
Unsupervised Clusterless Decoding using a Switching Poisson Hidden Markov Model

Unsupervised Clusterless Decoding using a Switching
Poisson Hidden Markov Model

Etienne Ackermann etienne.ackermann@rice.edu
Caleb T. Kemere caleb.kemere@rice.edu
Department of Electrical and Computer Engineering
Rice University
Houston, TX 77005-1892, USA

John P. Cunningham jpc2181@columbia.edu

Department of Statistics

Columbia University

New York, NY 10027, USA

Abstract

Spike sorting is a standard preprocessing step to obtain ensembles of single unit data
from multiunit, multichannel recordings in neuroscience. However, more recently, some
researchers have started doing analyses directly on the unsorted data. Here we present a
new computational model that is an extension of the standard (unsupervised) switching
Poisson hidden Markov model (where observations are time-binned spike counts from each
of N neurons), to a clusterless approximation in which we observe only a d-dimensional
mark for each spike. Such an unsupervised yet clusterless approach has the potential to
incorporate more information than is typically available from spike-sorted approaches, and
to uncover temporal structure in neural data without access to behavioral correlates. We
show that our approach can recover model parameters from simulated data, and that it
can uncover task-relevant structure from real neural data.

Keywords: Hidden Markov Models, Clusterless Decoding

1. Introduction

Decoding neural activity is fundamental to much of neural data analysis. Most of the ap-
proaches to decoding are supervised, meaning that we are given labeled data (e.g., a set
of an animal’s positions along a track), as well as the corresponding neural data, and our
task becomes to learn a mapping from the neural activity to position, or whichever other
extrinsic correlate we are interested in. In this context, neural activity typically refers to
spike events from an ensemble (tens, hundreds or maybe even thousands) of neurons. How-
ever, neural data are most commonly recorded as continuous voltage traces on multiple
electrode channels, so that prior to decoding, spikes first have to be detected from these
voltage traces, and each of those spikes has to be assigned to one of N neurons in a pro-
cess called spike sorting (Gerstein and Clark, 1964; Lewicki, 1998). Figure 1.A shows an
example of the information that may be available for supervised decoding with spike sorted
data, including spike timing information, the neuron identity for each spike, spike waveform
feature information, and the extrinsic correlates (position in this figure).

Spike sorting workflows are often characterized by a high degree of subjectivity and vari-
ability (Febinger et al., 2018), and even with fully automated spike sorting approaches like
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that developed by Chung et al. (2017), results may still be sensitive to a host of parameter
choices. Spike sorting also throws away potentially valuable information: most spikes are
discarded in the spike sorting process for being too small or too “difficult” to sort, and so
they get lumped into background multiunit activity or “hash”. For those spikes that are
sorted, we typically throw away the uncertainty information about each spike assignment.
With the rapid rise in popularity of data mining and machine learning, it is not surprising
that researchers have tried to find ways to interpret neural data directly, without having to
perform spike sorting first. Indeed, the desire to circumvent the subjectivity and tedium of
the spike sorting process, along with the observation that spike sorting throws away valuable
information, has led to the recent development of many so-called “clusterless” approaches
(Ventura, 2008; Kloosterman et al., 2013; Deng et al., 2015). Clusterless approaches oper-
ate directly on spike waveform features (such as the peak amplitudes on each of the four
channels of a tetrode), without requiring or assuming knowledge of the underlying neuron
identity that generated each individual spike. Figure 1.B illustrates typical information that
may be available during supervised clusterless decoding, namely spike timing information,
spike waveform features, and the behavioral correlates.

A complimentary paradigm to the supervised decoding approaches mentioned above, is
that of unsupervised approaches to understand and interpret neural data (see e.g., Low
et al., 2018; Williams et al., 2018; Maboudi et al., 2018; Williams et al., 2019; Mackevicius
et al., 2019). These unsupervised approaches provide powerful ways of understanding the
latent dynamics of neural activity, but to date they all require sorted spikes from ensembles
of neurons. Figure 1.C shows an example of the information available during unsupervised
decoding of sorted data, namely the spike timing information and the neuron identities
responsible for generating those spikes. Note that there are no (observable) extrinsic corre-
lates, and that fine spike timing information is lost during the binning process.

In this paper, we extend one particular unsupervised approach, namely the (switching
Poisson) hidden Markov model (HMM; see e.g., Linderman et al., 2016; Maboudi et al., 2018,
as well as Figure 1.E) to the clusterless setting, in a new model that we call the clusterless
hidden Markov model. This clusterless HMM builds on the switching Poisson framework
used by Gat and Tishby (1993); Kemere et al. (2008), and others, by treating the neuron
identities responsible for the spikes as latent variables in the model (see Figure 2.F), and by
incorporating our uncertainty about those identities in the form of parametric distributions
of the waveform features associated with each hidden neuron, the mark distributions. Such
a clusterless approach allows us (i) to incorporate more information than typically available
with a standard spike sorting approach, and (ii) to eliminate the subjectivity and variabil-
ity arising from the spike sorting process. The incorporation of additional information is
particularly appealing for short time-scale event analysis (e.g., replay or theta sequences),
where there are often not sufficiently many spikes remaining after spike sorting to decode
with much accuracy.

