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Abstract 
In the area of Big Data one of the major obstacles for the progress of biomedical research is                  
the existence of data “silos”, because legal and ethical constraints often do not allow for               
sharing sensitive patient data from clinical studies across institutions. While federated           
machine learning now allows for building models from scattered data, there is still the need               
to investigate, mine and understand clinical data that cannot be accessed directly.            
Simulation of sufficiently realistic virtual patients could be a way to fill this gap. 
In this work we propose a new machine learning approach (VAMBN) to learn a generative               
model of longitudinal clinical study data. VAMBN considers typical key aspects of such data,              
namely limited sample size coupled with comparable many variables of different numerical            
scales and statistical properties, and many missing values. We show that with VAMBN we              
can simulate virtual patients in a sufficiently realistic manner while making theoretical            
guarantees on data privacy. In addition, VAMBN allows for simulating counterfactual           
scenarios. Hence, VAMBN could facilitate data sharing as well as design of clinical trials.  

Introduction 
Clinical studies are important to increasingly base medical decisions on statistical evidence            
rather than on personal experience. Within a given area of disease there can exist many               
studies, and each of these studies has unavoidably certain biases due to inclusion /              
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exclusion criteria or over-representation of specific geographic regions and ethnicities.          
Moreover, usually neither the same clinical outcome measures nor the same molecular data             
are systematically collected in different studies of the same disease. Accordingly,           
compilation of a comprehensive view of a specific disease requires to analyze and compare              
multiple studies. However, legal and ethical constraints typically do not allow for sharing             
sensitive patient data beyond summary statistics outside the organization that is the owner,             
and even within one and the same organization the same reasons sometimes prevent data              
sharing. In consequence there exist data ”silos”. This is increasingly becoming an issue as              
medicine as a whole is becoming more and more driven by the availability of Big Data and                 
their analysis, including the increasing use of Artificial Intelligence (AI) and in particular             
machine learning methods in precision medicine ​(Fröhlich et al., 2018)​. While recent            
developments of federated machine learning techniques are certainly a major step forward            
(Ghosh et al., 2019; McMahan et al., 2016)​, their implementation is technically challenging             
and does not permit researchers to unbiasedly investigate, mine and understand clinical            
study data located within different organizations.  
Sufficiently realistic simulations of virtual patient cohorts could not not only be a mechanism              
to break data ”silos”, but also to allow researchers to conduct counterfactual experiments             
with patients, e.g. in the context of intensive care units ​(Chase et al., 2018; Knab et al.,                 
2016) or for better design of clinical trials ​(Galbusera et al., 2018; Lim et al., 2017)​.                
Regarding the latter we should mention that most existing work on virtual trial simulation              
focuses on modeling of mechanistically well understood pharmacokinetic and         
pharmacodynamic processes ​(Holford et al., 2010; Pappalardo et al., 2018)​. In contrast, our             
focus is here on data driven, model based simulations of virtual patients across biological              
scales and modalities (e.g. clinical, imaging) where no or little mechanistic understanding is             
available and required. 
 
We suggest a generative modeling framework for simulation of virtual patients, which is             
specifically designed to address the following key features of clinical study data: 

● limited sample size in the order of a few hundred patients 
● highly heterogeneous data with many variables of different distributions and          

numerical scales 
● longitudinal data with many missing values 

Our novel proposed method (Variational Autoencoder Modular Bayesian Networks -          
VAMBN) is a combination of a Bayesian Network ​(Heckerman, 1997) with modular            
architecture and Variational Autoencoders ​(Kingma and Welling, 2013) encoding defined          
groups of features in the data. Due to its specific design VAMBN does not only allow for                 
generating virtual patients under certain theoretical guarantees for data privacy ​(Dwork et al.,             
2006a)​, but also for simulating counterfactual interventions within them, e.g. a shift by age.              
Moreover, we demonstrate that one can “learn” the conditional distribution of a feature in one               
study to counterfactually add it to another one. 
 
We evaluate our VAMBN on the basis of two Parkinson’s Disease (PD) studies, where we               
show that marginal distributions, correlation structure as well as expected effects (treatment            
effect on motor symptoms and difference of clinical outcome measures to healthy controls,             
respectively) are largely preserved in simulated patients. Moreover, we demonstrate that           
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counterfactual simulation results match general expectations. Finally, we show that VAMBN           
models capture expected causal relationships in the data. 

