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Abstract

Background: In single-cell RNA-sequencing (scRNA-seq) data analysis, a number
of statistical tools in multivariate data analysis (MDA) have been developed to
help analyze the gene expression data. This MDA approach is typically focused
on examining discrete genomic units of genes that ignores the dependency
between the data components. In this paper, we propose a functional data
analysis (FDA) approach on scRNA-seq data whereby we consider each cell as a
single function. To avoid a large number of dropouts (zero or zero-closed values)
and reduce the high dimensionality of the data, we first perform a principal
component analysis (PCA) and assign PCs to be the amplitude of the function.
Then we use the index of PCs directly from PCA for the phase components. This
approach allows us to apply FDA clustering methods to scRNA-seq data analysis.

Results: To demonstrate the robustness of our method, we apply several existing
FDA clustering algorithms to the gene expression data to improve the accuracy of
the classification of the cell types against the conventional clustering methods in
MDA. As a result, the FDA clustering algorithms achieve superior accuracy on
simulated data as well as real data such as human and mouse scRNA-seq data.

Conclusions: This new statistical technique enhances the classification
performance and ultimately improves the understanding of stochastic biological
processes. This new framework provides an essentially different scRNA-seq data
analytical approach, which can complement conventional MDA methods. It can
be truly effective when current MDA methods cannot detect or uncover the
hidden functional nature of the gene expression dynamics.

Keywords: functional data analysis; single-cell RNA-sequencing data analysis;
clustering; classification

Background
Single-cell RNA-sequencing (scRNA-seq) data analysis has been widely used to

explore and measure the genome-wide expression profile of individual cells. Since the

number of bioinformatics tools for scRNA-seq data analysis is growing dramatically,

there are many studies comparing several statistical methods for scRNA-seq data

analysis. Menon [35] reviewed three statistical clustering algorithms for scRNA-seq

data to explicitly demonstrate their different behaviors in low- and high-read-depth

data. Recently, Andrews and Hemberg [2] compared 12 clustering techniques on

scRNA-seq data sets illustrating that the different methods generally produced

clustering with minimal overlap. Duò et al. [11] extended these initial studies to 14
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clustering algorithms on a total of 12 different simulated and real data sets showing

the large differences in performance across data sets and clustering methods.

These statistical methods and algorithms for scRNA-seq data analysis belong to

the general framework of multivariate data analysis (MDA), which helps analyze

the gene expression data to understand stochastic biological processes. However,

several shortcomings have arisen when the data are treated as vectors of discrete

samples instead of continuous samples. One of the great advantages of applying

this framework, i.e., functional data analysis (FDA) [47], is that we consider the

dependency or connectivity between the samples. Several works are performed on

gene expression data by applying FDA to increase the performance of statistical

analysis [30, 10, 38, 29, 32, 3, 61, 60].

Based on these ideas, we propose an FDA technique for scRNA-seq data analysis

to improve the accuracy of the classification of cell types. An important aspect of

this study is that we view multivariate gene expression data as functional gene ex-

pression data. The different point of view from standard multivariate data analysis

underlies the structure of raw observations being functional. This approach allows

us to detect the functional nature of scRNA-seq data and uncover the functional

characteristics of cell populations. This eventually classifies the subpopulations of

cell types that cannot be detected by standard multivariate statistical methods.

Given that a function does not allow the permutations of phase components of a

function, we directly use principal components (PCs) in general, which are sorted by

eigenvalues in descending order. We applied this approach using functional cluster-

ing methods on simulated data and real data to demonstrate the robustness of the

efficiency and accuracy of the classification against the MDA clustering algorithms

for scRNA-seq data analysis.

Methods
Our proposed method can be adapted to any existing conventional algorithms such

as SC3 [28], Monocle [56, 40, 41], Seurat [55, 8], and SIMLR [59], but does not

provide a full workflow/pipeline for scRNA-seq data clustering analysis. After pre-

processing and dimensional reduction, based on existing R packages, we build func-

tional data using the index of components and scores from multivariate data in

order to increase the classification rates. The phases of analysis in their entirety are

schematically illustrated in Figure 1. We reiterate that the goal of this paper is to

increase the classification rate by adopting FDA on some analysis phases of conven-

tional scRNA-seq data analysis workflow. The difference is that after dimensional

reduction, we build functional data by using a basis function to determine if this

change improves the classification rate compared to the results from multivariate

data analysis. In figure 1, the analysis phases from A to D are the same processes as

the general conventional MDA for scRNA-seq data. Then, we construct functional

data after identifying the true dimensionality of a data set (E). Based on converted

functional gene expression data, we employ functional clustering algorithms to clas-

sify the subpopulation of cell populations using functional cells (F).