We present the clusterless HMM and one possible way of doing inference on the model
in Section 2, and we show that we can accurately recover the underlying model parameters
in a simulation study in Section 3. We also show that the model can uncover temporal
structure in real neural data from the rat hippocampus in Section 4, and finally we provide
some directions for future improvement and investigation in Section 5.
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Figure 1: Switching Poisson HMM versus clusterless HMM.
(A)–(D) Illustration of information available within different decoding paradigms. (A) Super-
vised + sorted decoding. (B) Supervised + clusterless decoding. (C) Unsupervised + sorted
decoding (e.g., switching Poisson HMM). (D) Unsupervised + clusterless decoding (this paper).
(E) Graphical model illustrating the switching Poisson HMM, where the sequence of states are
unobserved, and each state generates an observable collection of spike counts within the asso-
ciated time window. Examples of observations during two time windows are shown on the left,
namely spike counts with neuron identities. (F) Graphical model for our clusterless HMM, where
the neuron identities generating the spikes are unobservable. The unobservable neuron identi-
ties become latent variables in our model, and these generate the observable marks. Examples
of observations are shown on the left, namely a collection of unsorted spike waveform features
during each time window.
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2. Methods

We present a novel clusterless HMM for analyzing and decoding multiunit sequential neural
activity in an unsupervised manner. The Baum–Welch algorithm is an expectation max-
imization (EM)-based algorithm for estimating the maximum-likelihood parameters of an
HMM (Bilmes et al., 1998), and we will use it in this paper to do inference on our model.
The Baum–Welch algorithm critically relies on our ability to evaluate P (yt |St), from which
we can efficiently compute several other quantities of interest to enable inference with our
models (see e.g., Rabiner (1989) and Appendix B). That is, we need to be able to evaluate
the probability of observing a particular outcome yt for each (hidden) state St. In the
following sections, we will present our full clusterless HMM, and develop a sampling-based
approach to approximate P (yt |St).

The idea here is very simple. In particular, if we did know the neuron identities for each
spike, then we would not have to use a “clusterless“ approach, and we could instead fit a
standard switching Poisson HMM. So in our clusterless model, we can similarly compute
probabilities if we assume that we know the neuron identities, and we simply treat these
identities as hidden or latent variables in our model. Moreover, we do not need to know
exactly how many neurons there are, since a specification of the number of neurons simply
determines the partitioning of our waveform feature space, so that an over-specification
(or perhaps even a small under-specification) of the number of neurons should not have a
significant effect on our model’s behavior. These ideas will be made precise below.

2.1 Notation and preliminaries

Suppose that we record from a population of N neurons, with each neuron identified by
n ∈ {1, 2, . . . N}. Further, suppose that we observe a d-dimensional mark

(
m ∈ Rd

)
for

each spike from a neuron. The marks could be, for example, the peak amplitudes from the
four channels of a tetrode, or principal components of the observed waveform on a collection
of electrodes, and so on.

If we assume that the neurons have state-dependent firing rates r : Z → RN with
St 7→ r(St) ≡ rt, then we consider each neuron as generating a train of events from an
inhomogeneous (state-dependent) Poisson process, with an associated (state-dependent)
rate, rn(St) ∈ R+. To be more precise, we assume that the neurons are independent, and
that they have N state-dependent rates, rt =

(
r1(St), r

2(St), . . . , r
N (St)

)
at time t ∈ R,

and for some state St ∈ {1, 2, . . . , Z}. We may then collect all of these rates as the matrix
Λ ∈ RZ×N

≥0 , and we will estimate these rates as part of the HMM parameter estimation
process.

For simplicity, we will assume that we have only one probe (or tetrode). In general, we
assume that the tetrodes are independent, so that tetrodes record from disjoint subsets of
neurons, and therefore generalization to the multiprobe case is straightforward.

Now, consider a single observation window (t − 1, t] simply identified with t, dur-
ing which we observe K(t) = K spike events (equivalently, we observe K marks: yt =
{m1, . . . ,mK},mi ∈ Rd, i = 1, . . . ,K), and for which we assume that each neuron has a
constant firing rate for the duration of the time window. Since observation windows are
conditionally independent (given the underlying states), we only need to concern ourselves
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with evaluating P (yt |St) for a single observation window (the process remains unchanged
for each observation window).

Finally, let us assume that the marks (the spike waveform features) can be modeled as
coming from unit-specific distributions parameterized by Φ. The choice of this distribution
will depend on which features are ultimately chosen to represent each mark. In this paper,
we simply use the peak amplitudes on each of the tetrode channels, which can be adequately
modeled as coming from unit-specific multivariate normal distributions in practice.

2.2 Model Specification

As suggested before, let yt denote the observation at time t, where yt ∈ Rd×K(t), and
where K(t) is the number of marks observed during time window t. We assume that the
observations are sampled at discrete, equally-spaced time intervals, so that t can be an
integer-valued index.

The hidden state space is assumed to be discrete, with St ∈ {1, . . . , Z}. To define a
probability distribution over sequences of observations, we need to specify a probability
distribution over the initial state, π ≡ P (S1), with πi = P (S1 = 1), the Z × Z state
transition probability matrix, A, with aij = P (St = j |St−1 = i), and the emission model
defining P (yt |St).

In the usual multiple-spike-train switching Poisson model (see e.g., Jones et al., 2007;
Kemere et al., 2008), we simultaneously observe N spike trains (corresponding to N neu-
rons). Each spike train is modeled as an independent Poisson process with rate λn(t), and
the vector of firing rates, λ(t), switches randomly between one of Z states. We will use
the same idea here, but since the number of neurons and more importantly the identities of
those neurons are hidden, we will have to be slightly more careful in our treatment. Nev-
ertheless, assuming that our data were generated by N hidden neurons, we associate the
N -dimensional rate vector rt with the expected number of marks from each of the neurons
during time window t. There are Z possible rate vectors (one for each state St), so that we
can collect all the possible rates captured by the model in the rate (or observation) matrix
Λ ∈ RZ×N

≥0 .