Methods 

Motivation and Conceptual Idea Behind VAMBN 
Our proposed approach rests on the idea of learning a generative model of longitudinal              
clinical study data. It combines two classes of generative modeling techniques: Bayesian            
Networks (BNs) ​(Heckerman, 1997) and Variational Autoencoders (VAEs) ​(Kingma and          
Welling, 2013)​. Bayesian Networks (BNs) are probabilistic graphical models, which represent           
a joint statistical distribution of several random variables by factorizing it according to a given               
directed acyclic graph into local conditional statistical distributions. Attractive properties of           
BNs are 

● efficient encoding of multivariate distributions 
● interpretability, because the graph structure can be used to represent causal           

relationships 
● a theoretical framework to simulate interventions via the “do” calculus ​(Pearl, 2000) 

Unfortunately, under general conditions inference within a BN and learning of the graph             
structure from data are both NP-hard computational problems ​(Koller and Friedman, 2009)​.            
Computationally efficient parameter and structure learning can only be achieved, if all            
random variables follow multinomial or Gaussian distributions. However, this scenario is in            
reality too restrictive for many applications, including clinical study data, where many            
variables do not follow any known parametric distribution. In addition, the NP hardness of BN               
structure learning raises severe concerns, because clinical study data has often dozens of             
variables (measured over time). But, the number of patients is typically only in the order of a                 
few hundred. Hence, the chance to identify the correct graph from these limited data is               
questionable. 
 
VAEs are a neural network based approach that maps input data to a low dimensional latent                
distribution (typically a Gaussian) through several sequential encoding steps. VAEs are           
typically trained via stochastic gradient descent to optimize an evidence / variational lower             
bound (ELBO) on the log-likelihood of the data. VAEs have recently been extended to deal               
with heterogeneous multi-modal and missing data ​(Nazabal et al., 2018)​, which is the             
common situation in clinical studies. VAEs are generative, because drawings from the latent             
distribution can be decoded again. A limitation of VAEs is that in a situation with comparably                
small data a dense VAE model with several hidden layers could easily overfit. Moreover,              
interpretation of the neural network models is far more challenging than for BNs. 
 
Our suggested approach aims for combining the advantages of BNs and VAEs while             
mitigating their limitations (Figure 1): Following the idea of Module Networks ​(Segal et al.,              
2003, 2004) we first define modules of variables that group together according the design of               
the study. For example, demographic features, clinical assessment scores, medical history,           
treatment might each form such a module. Our aim is then to learn a BN between these                 
modules. In contrast to Segal et al. we do not use regression trees to represent conditional                
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joint distributions of variables within each module, but VAEs, because they are generative.             
Each VAE is thus only trained on a small subset of variables, hence significantly reducing               
the number of network weights compared to a full VAE model for the entire dataset and                
allowing for applying the well established “do” calculus for simulating interventions. We call             
our approach Variational Autoencoder Modular Bayesian Network (VAMBN). Due to its           
generative nature VAMBN allows for simulating virtual subjects by first drawing a sample             
from the BN and second by decoding it through the VAE representing the corresponding              
module.  
We validate virtual patient cohorts by comparing against original patients 

● marginal distributions of individual variables 
● correlation structures 
● expected differences between patient subgroups, e.g. treated vs placebo patients 

 
In the following we explain the individual steps of our method in more detail and we discuss,                 
how data privacy can be theoretically guaranteed. 
 
 

 

Modular Bayesian Networks (MBNs) 
The starting point of our proposed approach is a Modular Bayesian Network (MBN)             
describing in a longitudinal manner statistical dependencies of VAE encoded modules (i.e.            
sets of variables in the original data): Let be a directed acyclic graph (DAG) and                

a set of random variables indexed by nodes in . is called a Bayesian                
Network (BN) with respect to , if the joint distribution factorizes            
according to: 
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where denotes the parents of node and their joint configuration ​(Koller and               
Friedman, 2009)​. For a given node we summarize the set of associated conditional              
probabilities into a parameter vector , and these parameter vectors are assumed to be              
statistically independent for different nodes . 
 
In our situation there exists a subset that is time dependent, i.e.             

with being the number of visits. Dynamic Bayesian Networks           
(Ghahramani, 1998) usually deal with this situation by implicitly unfolding the BN structure             

over time, i.e. introducing for each visit a separate copy of while requiring that                 
edges always point from time slice to time slice (corresponding to a first order                
Markov process). This implicit unfolding assumes a stationary Markov process, i.e.           
parameters do not change with time. In our setting this assumption is most likely wrong,                
because patients change in their disease outcome during the course of a study, i.e.              

. Hence, we here use an unfolding strategy, in         

which we explicitly use different copies for each time point. In addition, unfolding of the                
BN structure saves us from modeling the dynamical behavior of the data within the VAE               
framework (e.g. via LSTM units - ​(Hochreiter and Schmidhuber, 1997)​), which would require             
far more parameters. 
 