Preprocessing Steps

One of the crucial steps in biological experiments, such as scRNA-seq data anal-

ysis, is to remove biological or technical errors in the gene expression data [27].
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Figure 1: Schematic Overview of the functional data analysis approach. We use
existing conventional MDA methods for preprocessing and dimensional reduction. Hence,
we adopt existing MDA methods from phases A to D, then based on dimensional reduction
results, we convert functional data from multivariate gene expression data.

scRNA-seq data analysis is used to explore complex mixtures of cell types in an

unsupervised manner. A standard scRNA-seq data analysis involves several tasks

that can be performed by various bioinformatics or biostatistics techniques. Zappia

et al. [62] categorized these tasks into four broad phases of analysis: data acquisi-

tion, data cleaning, cell assignment, and gene identification. The first two phases

are generally referred to as the preprocessing steps, and the last two phases are re-

ferred to as the statistical analysis steps. Data acquisition can be re-categorized as

alignment, de-duplication, and quantification. Data cleaning involves quality con-

trol, normalization, and imputation. This work can be done by several existing R

packages such as SC3 [28], Monocle [56, 40, 41], and Seurat [55, 8]. We implemented

these preprocessing steps for scRNA-seq data analysis using the Seurat R packages

for the downstream analysis. In particular, we normalize and scale the data using

Seurat for the analysis. Then, we use scaled data, which are the z-scored residuals of

linear models, to predict gene expression for principal component analysis (PCA)

and clustering.

Framework of building functional data

Functional data analysis was pioneered by Ramsay [42] and then expanded by Ram-

say, Silverman, Dalzell, Ferraty and Vieu [47, 44, 46, 14]. A function in functional

data analysis is defined in the Hilbert space H, in particular, the L2 space for real

square-integrable functions defined on [a, b] with the inner product 〈f, g〉 =
∫ b
a
fg.

In general, we define a function from the observed multivariate data or functional

data with time points for the downstream analysis. Then, we apply a smoothing

method using a known basis for parametric methods or a kernel function for non-

parametric methods. In this paper, using FDA on scRNA-seq data analysis, we no

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 8, 2020. ; https://doi.org/10.1101/760413doi: bioRxiv preprint 

https://doi.org/10.1101/760413


Ahn and Fujiwara Page 4 of 17

longer consider time as a phase of the functions; however, we use the index of the

PCs from PCA on the gene expression data.

One of the challenging problems in applying FDA to scRNA-seq data is the pres-

ence of high dropouts, i.e., zero-inflated counts of gene expression data. This also

induces the fitting problem of constructing the function from raw multivariate gene

expression data, which produces a tremendous number of spikes when constructing

the functional objectives. To solve this issue, we implemented PCA to drastically

lower the number of features (dimensions or genes). In this way, we can reduce not

only the dimensionality but also the number of dropout values from the scRNA-seq

data, which eventually smooth the original data by itself. This is also a common

and general step in conventional scRNA-seq data analysis for reducing the dimen-

sionality of the gene expression data. Then, each single cell can now be considered

as a single function with PC scores and the index of PCs. The important feature of

this analysis is that we treat the index of the PCs as “time points”, i.e., each PC

acts analogous to discrete time points in the functional gene expression data.

Sorting PCs: by eigenvalues Another problem in functional scRNA-seq data anal-

ysis is the order of the PCs, i.e., the phase of the functions, when we build a function

from scRNA-seq multivariate data. In MDA, data are considered as discrete vectors;

thus, the permutation of the data components is allowed in any statistical analysis.

In FDA, however, the permutation of phase components will affect the statistical

results in that it should be sorted in order of some characteristics of the data. Tradi-

tionally, the most general way to sort the phase components in FDA is in time order,

e.g., in seconds, months, or years. For functional scRNA-seq data analysis, we view

the PC scores of gene expression profiles as independent realizations of a smooth

stochastic process. Hence, the PCs are sorted in descending order according to their

variance. Without loss of generality, we discard the number of PCs according to the

eigenvalues from the smallest to the largest to reduce the dimensionality of the data.

One advantage of using from the largest to smallest eigenvalues here is being able to

capture as much of the variance as possible without losing much information from

the original data. We consider this framework, i.e., the PCs in descending order,

based on the order of the “magnitude” of the corresponding eigenvectors; thus, we

treat this strength of variance as the time order to be the functional data. Hence,

based on this framework, we build functional data from scRNA-seq data, which is

exactly the same as using PCs directly from the results of PCA.