We further assume that our model is time-invariant in that the state transition prob-
ability matrix and the emission model do not change over time, and that the states form
a first-order Markov chain, namely that P (St |St−1, . . . , S1) = P (St |St−1). The HMM is
then fully specified by the set of parameters Θ = {π,A,Λ}. There are therefore a total of
Z(1 + Z +N) parameters to estimate for the model1.

1. Technically we may also need to estimate the number of hidden states, the number of hidden neurons,
as well as the neuron cluster parameters, but those are typically estimated a priori and / or outside of
the Baum-Welch algorithm, so that we do not consider them as part of the HMM parameter estimation
process.
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2.3 Sampling approach to evaluate P (yt |St)

In order to use the Baum-Welch algorithm to estimate the set of parameters Θ = {π,A,Λ},
we need to be able to evaluate

P (yt |St = j) = P
(
yt | r(St = j)

)
= P

(
(mk)

K(t)
k=1 ,K

∣∣ r(j)t ; {Φn}Nn=1

)
(1)

= L
(
r
(j)
t

∣∣ (mk)
K(t)
k=1 ,K; {Φn}Nn=1

)
where the dependence of the sequence of observed marks yt ≡ (mk)

K(t)
k=1 on the hidden state

St is realized through the state-dependent firing rates r(St = j) ≡ r
(j)
t , as well as the unit-

specific mark distribution parameters {Φn}Nn=1. That is, conditioning on St is equivalent

to conditioning on r
(j)
t . Note also the P

(
(mk)Kk=1

)
≡ P

(
(mk)Kk=1,K

)
, and we will simply

write P
(
(mk)Kk=1

)
for convenience.

A graphical representation during one time window of our clusterless HMM is shown
in Figure 2. The collection of K marks depend on the unobserved neuron identities (qkn),
as well as on the possibly state dependent mark distribution parameters, Φ. The neuron
identities depend on the firing rates, ρ and r, and on how many marks were observed (K).
The number of marks, K, is assumed to follow a Poisson distribution with mean rate r, the
total number of expected spikes from all the neurons in state S.

Figure 2: Probabilistic graphical model during single time window for the clusterless HMM.
S: discrete state, |S| = Z; r: aggregate firing rate, ρn: relative firing rate of neuron n; K ∼
Pois(r): number of marks observed; qk ∼ Multinom(K,ρ): neuron identity indicator; Φn: mark
distribution parameters; mk: d-dimensional mark.

Dropping the dependence of K on t (purely for notational simplicity), and dropping the
explicit parameterization of P (·) by Φ, we note that we desire to evaluate

P
yt,|r(j)t

(
(mk)Kk=1

∣∣ r(j)t

)
, (2)

which is hard to evaluate explicitly for two key reasons, namely (i) we do not know which
neurons / units gave rise to each of the marks, and (ii) we do not know a priori how many
marks we will observe in a particular observation window, so that we cannot easily specify a
simple (possibly multivariate) probability distribution over the sequence of observed marks.
Indeed, the dimensionality of this distribution will have to depend on how many marks we
observe in each window.
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To address challenge (i) above, we introduce the auxiliary hidden random variable IK ∈
ZN×K , that encodes which of the latent units gave rise to each of the observed marks. Each
column of IK is a standard unit vector en whose elements are all zeros, except for the nth
element, which is equal to one. That is, the kth column encodes the neuron identity n that

generated the kth mark. We denote this as IK ≡
(
eu(k)

)K
k=1

, such that u(k) ∈ Z is the
neuron identity of the kth mark.

In particular, we note that

P
yt|r(j)t

(
(mk)Kk=1

∣∣ r(j)t

)
=

∫
IK

P
yt,IK |r(j)t

(
(mk)Kk=1, I

K
∣∣ r(j)t

)
dIK . (3)

Making the dependence on time t and state j implicit (i.e., letting r ≡ r(St = j) as
before), we note that

Py,IK |r
(
(mk)Kk=1, I

K
∣∣ r) = Py|IK ,r

(
(mk)Kk=1

∣∣ IK , r) · PIK |r(I
K | r) (4)

so that∫
IK

Py,IK |r
(
(mk)Kk=1, I

K
∣∣ r) dIK =

∫
IK

Py|IK ,r

(
(mk)Kk=1

∣∣ IK , r) · PIK |r(I
K | r) dIK

= EIK |r
[
Py|IK ,r

(
(mk)Kk=1

∣∣ IK , r)]. (5)

Note that it is generally difficult to compute the integral directly, whereas it is somewhat
simpler to estimate the expected value, assuming of course, that we can sample from IK | r
according to it’s distribution. Indeed, if we are able to sample Q(i) ∼ PIK |r(I

K | r), where

Q(i) ∈ ZN×K for i = 1, . . . ,M , then

Py|r
(
(mk)Kk=1

∣∣ r) = EIK |r
[
Py|IK ,r

(
(mk)Kk=1

∣∣ IK , r)]
≈ 1

M

M∑
i=1

Py|IK ,r

(
(mk)Kk=1

∣∣ IK = Q(i), r
)

=
1

M

M∑
i=1

Py|IK ,r

(
(mk)Kk=1,K

∣∣ IK = Q(i), r
)

=
1

M

M∑
i=1

Py|IK
(
(mk)Kk=1

∣∣ IK = Q(i)
)
· Py|IK ,r

(
K
∣∣ IK = Q(i), r

)
=

1

M

M∑
i=1

K∏
k=1

P
(
mk; Φ(qk(i))