In our case nodes (i.e. random variable) either follow a Gaussian distribution (we explain the               
reasons later), or they could be of categorical nature, i.e. follow a multinomial distribution              
and not be autoencoded. A restriction we impose at this point is that a discrete node cannot                 
be the child of a Gaussian one. Under this assumption the conditional log-likelihood of the               
training data given can be calculated analytically ​(Andrews  x  | i , .., , v }D = { vi = 1 . N  ∈ V         
et al., 2018)​:  

 

 

 
where is the set of possible partitionings of Gaussian variable according to the               
configuration of its discrete parents, and is the number of patients in partition . is              c    
the associated design matrix, and the number of columns of that matrix. In a similar way     k             

the local log-likelihood for a discrete node with only discrete parents can be               
computed. By considering in addition the number of parameters of the MBN we can use the                
Bayesian Information Criterion (BIC) to score with respect to data . In practice we make                
use of the corresponding implementation in R-package bnlearn ​(Scutari, 2010)​. 

Modeling Missing Data in MBNs 
One of the key challenges with longitudinal patient data is missing values, which can result               
due to different reasons: a) patients drop out of a study, e.g. due to worsening of symptoms;                 
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b) a certain diagnostic test is not taken at a particular visit (e.g. due to lack of patient                  
agreement), potentially resulting in missing information for entire variable groups; c) unclear            
further reasons, e.g. time constraints, data quality issues, etc. From a statistical point of view               
these reasons manifest into different mechanisms of missing data ​(Kang, 2013; Rubin,            
1976)​: 

● missing completely at random (MCAR): The probability of missing information is not            
related to either the specific value which is supposed to be obtained or other              
observed data. Hence, entire patient records could be skipped without introducing           
any bias. However, this type of missing data mechanism is probably rare in clinical              
studies. 

● missing at random (MAR): The probability of missing information depends on other            
observed data, but is not related to the specific missing value which is expected to be                
obtained. An example would be patient drop out due to worsening of certain             
symptoms, which are at the same time recorded during the study. 

● missing not at random (MNAR): any reason for missing data, which is neither MCAR              
or MAR. MNAR is problematic, because the only way to obtain unbiased estimates is              
to model missing data. 

Missing values in clinical study data are most likely a combination of MAR and MNAR               
mechanisms. In general, multiple imputation methods have been proposed to deal with            
missing data in longitudinal patient data ​(Kang, 2013)​. Specifically for MNAR it has been              
suggested to explicitly encode systematic missingness of variables or variable groups via            
dedicated indicator variables ​(Mustillo and Kwon, 2015)​. The missing value itself can            
technically then be filled in by any arbitrary value, e.g. zero.  
In our MBN framework auxiliary variables are fixed parents of all nodes, which contain              
missing values in a non-random way. There also exist higher level missing data nodes that               
show whether a participant does not have any data for the entire visit. If the auxiliary variable                 
of a node representing an autoencoded variable group is identical to the missing visit node,               
the auxiliary variable itself is removed from the network and the node is directly connected to                
the missing visit node instead. These higher level nodes account for the high correlation              
between the different auxiliary nodes at a visit. Note that to facilitate modelling in the MBN,                
auxiliary and missing visit nodes were only introduced for nodes and visits with more than 5                
missing data points in total. 

MBN Structure and Parameter Learning 

Structure Learning 
Most edges in the MBN structure are not known and hence need to be deduced from data.                 
Unfortunately, MBN structure learning is an NP hard problem, because the number of             
possible DAGs grows super-exponentially with the number of nodes ​(Chickering et al.,            
2004)​. Hence, the search space of possible network structures should a priori be restricted              
as much as possible. We follow two essential strategies for this purpose: 

1. We group variables in the raw data into autoencoded modules, as explained above. 
2. We impose causal constraints on possible edges between modules. 

More specifically, we imposed the following type of constraints: 
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● Modules of demographic and other clinical baseline features (e.g. age, gender,           
ethnicity) can only have outgoing edges.. 

● Modules representing medical history can only depend on the modules mentioned in            
1. and biomarkers. 

● Modules of imaging features can be related to each other, but they don't influence              
other modules. 

● Modules of clinical outcome measures (e.g. UPDRS) can influence imaging and they            
can be mutually correlated with assessment of non-motor symptoms. 

● Biomarker modules can influence all modules, except for modules of clinical baseline            
features. 

● Longitudinal measures must follow the right temporal order, i.e. there are no edges             
pointing backwards in time. 

● Empirically proven edges (e.g. the treatment effect on the first maintenance visit in             
SP513 data) must be reflected in the network structure. 