Smoothing Functional Data After building functional gene expression data from

discretized multivariate gene expression data, the functional data can be smoothed,

leading to the Karhunen-Loéve representation of the observed sample paths as a

sum of a smooth mean trend. It can be performed on the functional data, especially

where observations are very noisy, to recover the nature of the functional statistics

setting. A truncated version of the random part of this representation serves as

a statistical approximation of the random process [50]. We first assume that the

function g(s) is observed through the model.

gi(sl) = fi(sl) + εi(sl), i = 1, 2, · · · , n, l = 1, 2, · · · ,m
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where εi(sl) is the residual error, and sl is the l-th PC, l = 1, . . . ,m. Then, we can

reconstruct the original function f(s) from the observed function g(s) using a linear

smoother,

f̂ =
m∑
l=1

ξlrgl

where ξlr is the weight that the point sr gives to the point sl and gl = g(sl). Then,

the function can be smoothed in two ways: using parametric or non-parametric

methods.

Parametric smoothing method: B-spline basis A parametric method is also known

as a basis representation since we use a known basis to smooth the data. There is

no universal basis to use; however, we generally use a B-spline basis and a Fourier

basis. A basis is a set of known functions {bj}∞1 with which any function can be

arbitrarily approximated using a linear combination of a sufficiently large number

J of these functions.

f(s) =

∞∑
j=1

cjbj(s) ≈
J∑
j=1

cjbj(s)

where cj is the coefficient of the basis function bj .

Nonparametric smoothing method: Nadaraya-Watson estimator Nonparametric

smoothing methods, also known as a kernel smoothing method, can be used to

represent functional data. In this analysis, we use the Nadaraya-Watson estimator

[37] with Gaussian kernel:

ξlr =
K( sr−slh )∑J
j=1K( sr−slh )

where K(·) is the kernel function and h is the bandwidth.

Generalized Cross-Validation for Smoothing For parametric and non-parametric

smoothing methods, smoothing penalization is crucial for estimating the coefficient

of the basis and kernel parameter, respectively. The choice of smoothing parameter

is important; however, there is no universal criterion that would ensure an opti-

mal choice. In general, we select the parameter η using generalized cross-validation

(GCV).

GCV (η) =
1

n

n∑
i=1

(gi − ĝηi )2ωiΞ(η)

where Ξ(η) denotes the type of penalizing function [23] and ωi is the weight at point

sl.
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Clustering Methods

Clustering algorithms are statistical tools used to identify the subpopulation of

subjects, such as cell types, in scRNA-seq data analysis. We evaluate three MDA

clustering algorithms and three FDA clustering algorithms on gene expression data

in this paper. All methods are implemented and publicly available as R packages or

scripts. See the references for each method and further details in Table 1.

Table 1: Clustering Methods on MDA and FDA

Type Methods Description Reference

MDA

k-means
The data given by x are clustered by the k-means method, which aims to partition

the points into k groups such that the sum of squares from points to the assigned cluster centres is minimized

[25, 15, 31, 33]

hierarchical A hierarchical cluster analysis using a set of dissimilarities for the n objects being clustered. [4, 36, 24, 21, 1]

mclust Model-based clustering based on parameterized finite Gaussian mixture models. [51, 16, 18, 17]

FDA

k-means The method searches the locations around which are grouped data (for a predetermined number of groups) on functional data. [13, 25]

funHDDC
The funHDDC (High-Dimensional Data Clustering) algorithm allows one to cluster functional univariate or multivariate data

by modeling each group within a specific functional subspace.

[7]

funFEM
The funFEM algorithm allows to cluster functional data by modeling the curves within a common

and discriminative functional subspace.

[6]

For MDA analysis, we perform k-means and hierarchical algorithms, which are the

most popular clustering algorithms that have been used recently for scRNA-seq data

analysis. Many Bioconductors, such as Seurat, Monocle, and SC3, perform these

clustering techniques to classify the subpopulations to identify and characterize cell

populations. In addition to these algorithms, we also apply a recent clustering al-

gorithm, mclust, which is a model-based clustering method based on parameterized

finite Gaussian mixture models. These models are estimated by the expectation-

maximization (EM) algorithm initialized by the hierarchical model-based agglom-

erative clustering method. Then, we select the optimal model using the Bayesian

information criterion (BIC). For clustering methods in FDA, the functional k-means

method is the same as the one in MDA; however, we define the observations in the

Hilbert space,H. funHDDC is a model-based algorithm that is based on a functional

latent mixture model that fits the functional data in group-specific functional sub-

spaces. funFEM is also a model-based method but is based on a functional mixture

model that allows the clustering of the data in a discriminative functional subspace.