)
·

N∏
n=1

Pois
(
V (i)
n ; rn

)
(6)

where we have explicitly brought K back into P
(
(mk)Kk=1,K | IK , r

)
, and where we have

used the fact that the marks are assumed independent to express P
(
(mk)Kk=1 | IK

)
as a

product. We have also made use of the conditional independence (see Figure 2) of the
marks on the neuron identities (Q) and the number of observed marks (K) to factorize

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/760470doi: bioRxiv preprint 

https://doi.org/10.1101/760470
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ackermann, Cunningham and Kemere

P
(
(mk),K | IK , r

)
. Then we can finally approximate the data log likelihood simply as:

log
[
Py | r

(
(mk)Kk=1

∣∣ r)] ≈
≈ log

[
M∑
i=1

exp

(
K∑
k=1

log
[
P
(
mk; Φ

(
qk(i)

))]
+

+
N∑

n=1

log
[
Pois

(
V (i)
n ; rn

)])]
− log(M) (7)

where, for each mark, Φ depends on the neuron identity encoded by qk(i), the kth

column of the ith sample Q(i), and where V
(i)
n is the total number of spikes from neuron n,

for the ith sample. That is,

Vn =

K∑
k=1

(
u(k) = n

)
≡

K∑
k=1

[
IK
]
nk
, n = 1, 2, . . . , N, so that V (i)

n =

K∑
k=1

qk(i)n (8)

and where qkn is the nth element of the kth column of Q, which equals one if we assume
that the kth mark was generated by the nth neuron, and zero otherwise.

In order to sample Q ∼ PIK |r(I
K | r), it is convenient to factorize the rate (r) into the

aggregate rate r ≡
∑N

n rn, and the relative rates (ρ1, ρ2, . . . , ρN ) ≡ ρ ∈ RN s.t.
∑N

n ρn = 1
(see Figure 2). In this way, the (true) rate associated with neuron n is simply rn = rρn, and
we can simply sample from the multinomial distribution of V, one trial at a time, for each
mark identity in Q(i). That is, for k = 1, . . . ,K, sample

[
Q(i)

]
k
∼ Multinomial

(
1, r
‖r‖1

)
,

where [·]k is used to denote the kth column:

PIK |r
(
IK | rt

)
∝ PVK |r

(
VK | r

)
∼ Multinom

(
K,

r

‖r‖1

)
= Multinom

(
K,ρ

)
. (9)

Note that this sampling strategy yields the correct number of neuron identities (propor-
tional to their rates), but it does not affect the order of the columns of Q.

2.4 Updating the state-dependent firing rates, r(j)

Ordinarily, we may consider updating the rates according to

r̂n
∣∣
St=j

=

∑T
t=1 γj(t)V

(j)
n (t)∑T

t=1 γj(t)
(10)

where
∑T

t=1 γj(t) is the expected number of times that we are in state j (or equivalently,
the expected number of transitions away from state j; even more explicitly, γj(t) = P (St =

j |Y)), and V
(j)
n (t) is the number of marks in time window t that were generated / emitted

by neuron n (and given that the system is currently in state j). However, we do not know
which marks were generated by which neurons, so we have to consider

r̂n
∣∣
St=j

=

∑T
t=1 γj(t)E

[
V

(j)
n (t)

]∑T
t=1 γj(t)

(11)
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instead.

It turns out that we can efficiently compute this expectation, for time window (t− 1, t],
as follows:

EIK |r,(mk)
K
k=1

[
V (j)
n (t)

]
=

K(t)∑
k=1

qkn(t, j) (12)

where

qki (t, j) =
P
(
m

(t)
k ; Φi

)
· ρ(j)i∑N

n=1 P
(
m

(t)
k ; Φn

)
· ρ(j)n

, i = 1, 2, . . . , N, (13)

and where the dependence on t should be clear, namely that the sequence of marks (mk)
are those observed during time window t. Note that (13) is computed independent of any
sampling.

The prior distribution over states, πi ≡ P (S1 = i), and the transition probability matrix,
A, can be estimated in the standard way, namely

π̂i = γi(1), i = 1, 2, . . . , Z (14)

and

âij =

∑T−1
t=1 ξij(t)∑T−1
t=1 γi(t)

(15)

where ξij(t) = p(St = i, St+1 = j |Y), so that
∑T−1

t=1 ξij(t) is the expected number of
transitions from state i to state j.

The calculations of P (yt |St) and E[V
(j)
n as well as the parameter estimation process

are summarized in Algorithms 3–1 in Appendix B.

3. Simulation Case Study

We tested our clusterless HMM on simulated data so that we could determine exactly how
well model parameters were recovered. In particular, we were interested in recovering the
state transition probability matrix A ∈ RZ×Z , the observation—or rate—matrix Λ ∈ RZ×N ,
and a sequence of latent states (S1, S2, . . . ST ).

For the remainder of this paper, we will assume that the mark distributions are inde-
pendent of the hidden states, and that the marks can be modeled as multivariate normal
distributions with parameters Φ = {µn,Σn}Nn=1 (see Figure 3). In this case, we can esti-
mate the mark distributions before doing parameter estimation for our clusterless HMM,
and we chode to use a simple Gaussian mixture model (GMM) to estimate the mark distri-
bution parameters. Moreover, substituting the multivariate normal mark distributions into
(6), (7), and (13) lead to

Py|r
(
(mk)Kk=1

∣∣ r) ≈ 1

M

M∑
i=1

K∏
k=1

N
(
mk;µ(qk(i)),Σ(qk(i))