● Auxiliary and missing visit nodes were connected to their respective counterparts at            
the next time point, accounting for a correlation between these measures over time,             
e.g. through study dropout. 

Accordingly, we blacklisted possible edges that could violate any of these constraints.            
Structure learning was then conducted via tabu search ​(Hong et al., 2016)​, which is              
essentially a modified hill climber that is designed to better escape local optima. This choice               
was made, because score based search algorithms have empirically found to show a more              
robust behavior in terms of network reconstruction accuracy than constraint based methods            
for mixed discrete / continuous data, specifically for smaller sample sizes ​(Raghu et al.,              
2018)​. In addition, it should be noted that due to the typical small number variables in the                 
MBN runtime was not a major concern here. 

Parameter Learning 
Given a graph structure of a MBN parameters (i.e. conditional probability tables and              
conditional densities) can be estimated via maximum likelihood. Note that estimation of the             
conditional Gaussian density for a node amounts to fitting a linear regression function              
with parents of being predictor variables. Conditional probability tables, on the other hand,              
can be estimated by counting relative frequencies of  taking on a particular value ​.  

Variational Autoencoders 
VAEs were introduced by ​(Kingma and Welling, 2013) and can be interpreted as a special               
type of Bayesian Network, which has the form , where is a latent, usually        Z → X   Z      
multivariate standard Gaussian and a multivariate random variable describing the input    X         
data. Moreover, for any sample we have . One of the key ideas     x, )( z    (x | z) N (μ(z), σ(z))p =         
behind VAEs is to variationally approximate  

 
That means and are the mean and standard deviation of the approximate  (x)μ   (x)σ           
posterior and are outputs of a multilayer perceptron neural network that is trained to              
minimize for each data point  the ELBO criterionx  
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where with . Here denotes an element-wise         
multiplication. 

Variational Autoencoders for Heterogeneous and Incomplete 
Data (HI-VAE) 
VAEs were originally developed for homogenous data without missing values. But, clinical            
data within one and the same module (e.g. demographics) could contain continuous as well              
as discrete features of various distributions and numerical ranges, i.e. the data is highly              
heterogeneous. Moreover, there could be missing values. Recently, ​(Nazabal et al., 2018)            
extended VAEs to address this situation. Their HI-VAE approach starts from a factorization             
of the VAE decoder according to 

 
where denotes a D dimensional data vector and its dimensional latent              
representation. Furthermore, indicates the -th feature in . In the factorization it is              
further possible to separate observed ( ) from missing features ( ): 

 
A similar separation is possible in the decoder step. Accordingly, VAE network weights can              
be optimized by solely considering observed data (input drop-out model). Note that the input              
drop-out model is essentially identical to the approach we described earlier for MBNs. 
 
To account for heterogeneous data types Nazabal et al. suggest to set 

 
where is a function learned by the neural network, and accordingly models data               

modality specific parameters (e.g. for real-valued data . Moreover, the          
authors use batch normalization to account for differences in numerical ranges between            
different data modalities. Finally, Nazabal et al. do not use a single Gaussian distribution as               
a prior for , but a mixture of Gaussians, i.e.:z  

 
where is dimensional. We refer to ​(Nazabal et al., 2018) for more details about their                 
VAE extension. Importantly, categorical variables are added to the MBN graph as              
parents of variables encoding modules. ​In practice we kept at 1 for all modules, resulting                
in a single normal distribution for , with the exception of the demographic data in both                
studies and the neurological examination in SP513 data. For these modules was set to 2,                
as training suggested that a single normal distribution was not a good fit for the data ​.  
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VAMBN: Bringing MBNs and HI-VAEs Together 
Let denote the set of observed variables associated to module denote the set of                
observed variables associated to module . Note that variables are low            

dimensional embeddings / encodings of the . The total likelihood given            
graph  and model parameters  can be written as: 

 
where is the generative model of the data represented by HI-VAE (it is the               
decoder distribution). Moreover, denotes all module nodes plus (in our case 1             
dimensional) categorical variables, see last Section. Hence, is a           
normal distribution with mean 

   

(i.e. modeled via a linear regression with intercept and slope coefficients ), and              
residual variance .  
Our aim is to find parameters maximizing . Using the factorization of             
this quantity and the typical assumption of node-wise statistical independence of parameters            
(Koller and Friedman, 2009) we can optimize the total log-likelihood by the following two              
steps: 

1. For all : . This is achieved via training a          

HI-VAE model for each module , i.e. optimizing associated network weights .  

2. For all : . This is achieved by learning         

the MBN structure and associated parameters based on HI-VAE encoded            
modules. 