For the stability of the model, we set the random seed to a fixed value internally

and externally, and randomly initialize the starting points for optimization 200

times.

Results
To evaluate the robustness of our approach, we perform the clustering methods

that we have described in section 2.3 on both simulated data and real data. For

comparison measurement, we calculate the Hubert-Arabie Adjusted Random Index

(ARI) which is the corrected-for-chance version of the Rand Index [49, 26, 57]:

ARI =
Index− Expected Index

Max Index− Expected Index
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where the independent clusterings have an expected index of zero and identical

partitions have an ARI equal to 1. We calculate the ARI using the implementation

in the clues R package.

Simulation Study

We generated three simulated data sets using a Gaussian process to observe the

improvement in performance of the classification for FDA clustering algorithms.

In this simulated experiment, we focused on comparing MDA classification and

FDA classification. Therefore, we assume that all the preprocessing and dimensional

reduction steps on the scRNA-seq data, such as normalization, scaling, and PCA,

are performed. Then, we can only focus on how the FDA approach improves the

success rate for classification against MDA classification using PC scores and PCs

based on PCA.

We first consider two samples of i.i.d. curves, Xi(s) and Yi(s), generated by inde-

pendent stochastic processes with different means such that Xi(s), Yi(s) ∈ L2(I),

where I is a compact interval of R. We use Karhunen-Loéve decomposition to gen-

erate the sample curves [20, 19, 34]:

Xi(s) = m0(s) +

∞∑
j=1

Zji,1
√
λkθj(s) i = 1, . . . , n1,

Yi(s) = m1(s) +
∞∑
j=1

Zji,2
√
λkθj(s) i = 1, . . . , n2,

(1)

where s is the index of PCs (sl, l is the l-th PC); m0 and m1 are the means of

each sample for Xi and Yi, respectively; (Zki,1)∞k=1, (Zki,2)∞k=1 are two sequences of

independent standard normal variables; θj is the J/2 harmonic Fourier basis; λk is

the coefficient variance; and n1 and n2 are the number of cells in groups 1 and 2,

respectively. Because of the infinity of the basis functions, we truncate it into the

finite case in terms of J known basis functions θj .

For the initial settings, we generated 150 cell functions for each sample, X and

Y . Hence, we have a total of 300 cells in this simulated data set. Then, we fixed the

number of PCs to 40 (l = 1, 2, · · · , 40) assuming that 40 PCs are retained based on

some statistical criteria. We set J = 40 to have sufficient peaks of the functions for

the Fourier basis functions and assign m0(s) = s(1− s) for the mean of the sample

Xi(s). For the coefficient variances λk, we set

λk =

 1
k+1 if k ∈ {1, 2, 3}

1
(k+1)2 if k ≥ 0

For the mean sample for Yi(s), we use three different cases to generate three

different data sets to compare the classification efficiency depending on the shape

and scale of the functions.
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m1(s) = m0(s) +
√
λ1θ1 (a)

= m0(s) +
√
λ5θ5 (b)

= m0(s) +
∞∑
k=10

√
λkθk (c)

We assigned samples of Xi(s) and Yi(s) as group 1 and group 2, respectively, to

group into two different “true” groups. Based on the arguments above, we simulated

three different samples of Yi(s) for the different means (a), (b), and (c). Figure 2

shows simulated data using Equation 1. The solid red and blue curves are m0(s)

and m1(s), which are the means of each sample, respectively. Each panel shows

different means of Yi(s) for (a), (b), and (c). The difference between the samples

in the first panel (case a) is simply the amplitude of the functions. It is easy to see

that the shape is very similar and that only the height (y-axis) is different. For the

second case (case b), we generated a sample of Y whereby the mean of its sample

lies on the same horizontal line as the mean of sample X; however, the shape of the

function is different. From the second panel of Figure 2, the shape of the mean of

sample X is smoother than the shape of the mean of sample Y and is a flat curve

rather than several distinct peaks in Y . The last panel (case c) shows a similar

generated function from the second case; however, this time, the sample Y has high

peaks (spikes) at both the beginning and end of the curve, which give the sample Y

a very different shape compared to sample X. Based on these three different data

sets, our goal is to evaluate whether the classification algorithms can cluster into

the correct group using the MDA and FDA clustering methods.