)
·

N∏
n=1

Pois
(
V (i)
n ; rn

)
,
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Figure 3: Probabilistic graphical model for the clusterless HMM with state-independent
multivariate normal mark distributions.
S: discrete state, |S| = Z; r: aggregate firing rate, ρn: relative firing rate of neuron n; K ∼
Pois(r): number of marks observed; qk ∼ Multinom(K,ρ): neuron identity indicator; µn: neuron
centroid; Σn: neuron covariance; mk ∼ N

(∑
n q

k
nµn,

∑
n q

k
nΣn

)
.

log
[
Py | r

(
(mk)Kk=1

∣∣ r)] ≈
≈ log

[
M∑
i=1

exp

(
K∑
k=1

log
[
N
(
mk;µ

(
qk(i)

)
,Σ
(
qk(i)

))]
+

+
N∑

n=1

log
[
Pois

(
V (i)
n ; rn

)])]
− log(M)

and

qki (t, j) =
N
(
m

(t)
k ;µi,Σi

)
· ρ(j)i∑N

n=1N
(
m

(t)
k ;µn,Σn

)
· ρ(j)n

, i = 1, 2, . . . , N.

3.1 Simple two-state, three-neuron example

As a simple yet representative example, we present parameter estimation results from a

system with state transition probability matrix A =

[
0.8 0.2
0.5 0.5

]
, and a rate matrix Λ ≈[

4.72 0.07 3.21
4.75 2.37 0.88

]
.

More specifically, we randomly sampled the centroids and covariances of our N = 3
latent units, which we modeled as (d = 2 dimensional) multivariate normal distributions.
This choice of mark distribution works reasonably well in practice when the marks are
waveform peak amplitudes on channels of a tetrode, and we can use a Gaussian mixture
model as a preprocessing step to estimate the parameters Φn = (µn,Σn) for each neu-
ron n = 1, . . . , N . In the rest of this paper we will adopt this strategy. Consequently,
we now have that P

(
mk; Φ(qk(i))

)
= N

(
mk;µ(qk(i)),Σ(qk(i))

)
in (6) and (7), and that

P
(
m

(t)
k ; Φn

)
= N

(
m

(t)
k ;µn,Σn

)
in (13).
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We then sampled a sequence of states (S1, S2, . . . , ST ) from the state transition prob-
ability matrix, A, and for each of those states we generated state-dependent spike events
by sampling from a multivariate Poisson distribution with rates given by the corresponding
row of Λ. For each of those spike events, we then generated a d = 2 dimensional mark by
sampling from the unit-specific multivariate normal distributions, leading to a sequence of
observations (y1,y2, . . . ,yT ).

Using the sequence of observations, (yt)
T
t=1, we then fit the clusterless HMM by evalu-

ating P (yt |St) using (6) for each possible state St and time window t, and by using (15)
to update the transition probability matrix, A, and (11) to update the observation / rate
matrix, Λ, during each iteration of the Baum-Welch algorithm. We used M = 5000 samples
to approximate (6).

We sampled a length T = 200 state sequence, and used the first 100 samples to fit
the model, and the next 100 samples to evaluate the Viterbi (state-) decoding accuracy of
the model. The results from the parameter estimation process, as well as from the state
decoding process, are shown in Figure 4.

Notice that the parameters seem to have been estimated reasonably well, at least qual-
itatively. We define the relative error between matrices B̂ and B as

εrel(B̂,B) =
‖B̂−B‖F
‖B‖F

(16)

where ‖ · ‖F is the Frobenius norm: ‖B‖F = (
∑

ij |aij |2)1/2.
The relative parameter estimation error for the state transition probability matrix was

εrel(Â,A) = 0.05, for the rate map, εrel(Λ̂,Λ) = 0.12, and the state decoding accuracy was
97.5%.

3.2 Misspecification of Hyperparameters

In the previous section we had assumed that both the number of latent states as well as the
number of latent neurons were known, and the parameter estimation was performed with
the exact numbers of each. In reality, we may neither know the “true” number of states,
nor the number of neurons that participated in generating our data.

3.2.1 Overspecification of Number of States

For the unknown number of states, a more advanced Bayesian treatment may be considered,
where the number of states is itself learned directly from the data such as in the hierarchical
Dirichlet process hidden Markov model (see e.g., Teh et al., 2006), or a likelihood-based
approach may be followed, as described by Celeux and Durand (2008). However, as far
as decoding accuracy is concerned, it may be argued that the HMM approach is largely
insensitive to the precise number of states (see e.g., Maboudi et al., 2018, as well as the
example in this section). In effect, choosing a larger number of hidden states partitions
our latent space into a finer partition, and conversely, a lower number of states specifies a
coarser partition. In an alternate view, if we consider a mapping from the state space (our
domain) to some external space of interest (our codomain, e.g., an animal’s position in a
maze), then we may expect to decode to the codomain reasonably well as long as we can
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Figure 4: Parameter estimation and decoding example from synthetic dataset. (A) The
true, and (B) inferred state transition probability matrices. (C) The true rate
map that was used to generate the marks, and (D) the inferred rate map obtained
by fitting the model. (E) Top: true state sequence generated from the transition
matrix in (A); bottom: decoded state sequence. Colors indicate different states:
St ∈ {z1, z2}.

find a surjective mapping; adding additional states should not affect our ability to find such
a mapping, even though distinctness may become lost.

Indeed, we find that the decoding accuracy remains unchanged at 97.5% if we artificially
use Z = 4 hidden states instead of the Z = 2 that were used to generate the data, and if we
associate both dark and light purple states with “true” state z1, and both dark and light gray
states with “true” state z2 (see Figure 5). This clearly illustrates the loss of distinctness,
without affecting our ability to decode to the desired space (the original, data-generating
state space in this instance).