 
Overall, the training of the proposed VAMBN approach thus consists of the following steps: 

1. Definition of modules of variable. 
2. Training of HI-VAEs for each module. In practice the training procedure included a             

hyper-parameter optimization over  
a. learning rate {0.01, 0.001} 
b. mini-batch size  {16, 32} 

Each candidate parameter set was evaluated via a 3-fold cross-validation using the            
reconstruction loss as objective function. 

3. Definition of constraints for possible edges in the MBN. 
4. Structure and parameter learning of the MBN using encoded values for each module:             

Note that by construction of our model each variable follows a mixture of              

Gaussian distributions. Let indicate the mixture component.        
Hence, is Gaussian. Introducing into the MBN thus yields a network with  | sXv     s          
only Gaussian and discrete nodes, and parameter and structure learning can           
accordingly performed computationally efficiently, as explained before. 
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We also considered to use as a prior for instead of the original Gaussian                
mixture prior for training of HI-VAE models in a second iteration of the entire VAMBN training                
procedure. In reality we could not observe a significant increase of the total model likelihood               

due to this computationally more costly procedure, see section A of the             
Supplementary Materials. Reported results hence only refer to the original VAMBN approach            
without any further continued training using a modified prior. 

Simulating Virtual Patients and Counterfactual Scenarios 
The trained VAMBN model can be used to create a virtual patient cohort. Virtual patients are                
simulated as follows: 

1. Draw samples from the MBN. This can be achieved by following the topological order              
of nodes in the DAG. That means we first sample from the conditional distribution of               
parent nodes, before we do the same for their children while conditioning on the              
already drawn values each of the parents. 

2. Decode MBN samples through HI-VAE. Note that a sample drawn from the MBN             
represents a vector of latent codes. Decoding maps these codes back into the             
original input space. 

 
To perform a simulation of a counterfactual situation we rely on the ideal intervention              
scheme established by Pearl ​(Pearl, 2000)​. That means rather than sampling from a joint              
distribution we draw from     

where denotes a variable in the        
MBN, in which we simulate the counterfactual scenario . Practically this can be             
achieved by deleting all incoming edges to in the MBN structure, setting and               
then drawing from the modified MBN. Subsequently, the variables can be decoded through             
the HI-VAE, as described before. 

Using VAMBN for Counterfactually Adding Features to a 
Dataset 
A special case of the counterfactual simulation described in the last Section is the addition of                
features to a dataset, which have not been observed within a particular study A, but within                
another study B: Let be a (module of) variables in study B not observed in A. We assume                   
the existence of MBNs and for both datasets. Moreover, we suppose ,              
i.e. parents of  are also in A. Hence, we can draw from the interventional distribution  

 
where denotes a configuration of parent nodes of observed in dataset A. Therefore, we                
can counterfactually add for any patient in dataset A possible values for by considering               
his/her observed features that may impact . 
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Differential Privacy Respecting Model Training 
One of our motivations for developing VAMBN was to enable a mechanism for sharing data               
across organizations that addresses data privacy concerns. Practically this could be           
achieved by sharing either simulated datasets or ready trained VAMBN models. However,            
specifically in the latter case there is the concern that by systematically feeding inputs and               
observing corresponding model outputs it might be possible to re-identify patients that were             
used to train VAMBN models. This is particularly true for HI-VAEs, which encode groups of               
raw features.  
Differential privacy is a concept developed in cryptography that poses guarantees on the             
probability to compromise a person’s privacy by a release of aggregate statistics from a              
dataset ​(Dwork et al., 2006b)​: Let be a randomized algorithm and .             
According to ​(Dwork et al., 2006a) is said to respect differential privacy, if               
for any two datasets that differ only in one single patient and for any output of                 
the randomized algorithm  we have 

. 
(Abadi et al., 2016) showed that it is possible to directly incorporate differential privacy               
guarantees into the training of a neural network by clipping the norm of the gradient and                
adding a defined amount of noise to it.  
It is straightforward to incorporate this approach into the training of each of the VAE models                
within VAMBN. Hence we are able to provide guarantees on differential privacy for              
the entire VAMBN model, because differential privacy is composable. That means the             
property for system of several components is fulfilled, if all of its components fulfill               
differential privacy ​(Dwork et al., 2006a)​. 