Figure 3 shows the observed multivariate data based on generated simulated

data, functional data, smoothed functional data using a B-spline basis and a non-

parametric method with the Nadaraya-Watson estimator for cases (a), (b), and (c).

Here, we use the R packages fda [45, 43, 48] and fda.usc [13] in the R statistical

software to convert functional data from the observed multivariate data. Since the

observed data have no prominent spikes or outliers, it is difficult to intuitively dis-

tinguish between functional data and smoothed functions in these simulated data.

However, the number of peaks on both parametric and non-parametric smoothed

data is less than functional data without smoothing.

We evaluate the clustering algorithms on these simulated data, and the classifi-

cation results are shown in Table 2. For MDA, we use three clustering algorithms:

the k-means, hierarchical, and mclust methods. The functional k-means, funFEM,

and funHDDC clustering algorithms are applied to the functional data. To evaluate

the consistency of the classification analysis by switching the phase components of

the functions, we randomly sort the order of the components (unaligned). Table 2

shows the results of the classification in ARI for each method and each data set. In

Table 2, the ARI of applying the functional clustering algorithms outperforms the

results of other MDA clustering methods.

In the comparison of the three cases (a), (b), and (c), case (c) shows the highest

classification rate (0.934) since the shape and peaks or valleys on both sides affect

the differences between the samples X and Y . Case (a) shows the second-highest
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(a) Case (a)

(b) Case (b)

(c) Case (c)

Figure 2: Three simulated data examples with means of Xi(s) and Yi(s) for
cases (a), (b), and (c). The gray solid curves are observations. The red curve shows the
mean of Xi(s), and the blue curve shows the mean of Yi(s) for each sample. Upon first
glance at the observations (gray), the difference between the two samples is not clear due
to the noise; however, it is clear that the means for the two samples are different.

ARI (0.488) among the three data sets. This implies that the height (or y-axis or

vertical difference) also plays a major role in grouping the observations into the

correct group. Case (b) shows the lowest accuracy (0.034) due to the similarity

between the samples X and Y . As expected, the average of the classification rates

for the unaligned phase components of the functions is lower than the results of the

aligned functional data. Particularly, case (c) shows the large difference in the ARI

between aligned and unaligned functional data. This implies that the order of the

phase components of the function is also a major factor in applying functional data

analysis methods to achieve the highest accuracy rate.
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(a) Case (a)

(b) Case (b)

(c) Case (c)

Figure 3: Visualization of each cell with reduced dimensions of simulated gene
expression data for cases (a), (b), and (c), respectively. Each color and curve (for
functional data) shows the individual cell, where the x-axis shows the index of the principal
components and the y-axis represents the principal component scores. Each panel of the
subfigures shows the four observed data sets. The first panel shows the original data,
which are considered discrete multivariate data. The second panel is the function data
converted from the original discrete data. The third and fourth panels show the smoothed
data with B-spline smoothing and kernel smoothing using the Nadaraya-Watson estimator,
respectively.

Application to Real Data

The real scRNA-seq data sets were collected from conquer [54] and used for our clas-

sification evaluations: GSE 66507 (here denoted Blakeley2015) [5], GSE 52529-
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Table 2: ARI for classification. Bold number shows the highest ARI for each case, (a), (b), and (c), respec-
tively.

Type Smoothing Clustering
(a) (b) (c)

Aligned Unaligned Aligned Unaligned Aligned Unaligned

FDA

No Particular Smoothing

k-means 0.282 0.358 -0.003 -0.000 -0.002 0.008

funHDDC 0.479 0.048 0.018 -0.002 0.054 0.020

funFEM 0.443 0.382 0.010 0.000 0.054 0.013

Parametric (b-spline)

k-means 0.408 0.391 -0.001 -0.002 0.007 -0.002

funHDDC 0.488 0.434 0.034 0.004 0.934 0.008

funFEM 0.479 0.425 0.032 -0.002 0.883 0.001

Non-Parametric (NW)