3.2.2 Overspecification of Number of Neurons

For the unknown number of neurons, things are a bit simpler. We may get some idea by
simple visual inspection of our data, or by performing some reasonable clustering in our
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Figure 5: Overspecification of number of states. (A) The inferred transition matrix, and (B)
the inferred rate map. (C) Decoding results. Top: true state sequence; bottom:
decoded state sequence. Colors indicate different states: St ∈ {z1, . . . , z4}.

mark space. But as was the case for the number of hidden states, an overspecification of
the number of neurons should have a relatively small effect on the model’s ability to decode
(or to do most inference tasks, for that matter).

Indeed, if we over-specify N = 5 instead of the N = 3 neurons that were used to generate
the data, we again find that our decoding accuracy is unchanged at 97.5% (see Figure 6).
The relative estimation error in the transition matrix is also unchanged from when we had
used the exact number of neurons.

This insensitivity to the number of neurons should not be very surprising, since neu-
ral decoding is often robust to subjective differences in the spike sorting process, where
one researcher may combine two putative units together, while another may keep them as
separate clusters. However, when we have limited data—such as during replay detection
and analysis—the decoding robustness quickly fades, and small differences in spike sorting
quality can have an outsized effect on analysis results. Thankfully, the clusterless approach
presented in this paper (and in general) allows us to incorporate much more data than is
typically available in a spike-sorting pipeline, thereby restoring some of the typical decoding
robustness.
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4. Application to Hippocampal Place Cell Data

We also fit our clusterless HMM to real neural data that were recorded from area CA1 in
the rat hippocampus. In particular, a rat was trained to run back-and-forth on a 100 cm
long linear track for liquid reward, and we subsequently recorded neural activity while the
animal was performing this task. We expected that the clusterless HMM would capture the
characteristic ensemble population “place cell” activity during periods in which the animal
was running, and we expected to see that latent states correspond roughly to locations
along the linear track (see e.g., Linderman et al., 2016; Maboudi et al., 2018).

4.1 Decoding Place Cell Activity with the Clusterless HMM

The animal was on the linear track for approximately 15 minutes. Periods of running activity
were identified by applying a minimum speed threshold of 8 cm/s, and with this criterion, the
animal was found to be running for a total duration of just over 4 minutes. Contiguous bouts
of running (longer than 400 ms) were then partitioned into 400 ms observation windows.
The distribution of these contiguous segments of running activity is shown in Figure 7.B,
from where we can see that there are many short sequences (each consisting of only a
few observation windows), and relatively few “long” sequences of 10 observation windows
or more. With overwhelmingly short sequences, we can not expect the estimation of the
transition probability matrix to be as reliable as if we had longer sequences, but we still
find that the estimated transition probability matrix (Figure 7.C) is sparse, and strongly
clustered around the diagonal and super-diagonal, with only a few other transitions scattered
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throughout. This sparse structure is suggestive of sequential hippocampal dynamics, as we
would expect during running behavior (Maboudi et al., 2018).

We included all (pyramidal and interneuron) spikes > 70 µV for our clusterless HMM,
which resulted in about twice as many spikes during run as compared to the manual-spike-
sorted data (7,154 sorted vs. 14,453 unsorted spikes), and about 30% of the total number
of spikes (using 0 µV as baseline; see Figure 7.A).

By augmenting our dataset with some external correlate (the animal’s position in this
case), we can learn a mapping between the state space and the external correlate. We refer
to this mapping as the latent state place field (lsPF). In particular, we use our clusterless
HMM to decode some neural activity to the the state space, and we use the associated
position data to then learn a mapping between the state space and position. We notice
that the states localize relatively well in space (Figure 7.E), and we can use these lsPFs to
decode neural activity to position (Figure 7.D).

In Figure 7.D we see the posterior probability distribution over position for each 400 ms
observation window, and more importantly, we see that the regions of highest probability
typically coincide with the animal’s true position (black trace).

4.2 Comparison to Switching Poisson HMM

Unlike when we used simulated data, it is impossible to determine the “true” relative errors
in estimating any of the parameters for the real neural data, especially since the latent states
are merely mathematical abstractions (albeit with biological support or justification), so no
true values for these parameters even exist. An alternative approach of evaluating our
model’s performance is by analyzing its position-decoding ability instead. Here we have
chosen to compare our clusterless HMM’s (position) decoding performance to the decoding
performance of the switching Poisson HMM, where manually sorted data are used.

For both the clusterless and the switching Poisson HMMs, we kept as many of the
hyperparameters the same as we could, including the observation window sizes, the se-
quences used for training and for testing, the number of (assumed) hidden states, etc.
Using the manually-sorted spikes (where we have fewer spikes, but arguably higher quality
spikes without interneurons or other “noise”), we obtain a median decoding error of only
6.3 cm, compared to a median decoding error of 8.2 cm for the clusterless approach (see
Figure 7.F). However, the area under the curve (AUC) for the cumulative error distribution
of the switching Poisson HMM is 87.3%, whereas the clusterless HMM achieved an AUC of
88.1%, although these differences did not appear to be statistically significant2.

Consequently, we may conclude that the clusterless HMM appears to have similar de-
coding accuracy compared to the switching Poisson HMM, even though no manual spike
sorting was performed for the clusterless HMM.

