool of fixed points can be quickly obtained using 

standard numerical routines in Matlab (such as the 'unique' function). 

 

A more refined way to count the number of attractors, which we use in this work, is to define an 

Euclidean distance to discriminate between an attractor candidate and any previously identified 

attractors. Once the first attractor (i.e. the first fixed point analyzed) is identified, we test whether the 

next fixed point is the same than the first one by computing the Euclidean distance Ed between them: 

 

𝐸𝑑 =
1

𝑛
 ∑ (𝑟𝑖

𝑛𝑒𝑤 − 𝑟𝑖
𝑜𝑙𝑑)2𝑛

𝑖=1       (Eq. 23) 

 

where n=30 is the total number of areas in the network (only one of the populations, A or B, needs to be 

considered here). If Ed is larger than a certain threshold distance ε, we consider it a new attractor. We 

choose ε=0.01, which grossly means that two fixed points are considered as different attractors if, for 

example, the activity of one of their cortical areas differs by 0.5 spikes/s and the activity on all other 

areas is the same for both. The particular value of ε does not have a strong impact on the results (aside 

from the fact that smaller values of ε gives us more resolution to find attractors). When several 

attractors are identified, each new candidate is compared to all of them using the same method. 
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Both the first and the second method to count attractors deliver qualitatively similar results (in terms of 

the dependence of the number of attractors with model parameters), although as expected the second 

method yields larger numbers due to its higher discriminability. 

 

Code availability 
The code of the present model will be released upon publication of this manuscript. 

 

Data availability 
All data used in this manuscript is already available at core-nets.org or from the cited literature. 
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Extended Data Fig. 1: Anatomical connectivity data of the macaque cortex. Data from Markov et al., 

2013; 2014. (a) Connectivity of the 30 areas (positioned in 3D space following injection coordinates of 

experiments). Width of the lines denote two-way averaged FLN values (i.e. average strength of the 

projection). (b) Map of FLN values for all connections considered. (c) The proportion of supragranular 

vs infragranular neurons projecting to the injection site allowed to define an anatomical hierarchy. (d) 

Map of SLN values for all connections considered. 
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Extended Data Figure 2: Spine count data used to constrain connectivity strength. Data from Elston, 

2007 and others. (a) Spine count of the basal dendrites of layer 2/3 neurons across cortical areas of 

young (2~3 years old) macaques. When data from older macaques had to be considered, an age 

correction was introduced (orange bars). (b) Correlation between the spine count data and the 

hierarchical value for all areas (left), the hierarchical value for all areas except outliers (7m, LIP, and 

STPc), and the hierarchical position (rank) for all areas except outliers. Pearson correlation and 

corresponding P-value are shown in each panel. In the model, the connectivity strength of areas for 

which spine count data was not available was estimated using their hierarchical value. 
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Extended Data Figure 3: Behavior of all areas in the network during the visual WM task. Left: 

spatial maps of the simulated macaque brain during stimulation and delay period, with activity color 

coded. Right: evolution of the firing rate of all areas in the network. Stimulation occurs in V1 at t=4 

seconds and has a duration of 500ms. 
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Extended Data Figure 4: Behavior of all areas in the network during the somatosensory WM task. 

Left: spatial maps of the simulated macaque brain during stimulation and delay period, with activity 

color coded. Right: evolution of the firing rate of all areas in the network. Stimulation occurs in area 2 

(primary somatosensory area) at t=4 seconds, and has a duration of 500ms. 
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Extended Data Figure 5: Firing rates for selected areas during a visual WM task with a short (50ms) 

stimulus duration. (a) Only NMDA and GABA synapses are considered in the network, the stimulus 

does not reach frontal areas. (b) By introducing simplified AMPA-like synapses (proportional to the 

firing rates) on all excitatory projections, we obtain distributed WM patterns with some early sensory 

areas (such as V4 and MT) now displaying persistent activity. (c) By limiting the AMPA-like synapses 

to feedforward projections, the original distributed WM patterns (with early sensory areas remaining 

within spontaneous levels) are recovered. This suggests that AMPA/NMDA asymmetry along the FF/FB 

projections in the hierarchy has to be considered for brief stimulation patterns. 
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Extended Data Figure 6: Firing rate of ranked cortical areas reveals a robust bifurcation in space 

with different ranking systems. (a) Areas ranked following their hierarchical (as obtained from SLN 

data) position. (b) Areas ranked by spine count. (c) Areas ranked by displayed firing rate. All panels 

show data for three different values of the global coupling strength. 
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Extended Data Figure 7: Effect of lesioning areas on the stability of attractors. (a) The activity level, 

or firing rate, or areas involved in a visually evoked distributed WM attractor decreases linearly with 

the number of lesioned areas. (b) The percentage of areas involved in the distributed WM attractor 

decreases more sharply when areas are consecutively lesioned in reverse hierarchical order. (c) The 

percentage of attractors surviving lesions is specific of the area lesioned, with lesions in areas higher 

in the hierarchy having a stronger impact. (d) Lesioning areas at the center of the anatomical bowtie 

hub has a stronger impact than lesioning the ‘side areas’. Both (c) and (d) were obtained during the 

numerical exploration of the stable distributed attractors in the network. 
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