k-means 0.350 0.304 0.000 -0.001 0.005 0.000

funHDDC 0.488 0.443 0.034 -0.001 0.203 0.008

funFEM 0.479 0.434 0.032 0.010 0.197 -0.003

MDA

k-means 0.434 0.004 0.011

hierarchical 0.311 0.003 -0.003

mclust 0.434 0.004 -0.003

GPL16791 (Trapnell) [56], GSE 74596 (Engel2016) [12], GSE 66053-GPL 18573

(PadovanMerhar2015) [39], GSE 62270-GPL17021 (Grun2015) [22], GSE 81903

(Shekhar2016) [53], GSE 102299 (Wallrapp2017) [58], and GSE 48968-GPL

17021-125bp (Shalek2014) [52]. These data sets are not expected to be used with

the aim of detecting subpopulations of cell populations. Hence, the cluster labels

known as “true” cluster labels might not represent the strongest signal present in

the data [11]. In other words, general classification algorithms cannot detect the

transcriptional signal or the characteristics of each cluster, which statistically de-

rives different cluster labels rather than true cluster labels. Duó et al. [11] noted

that these labels can be biased in favor of current methodologies. Therefore, our

goal for this real data analysis is to detect the true subpopulations. Hence, it is

important to validate the performance of functional clustering algorithms consider-

ing each cell as a functional shape using these data sets to uncover the functional

nature of scRNA-seq gene expression data.

The descriptions of each data set, including the number of cells and subpop-

ulations, are shown in Table 3. For example, Blakeley2016, Trapnell2014, En-

gel2016, PadovanMerhar2015, Grun2015, Shekhar2016, Wallrapp2017 and

Shalek2014 have 3, 3, 4, 4, 4, 4, 3, and 6 subpopulations, respectively. The selected

cell phenotype was used to define the “true” partition of cells when evaluating the

clustering methods. The details of the subpopulations and the methods for finding

these true subpopulations for each data set are explained and described in [54].

For the preprocessing steps, such as quality control, normalization, and scaling,

we use the Seurat R package [55, 8] to perform the downstream analysis. Seurat

can also perform t-SNE analysis and clustering methods, such as k-means; how-

ever, we did not implement these clustering methods using Seurat and rather used

general-purpose R packages or scripts (Table 1) for clustering the cell subpopula-

tions. More details about these preprocessing steps and procedures using the Seurat

Bioconductor are described in [8].

After applying the preprocessing steps on the scRNA-seq data, we used all genes

to perform PCA to reduce the dimensionality of the gene expression data. In this

analysis, we can visualize the distribution or pattern of the cell populations by

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 8, 2020. ; https://doi.org/10.1101/760413doi: bioRxiv preprint 

https://doi.org/10.1101/760413


Ahn and Fujiwara Page 12 of 17

Table 3: Description of scRNA-seq data

Data set Organism Sequencing Protocol Cells Subpopulations Description References

Blakeley2015 Homo Sapiens SMARTer 30 3 Preimplantation embryos [5]

Trapnell2014 Homo Sapiens SMARTer C1 288 3 Primary myoblasts over a time course of serum-induced differentiation [56]

Engel12016 Mus Musculus Smart-Seq2 203 4 purified populations of thymic NKT cell subsets [12]

PadovanMerhar2015 Homo Sapiens Fluidigm C1 Auto Prep 96 4 Live (large and medium) and fixed single cell [39]

Grun2015 Mus Musculus CEL-Seq 2891 4 Cells from mouse intestinal organoids [22]

Shekhar2016 Mus Musculus Smart-Seq2 384 4 P17 retinal cells from the Kcng4-cre;stop-YFP X Thy1-stop-YFP Line#1 mice [53]

Wallrapp2017 Mus Musculus Smart-Seq2 752 3 innate lymphoid cells from mouse lungs after various treatments [58]

Shalek2014 Mus Musculus SMARTer C1 935 6 Dendritic cells stimulated with pathogenic components [52]

plotting PC1 vs. PC2. Figure 4 shows the PC1 vs. PC2 plot for each scRNA-seq

data set after performing PCA. In this figure, it is complicated to group a set of

objects into the “true” groups as given in Table 3 without any statistical clustering

analysis. One of the main reasons for these results is that the “true” cluster labels

do not represent the strongest signal present in the multivariate data. For example,

Blakeley2015, Trapnell2014, Engel2016, PadovanMerhar2015, Grun2015,

Shekhar2016, Wallrapp2017, and Shalek2014 data sets have 3, 3, 4, 4, 4, 4, 3,

and 6 subpopulations, respectively; however, none of the plots in Figure 4 show a

clear distinctive number of clusters for each data set. In this sense, we want to see

how FDA, which considers each cell as a functional shape, performs in classification

against multivariate data for these phenomena whereby the signal of the “true”

labels is not sufficiently strong. This functional approach will identify the hidden

functional nature of scRNA-seq data.