2. Statistical significance was evaluated with a bootstrap approach where we aggregated the AUCs of 5000
sampled CDFs (5000 for the switching Poisson group, and 5000 for the clusterless group), where each
sampled CDF was obtained by randomly sampling, with replacement, from the pooled switching Poisson
and clusterless HMM CDFs. Testing for a difference in the means of the two groups with Welch’s t-test
resulted in a two-sided p-value of 0.37.
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Figure 7: Clusterless hidden Markov model of hippocampal data during RUN. (A) Per-
centage of spikes retained as a function of detection threshold. We kept all spikes
> 70 µV (or ≈ 30%) (B) Histogram of sequence lengths (in number of observation
windows). (C) Transition probability matrix. (D) Decoded posterior distribution
over position for several run segments (200 × 400 ms windows). Black trace
indicates animal’s actual position. (E) Latent state place fields (lsPFs) relating
state space to animal position. (F) Cumulative distribution function of position
decoding errors.

5. Discussion and Future Directions

We have presented a new model, the clusterless HMM, which we have shown able to de-
code position just as well as the standard switching Poisson HMM, without access to the
manually-sorted neuron identities. Even though the difference between the two approaches
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was not statistically significant here, others have shown that with the right dataset, the
clusterless approaches can indeed improve decoding accuracy (Kloosterman et al., 2013;
Matano and Ventura, 2018), and this potential improvement may be especially important
for the study of severely data-limited analyses such as the study of replay (see e.g., Acker-
mann et al., 2017; Maboudi et al., 2018, for examples of applying the HMM framework to
the identification and characterization of replay events).

In Section 2 we have only presented the sampling approach for spikes from a single
(potentially multi-channel) probe. However, the extension to multiple probes is straight-
forward, and such an approach was applied to the real data example in Section 4. The key
assumption for the multiprobe case is that each probe records from an independent subset
of neurons, so that sampling can be restricted to neurons associated with each individ-
ual probe. Since probes are assumed independent, likelihoods can be computed by taking
the product of the likelihoods for individual probes. The multiprobe extension therefore
demands a sightly more sophisticated implementation, rather than any real algorithmic
changes.

It is also possible to derive update and estimation equations for the mark distribution
parameters directly in the Baum–Welch context (instead of using a separate estimation
algorithm like the GMM that we have used in Sections 3 and 4), but such an approach would
only really be beneficial if we assume that the mark distributions are state dependent.

One interesting consequence of our sampling approach to approximate P (yt |St) is that
the data likelihood is no longer guaranteed to increase during each iteration of the EM
algorithm (unless approximations are reused as suggested in Algorithm 1 in Appendix A).
When we have found that the likelihood decreased during an iteration, we did not update
the model parameters. Instead, we would repeat the iteration with a new set of samples,
and if we again did not find an improvement in the likelihood, we would terminate the EM
process. In practice, the early iterations made the biggest differences to the final likelihood,
and those early iterations never seemed to result in a decrease in likelihood, so that whether
we were to terminate immediately upon seeing a decrease in likelihood or whether we were
to do some smarter iterative approach, it didn’t really seem to significantly affect the final
results or model parameters.

Even though our clusterless HMM was able to recover the approximate parameters for
the simulated dataset, and even though it clearly recovered temporal and task-relevant
structure in the real dataset, there are a number of remaining challenges, the most impor-
tant of which may be the high computational cost of the sampling approach that we have
taken here. The model took about 6 hours to fit to the real dataset used here, which is
already a relatively small dataset by today’s standards. However, several improvements
could be made to speed up the computation time. For example, the samples in (6) are
assumed to be independent, and so their calculation can be trivially parallelized. Some of
the samples can also potentially be re-used in the forward backward algorithm (for example,
the calculation of αj(t+ 1) and βj(t) both make use of P (yt+1 |St = j); see the Appendix).
It is however fairly challenging to determine how many samples we need for sufficiently
accurate estimates of P (yt |St), since it depends on many factors, including the degree of
separability of the neuron clusters, the dimensionality of the feature space, the underlying
firing rates of the neurons, and so on. Deriving an alternative way to approximate P (yt |St),
or establishing some bounds or guidelines to determine the number of samples needed, is
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certainly a worthwhile future endeavor. Nevertheless, even with the relatively slow com-
putation time, the clusterless HMM already provides a unique approach to the clusterless
analysis of replay or other events where behavioral correlates are not available (e.g., during
sleep), necessitating the use of unsupervised approaches.
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Animal Use

One male Long Evans rat (Charles River Laboratories) was implanted with a micro-drive
array with independently adjustable tetrodes (implant coordinates3.66 mm AP and 2.4 mm
ML relative to bregma). Tetrodes were slowly lowered into hippocampal CA1 over a pe-
riod of about one week. Tetrode locations were verified by characteristic LFP waveforms
attributed to the target area in conjunction with estimated tetrode depth. All experiments
were approved by the Rice University Institutional Animal Care and Use Committee’s
guidelines and adhered to National Institute of Health guidelines.

Code Availability

A modified version of the Python package hmmlearn (https://github.com/hmmlearn/
hmmlearn) has been made available at https://github.com/nelpy/hmmlearn. This mod-
ified package implements the multiprobe parameter estimation and decoding of our cluster-
less HMM with multivariate normal mark distributions.
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Appendix A: Parameter Estimation Algorithm

The iterative Baum–Welch parameter estimation procedure for our clusterless HMM is
given in Algorithm 1. Algorithm 1 makes use of Algorithm 3 to approximate P (Yt |St),
and Algorithm 2 to calculate E[V

(j)
n ].

Algorithm 1 Clusterless HMM parameter estimation.