Data 

SP513 
SP513 was a randomized, double blinded and placebo controlled study to compare two PD              
drugs within an early disease population ​(Giladi et al., 2007)​. We here examine 557 patients               
of the final analysis set, which had received treatment. Out of these patients 117 received               
placebo, 227 ropinirole and 213 another dopamine agonist. Both drugs were first up-titrated             
within a 13 weeks time period and then followed up for 24 weeks. We model the screening                 
and baseline visits as well as three visits in the maintenance phase. Clinical variables              
captured during the trial comprised baseline demographics, disease duration, UPDRS          
scores, Epworth Sleepiness Scale (ESS), Hoehn & Yahr stage and standard blood            
biomarkers for safety assessment (e.g. hemoglobin, creatinine, etc.). 
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PPMI 
The Parkinson’s Progression Markers Initiative (PPMI) (www.ppmi-info.org/data) consists of         
multiple cohorts from a network of clinical sites with the aim to identify and verify progression                
markers in PD. It is a multi-modal, longitudinal observation study with data collected using              
standardized protocols ​(Parkinson Progression Marker Initiative, 2011)​. PPMI comprises of          
eight cohorts with different clinical and genetic characteristics. Here we used data of 362 de               
novo PD patients and 198 healthy controls. All PD patients were initially untreated and              
diagnosed with the disease for two years or less. They showed signs of resting tremor,               
bradykinesia, and rigidity. We used 266 clinical variables measured at 11 visits during 96              
months comprising demographics, patient PD history, DaTSCAN imaging, non-motor         
symptoms, CSF (cerebrospinal fluid) biomarkers (A- , -synuclein, dopamine,     β  α   
phospho-tau, total tau) and UPDRS scores.  

Results 

VAMBN Reflects Expected Causal Relationships in Data 
As outlined in the Methods part of this paper our proposed VAMBN approach results into a                
Modular Bayesian Network that describes conditional statistical dependencies between         
groups of variables that are encoded via HI-VAEs. An obvious initial question is whether              
learned dependencies between modules reflect expected causal relationships and, if yes,           
how statistically stable these can be detected. To address this point we performed a              
non-parametric bootstrap of the MBN structure learning ​(Davison and Hinkley, 1997)​. That            
means that for each study, we resampled the existing patients 1000 times with         N      
replacement. For each bootstrap dataset we ran a complete MBN structure learning, and we              
counted the fraction of times that each edge was included in the model. We overlayed this                
bootstrapped network with the MBN learned from the complete data to get an overall              
impression of the learned VAMBN model as well as the stability of inferred conditional              
statistical dependencies. 
Figures 2a), b) highlight that in both SP513 as well as PPMI inferred edges agree well with                 
expected causal dependencies: For example, in SP513 (Figure 2a) UPDRS scores of            
subsequent visits are connected with each other, and impact sleepiness (ESS). ESS itself is              
dependent on medical history. UPDRS scores are during the titration phase influenced by             
Hoehn & Yahr stages and the illness severity score defined in SP513. Safety biomarkers              
depend on gender, but otherwise have no impact. 
In PPMI (Figure 2b) the RBD sleepiness score and non-motor symptoms mutually influence             
each other, and the same holds true for UPDRS. UPDRS is dependent on age, medical               
history and -synuclein levels in CSF.α  
Altogether these examples underline that VAMBN models permit a certain level of            
interpretation. 
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Figure 2. Final MBNs learned by VAMBN based on SP513 and PPMI data. The edges are 
labelled with the bootstrap frequencies of each connection. For readability, auxiliary 
variables and missing visit nodes were removed for the visualisation. Figures are also 
available as Cytoscape files in the Supplements for better convenience. 
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Simulated Patients are Realistic 
Simulated patient trajectories generated by VAMBN are only useful, if they are sufficiently             
similar to real ones. On the other hand we clearly do not want VAMBN to simply re-generate                 
the data it was trained on (which would trivially maximize similarity to real patients). It is                
therefore not straightforward to come up with a criterion or interpretable index to measure              
the quality of a virtual patient simulation.  
From our point of view simulated patients should mainly fulfill three criteria: 

a) Summary statistics (e.g. mean, variance, median, lower quartile, upper quartile) over           
individual variables should look similar to real ones.  

b) Correlations between variables in simulated patients should be close to the ones            
observed in real ones.  

c) Treatment effects or other expected outcomes should be similar in simulations, also            
in terms of effect size. 

 
To assess VAMBN with respect to these criteria we simulated the same number of virtual               
patients as real ones in each of the two PD studies. Figure 3 demonstrates that marginal                
distributions for individual variables were in general sufficiently similar (but not identical) to             
the empirical distributions of real data in both PD studies. For additional plots see section B                
of the Supplementary Materials. In addition, the empirical distributions of Pearson           
correlations in simulated and real data were close to each other (Figure 4). Interestingly, in               
both cases (marginal distributions and correlations) largest differences were observed          
between HI-VAE decoded features of real patients and original features of the same             
patients. Hence, the majority of the “simulation error” can be attributed to an imperfect fit of                
HI-VAE models. 
 