We visualize the scree plot and perform a jackstraw [9] to determine the optimal

number of PCs to reduce the dimensionality of the original data. A scree plot in PCA

is a useful tool that visualizes saturation in the relationship between the number of

PCs and the percentage of the variance explained. We generally decide the number

of principal components that corresponds to the “elbow” part of the curve to have

sufficient information of the original data. In this experiment, we chose from PC1

to PC20 -PC40 for the real data sets for the downstream analysis.

One of the important features of the function in the Hilbert space, H, is that

unlike the vectors in MDA, it does not allow the permutations of the components,

i.e., the phase components. Therefore, we perform and build the function where

phase components are sorted according to the eigenvalues. It is the simplest way

that we can directly use PCs from PCA results. Then scRNA-seq gene expression

data are reconstructed after PCA, where the x-axis represents the PCs while the

y-axis represents the PC scores for each cell. Then we build the functional data

using fda and fda.usc in the R software to convert the functional data from the

original data. Then, we apply two functional smoothing methods, parametric and

nonparametric, to smooth the functional data. We set a sufficient number of bases

to construct the functional data from the scRNA-seq data.

We performed clustering analysis on real data. The classification results and ac-

curacy rates ARI are shown in Table 4. In these real data experiments, we utilized

two different cases of phase alignment for each data set: 1) randomly aligned (Un-

aligned) and 2) aligned (Aligned). In this table, the bold number represents the

highest accuracy (ARI) for each scRNA-seq data set.
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Blakeley2015 Trapnell2014 Engel2016 PadovanMerhar2015

Grun2015 Shekhar2016 Wallrapp2017 Shalek2014

Figure 4: PC1 vs. PC2 plot after performing Principal Component Analysis
for each scRNA-seq data set. None of the data sets could be separated into “true”
numbers of subpopulations from the PC 1 vs. PC2 plot. None of the plots in Figure 4
show a clear distinctive number of clusters for each data set. In this sense, we want to
see how FDA, which considers each cell as a functional shape, performs in classification
against multivariate data for these phenomena whereby the signal of the “true” labels is
not sufficiently strong. This functional approach will identify the hidden functional nature
of scRNA-seq data.

Table 4: Classification results for real data. Each bolded number shows the highest ARI for each data set.

Type FDA MDA

Smoothing No Smoothing Parametric (B-Spline) Non-parametric (N.W.)

Clustering funHDDC k-means funFEM funHDDC k-means funFEM funHDDC k-means funFEM k-means hierarchical mclust

Blakeley2015
Aligned -0.034 -0.023 0.119 0.009 -0.089 -0.027 -0.036 -0.007 -0.036

-0.078 -0.059 -0.038
Unaligned -0.065 -0.059 0.045 -0.024 -0.037 0.005 -0.004 -0.007 0.023

Trapnell2014
Aligned 0.227 0.014 -0.001 -0.000 -0.000 0.023 0.027 0.005 0.005

-0.001 0.000 0.040
Unaligned 0.041 -0.001 -0.000 0.126 0.003 0.118 0.219 0.005 0.002

Engel2016
Aligned 0.648 0.039 0.344 0.042 0.018 0.062 0.071 0.065 0.047

0.308 0.001 0.477
Unaligned 0.459 0.039 0.198 0.291 0.018 0.174 0.124 0.064 0.270

PadovanMerhar2015
Aligned -0.074 -0.047 0.242 0.104 0.202 0.156 0.001 -0.069 0.202

0.079 -0.047 0.136
Unaligned 0.106 -0.047 0.133 0.091 0.202 0.163 0.121 -0.095 0.227

Grun2015
Aligned 0.190 0.087 0.223 0.057 0.055 0.134 0.075 0.046 0.134

0.172 -0.000 0.122
Unaligned 0.162 0.110 0.147 0.105 0.070 0.119 0.078 0.020 0.117

Shekhar2016
Aligned 0.221 0.008 0.015 0.019 0.113 0.048 0.019 0.006 0.048

0.008 -0.000 0.011
Unaligned 0.116 0.008 0.012 0.145 0.007 0.107 0.143 0.021 0.102

Wallrapp2017
Aligned 0.024 0.052 0.184 0.320 0.064 0.135 0.320 0.034 0.139

0.238 0.000 0.040
Unaligned 0.052 0.286 0.138 -0.001 0.064 0.213 0.051 0.034 0.297