1: inputs: sequence of observations: (yt)
T
t=1, current or initial model parameters: Θ =

{π,A,Λ}, and mark distribution parameters (e.g., {µn,Σn}Nn=1)
2: outputs: updated model parameters Θ = {π,A,Λ}
3: for EM algorithm iteration l = 1 to L (or until convergence criterion reached) do
4: compute p(yt |St = j) according to Algorithm 3, for t = 1, . . . , T and j = 1, . . . , Z

5: compute E[V
(j)
n (t)] according to Algorithm 2, for t = 1, . . . , T ; j = 1, . . . , Z; and

n = 1, . . . , N
6: for state j = 1 to Z do
7: update prior state distribution π according to (14)
8: for neuron n = 1 to N do
9: update rate r̂n

∣∣
St=j

≡ Λjn according to (11)
10: end for
11: for state i = 1 to Z do
12: update transition probability Aij according to (15)
13: end for
14: end for
15: end for

Algorithm 2 Calculation of E[V
(j)
n ].

1: inputs: sequence of observations: (yt)
T
t=1, current or initial rate matrix: Λ, and mark

distribution parameters (e.g., {µn,Σn}Nn=1)

2: outputs: E[V
(j)
n (t)] for t = 1, . . . , T ; j = 1, . . . , Z; and n = 1, . . . , N

3: for time window t = 1 to T do
4: observe yt =

(
mk

)K(t)

k=1
in time window (t− 1, t]

5: for state j = 1 to Z do
6: r← jth row of Λ; ρ← r/‖r‖1
7: for neuron n = 1 to N do
8: compute E[V

(j)
n (t)] according to (12)

9: end for
10: end for
11: end for
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Algorithm 3 Sampling approach to approximate p(yt |St).
1: inputs: sequence of observations: (yt)

T
t=1, current or initial rate matrix: Λ, and mark

distribution parameters (e.g., {µn,Σn}Nn=1)
2: outputs: p(yt |St) for t = 1, . . . , T and St = 1, . . . , Z
3: for time window t = 1 to T do
4: observe yt =

(
mk

)K(t)

k=1
in time window (t− 1, t]

5: for state j = 1 to Z do
6: r← jth row of Λ; ρ← r/‖r‖1
7: for sample i = 1 to M do
8: sample Q(i) ∼ PIK |r(I

K | r):
9: for mark k = 1 to K(t) do

10: sample [Q(i)]k ∼ Multinom(1, ρ)
11: end for
12: for neuron n = 1 to N do
13: calculate V

(i)
n according to (8)

14: end for
15: end for
16: approximate bj(yt) ≡ p(yt |St = j) = p(yt | r) according to (6)
17: end for
18: end for

Appendix B: Baum–Welch Algorithm

The Baum–Welch algorithm makes use of the forward-backward algorithm to compute the
posterior marginals of all hidden state variables given a sequence of observations (Bilmes
et al., 1998). That is, it computes P (St |y1:T ).

Following standard notation (and for notational simplicity), we define bj(yt) ≡ p(yt |St =
j), which we evaluate by sampling as described in Section 2.3.

The forward algorithm gives us a way to compute the probability of seeing the partial
sequence y1, . . . ,yt and ending up in state i at time t. That is,

αi(t) = p
(
y1, . . .yt, St = i

∣∣ r1:t; {µ}, {Σ})
= p
(
Y1:t, St = i

∣∣ r1:t)
= p
({
m

[1]
1 , . . .m

[1]
k(1)

}
, . . .

{
m

[t]
1 , . . .m

[t]
k(t)

}
, St = i

∣∣ r1:t) (17)

where yt denotes the tth observation window, and where m
[t]
k denotes the kth mark in time

window t. In particular, αi(t) may be recursively computed as follows:

1. αi(1) = πibi(y1)

2. αj(t+ 1) =
[∑Z

i=1 αi(t)aij
]
bj(yt+1)

3. p(Y | r) =
∑Z

i=1 αi(T )
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The backward procedure is similarly used to compute

βi(t) = p
(
yt+1, . . .yT

∣∣St = i, rt+1:T ; {µ}, {Σ}
)

= p
(
Yt+1:T

∣∣St = i, rt+1:T

)
= p
({
m

[t+1]
1 , . . .m

[t+1]
k(t+1)

}
, . . .

{
m

[T ]
1 , . . .m

[T ]
k(T )

} ∣∣St = i, rt+1:T

)
(18)

which is the probability of observing the partial sequence yt+1 . . .yT given that we were in
state i at time t.

Similar to before, βi(t) may be recursively computed as follows:

1. βi(T ) = 1

2. βi(t) =
∑Z

j=1 aijbj(yt+1)βj(t+ 1)

3. p(Y | r) =
∑Z

i=1 βi(1)πibi(y1)

Having defined the forward and backward passes, we may now turn our attention to the
parameter estimation problem more directly.

In particular, we define
γi(t) = p(St = i |Y, r) (19)

which can be shown (by Markovian conditional independence) to be equal to

γi(t) =
αi(t)βi(t)∑Z
j=1 αj(t)βj(t)

.

Let
ξij(t) = p(St = i, St+1 = j |Y, r) (20)

which we can show to be equal to

ξij(t) =
γi(t)aijbj(yt+1)βj(t+ 1)

βi(t)
.

The parameter estimation updates then follow naturally in terms of γi and ξij as de-
scribed in Section 2.4. More specifically, the expected relative frequency spent in state i at
time t = 1 gives us an estimate for π:

π̂i = γi(1), (21)

while the rate estimates are updated according to

r̂nt
∣∣
St=j

=

∑T
t=1 γj(t)E

[
Vn(t)

]∑T
t=1 γj(t)

(22)

and the transition probabilities are updated according to

âij =

∑T−1
t=1 ξij(t)∑T−1
t=1 γi(t)

. (23)

The update equations for multiple sequences of observations are easy to derive (see e.g.,
Rabiner, 1989, for details).
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