UPDRS3 scores in simulated PD patients showed similar differences to healthy controls than             
real PD patients im PPMI (Figure 5 right). Moreover, the ropinirole treatment effect in              
simulated and real SP513 patients demonstrated a comparable effect size and p-value            
(Figure 5 left). 
Altogether we thus concluded that VAMBN allows for a sufficiently realistic simulation of             
virtual subjects with respect to our three defined criteria. At the same time we could confirm                
that indeed none of the simulated patients was a simple re-generation of one of the patients                
in the training data. 
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Figure 3. Examples of real and simulated / virtual patients for SP513 (a) and PPMI (b)                
datasets. The Figure compares the marginal distributions of selected variables for real            
patients (red), virtual patients (blue) and real patients decoded via the HI-VAE model             
(green). Tables show summary statistics of the distributions. Plots and tables of further             
variables can be found in section B of the Supplementary Materials.  
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Figure 4. Distribution of Pearson correlation coefficients between variables in real patients            
(red), virtual patients (blue) and decoded real patients (green). Tables show the Frobenius             
norm of the correlation matrices as well as the relative error, which consists of the norm of                 
the matrix that is the difference between the decoded real or virtual correlation matrix divided               
by the norm of the original correlation matrix. 
 
 
 

 
Figure 5. Distribution of UPDRS3 scores in SP513 (left) and PPMI (right). Left: The plot               
depicts in red UPDRS3 scores of real SP513 patients under placebo and ropinirole at visit               
15 (i.e. during treatment phase), respectively. In blue the distribution of the UPDRS3 score in               
the same number of virtual patients is shown. Effect sizes and corresponding p-values             
obtained from two one-way ANOVAs comparing placebo and drug treatment in the real and              
virtual patients are shown in the tables at the bottom. Similar plots at other visits can be                 
found in section C of the Supplementary Materials. 
Right: Distribution of original (purple) and decoded (red) UPDRS3 scores of real PPMI de              
novo PD patients at visit 4 in comparison to PPMI healthy controls (blue). UPDRS3 scores of                
virtual PD patients are shown in yellow. The table at the bottom shows differences in               
UPDRS3 scores between original PD, decoded real PD and virtual PD patients compared to              
PPMI healthy controls, showing p-value and effect size from three Mann-Whitney U tests.             
Similar plots at other visits can be found in section C of the Supplementary Materials. 

Generalizability of VAMBN Models 
A relevant question is, how generalizable VAMBN models are, i.e. whether they are purely              
overfitted or whether they can sufficiently describe data in an independent test set. To              
address this point we randomly split data in SP513 and PPMI into 80% training and 20%                
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test. VAMBN models were only fitted to the training set. We then recorded the log-likelihood               
of patients in the training set and test set, indicating a sufficiently good agreement (Figure 6).                
We thus concluded that VAMBN models are generally not overfitted. That means the             
previously reported agreement of virtual and real patients cannot just be the result of              
overfitting the data with an overly complex model.  
 

 
Figure 6. This figure compares the log-likelihoods of real patients in a training set (red) and a                 
test set (blue) of the SP513 (top row) and PPMI datasets (bottom row) for the MBN and the                  
HI-VAE models. The HI-VAE log-likelihoods are based on the participants included in the             
respective sets after averaging across all separate HI-VAE models (9 for SP513, 34 for              
PPMI). 
 

Simulation of Counterfactual Scenarios Match Expectations 
Due to its nature as a hybrid of a BN and a generative neural network VAMBN allows for                  
simulation of counterfactual scenarios via the “do” calculus, as explained in the Methods             
part. Figure 7a) demonstrates the effect of counterfactually altering UPDRS2 and UPDRS3            
baseline scores of all patients in SP513 to the mean observed in PPMI, i.e. towards lower                
disease severity. As expected this resulted into a likewise shift of UPDRS3 scores (reflecting              
motor symptoms) at end of study.  
In PPMI making all patients 20 years younger shifts the distribution of UPDRS3 scores to the                
left (fewer motor symptoms), whereas making them 20 years older has the opposite effect              
(Figure 7b). Again, this effect matches expectations. 
 