Shalek2014
Aligned 0.203 0.028 0.160 0.125 0.178 0.307 0.078 0.116 0.150

0.222 -0.001 0.102
Unaligned 0.157 0.226 0.171 0.183 0.178 0.249 0.123 0.084 0.115

Functional data performed better than multivariate data

Our main goal in this paper is to see the improvement of the classification rate by

considering a cell as a single-entity, functional structure rather than discrete multi-

variate data. As expected, the functional data approach outperformed in classifica-

tion compared to the clustering results from MDA. In Table 4, all of the data sets

show higher accuracy rates for functional clustering algorithms, mostly when func-

tions are not smoothed. In particular, the first six data sets show the highest ARI

when functions are not smoothed in Table 4. The last two data sets, Wallrapp2017
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and Shalek2014, have the highest ARI when the functions are smoothed. For Wall-

rapp2017 data, both parametric and non-parametric show the same classification

results. These results indicate that the first six data sets might have small biological

or technical noises where the smoothing method actually removed some structure

from the data that might be important to the analysis. This might be because the

gene expression data are already normalized and scaled in order to remove some

noises in preprocessing step. As a result, the smoothed functional data classifica-

tion analyses cannot achieve the highest accuracy performance compared to the

ones without smoothing.

Functional data sorted by eigenvalues showed the highest ARI

We are also interested in the improvement of classification rates by ordering the PCs

for the phase components. We proposed the criterion that in order to achieve the

best performance, sorting the PCs by eigenvalues would have the highest accuracy

in classification. Table 4 shows that all of the data sets achieved the highest ARI

when the PCs are sorted by eigenvalues rather than randomly, which means that our

proposed criterion obtains the best classification rate when we apply the functional

clustering algorithm to functional data converted from multivariate gene expression

data.

Discussion
In this study, we have proposed a new framework, functional data analysis for

scRNA-seq data, to identify the subpopulations of cell populations. We have demon-

strated that functional data analysis can be applied to scRNA-seq data to improve

the accuracy rate of classification to identify and characterize cell populations. We

consider a cell as a functional shape rather than discrete vector. This framework

improves the classification rates in scRNA-seq data analysis, in particular, when

the biological data may not represent the strongest signal present in the data. This

was one of the major problems in MDA since any evaluation is based on typical in-

ference by clustering the cells using MDA clustering algorithms in which clustering

labels can be biased [11]. In MDA, most bioinformatics techniques and methods are

focused on examining the discrete genomic units of genes, and this approach might

ignore the functional nature of the data and eventually loses important information

such as the dependency between the phase components that reflects the gene ex-

pression data. In this sense, an approach based on FDA also plays a major role in

scRNA-seq data analysis.

This novel proposed approach is to apply functional data analysis when multi-

variate data are very noisy and complex. Generally, we convert from multivariate

data to functional data and then perform functional principal component analysis

(fPCA) to reduce the dimension of the functional data. However, problems arise

when the raw multivariate data are too complex. In our approach, we consider how

to handle the number of spikes that are considered as dropouts for gene expression

data in scRNA-seq data analysis. To solve this problem, we first perform PCA in

MDA to condense the gene expression data for formatting for functional data. In

this way, we can not only reduce the dimensionality of the data but also remove the

dropouts such that the function can be easily fitted to the data.
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There are some limitations in our functional scRNA-seq data analysis. Due to

the removal of the noise several times, some of the important information may be

ignored in the analysis. For example, we first normalize, scale, and filter the cells

in gene expression data to reduce biological errors, such as batch effects; then, we

perform PCA to remove the dropouts of the data to fit the function. Then, we fit the

function on discretized gene expression data using a known basis. We also apply

smoothing techniques to smooth the functional data. When implementing these

several steps, we might remove crucial information about the gene expression data.

This indicates the need to exercise careful caution when using smoothing methods

for functional gene expression data.

Conclusions
This new statistical technique enhances the classification performance and ulti-

mately improves the understanding of stochastic biological processes. Therefore,

this new framework provides an essentially different scRNA-seq data analytical ap-

proach, which can complement conventional MDA methods such as Seurat, SC3,

and Monocle. It can be truly effective when current MDA methods cannot detect

or uncover the hidden nature of the gene expression dynamics due to weak sig-

nals by adapting these methods and constructing functional data after dimensional

reduction. Moreover, this study enables the conversion of functional data from mul-

tivariate gene expression data, and any further functional statistical analysis is

applicable to scRNA-seq data analysis. This is a critical step for scRNA-seq data

analysis as well as functional data analysis.
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