As a final example we demonstrate the possibility to counterfactually add a feature to PPMI               
via the approach described in the Methods part: We used the VAMBN model for SP513 to                
simulate the shift of the UPDRS3 scores at visit 15 under ropinirole treatment conditional on               
age, gender, height, weight as well as UPDRS2 and UPDRS3 baseline scores of patients              
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observed in PPMI. That means there was only a simulated intervention into these features.              
By subtracting the simulated shift from the observed UPDRS3 off scores in PPMI we              
obtained a counterfactual treatment simulation with ropinirole. Figure 7c compares the           
observed UPDRS3 off and on scores (under L-DOPA treatment) to those simulated by             
VAMBN for ropinirole treatment. Further plots showing the effect at different PPMI visits are              
shown in section D of the Supplementary Materials. As expected, UPDRS3 scores simulated             
for ropinirole treatment are significantly shifted compared to observed UPDRS3 off scores,            
but are slightly higher than UPDRS3 on scores under L-DOPA. Indeed it has been              
suggested that efficacy of ropinirole is slightly lower than that of L-DOPA ​(Zhuo et al., 2017)​. 
 
Overall these counterfactual simulations exemplify the possibilities of VAMBN and at the            
same time reconfirm that the model has learned the expected variable dependencies from             
data, because the simulation effects match expectations.  
 

 

 
 
Figure 7. Counterfactual simulation of (a) lower disease severity in SP513 (shift of UPDRS3 
scores at baseline to mean observed in PPMI at baseline); (b) shift of age 20 years up and 
down; (c) treatment effect of ropinirole in PPMI.  

Differential Privacy Respecting Modeling Training 
As a last point we investigated differential privacy respecting model training of VAMBN. As              
indicated in the Methods part this can be realized by defining a certain privacy loss via                
constants for each HI-VAE model trained within VAMBN. Smaller values for these ε, )( δ             
constants generally impose stronger privacy guarantees, but make model training harder. To            
investigate this effect more quantitatively, Figures 7 shows the reconstruction errors of the             
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HI-VAE models for the SP513 laboratory data at the first visit as a function of number of                 
training epochs and in dependency on different values for . For similar figures of the         ,ε δ       
other visits, see section E of the Supplementary Materials. It can be observed that in               
dependency on these constants longer trainings and more data are required to achieve the              
same level of reconstruction error than for conventional model training without differential            
privacy. 
 

 
Figure 8. This figure shows the effects of differentially privacy respecting (DP) HI-VAE             
training on the HI-VAE step of the model. Left panel: Reconstruction loss change between              
DP and conventional model training for laboratory data at visit 1 for the SP513 study; middle                
panel: Epsilon plotted against reconstruction loss for different delta values; right panel:            
Epsilon over 500 epochs, given different deltas. A noise multiplier of 1.1, norm clipping at 1.6                
and a learning rate of 0.01 were used. Further plots can be found in section E of the                  
Supplementary Materials. 
 

Conclusion 
Sensitive patient data require high standards for protection, as e.g. reinforced by the             
European Union through the General Data Protection Regulation (GDPR -          
https://eur-lex.europa.eu/eli/reg/2016/679/oj ​). However, at the same time these data are         
instrumental for biomedical research in the entire healthcare sector. Establishing a           
mechanism for sharing data across organizations without violating data privacy is therefore            
of utmost relevance for scientific progress. In this paper we build on the idea of developing                
generative models to simulate virtual patients based on data from clinical studies. A recent              
publication proposed to train Generative Adversarial Networks (GANs) based on few           
variables recorded from more than 6000 patients in the Systolic Blood Pressure Trial             
(Beaulieu-Jones et al., 2018)​. In contrast, our work focuses on the realistic situation             
regarding much smaller sample size coupled with significantly higher number of variables,            
which is common in many other medical fields, such as neurology. Further distinction points              
of our VAMBN method include the explicit modeling of time dependencies, as well as              
missing and heterogenous data. Moreover, VAMBN models can be interpreted via the MBN             
structure. As demonstrated in this work Bayesian Networks also open the door to simulating              
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counterfactual scenarios within a well-established theoretical framework, which could e.g.          
help in the design of clinical trials.  
Our results demonstrate that VAMBN models generally do not overfit and allow for a              
sufficiently realistic simulation of virtual patients. Hence, we see virtual patients as valuable             
for data mining purposes and for counterfactually merging different datasets. In addition, we             
demonstrated that data privacy respecting model training is in principle possible with            
VAMBN. 
Of course, our work is not without limitations: Building VAMBN models requires (in contrast              
to GANs) a relatively detailed understanding of data and careful handling of missing values              
in particular. Moreover, VAMBN implies to train multiple neural networks, which usually            
requires a modern parallel computing architecture. It thus remains a subject of future             
research to investigate how VAMBN models could be made better accessible to practitioners             
in order to facilitate their use in a widespread manner. In the meantime we have made our                 
python and R code available as part of the Supplementary material. 
 
Overall we see our work as a useful complement to federated machine learning techniques,              
which together with virtual patient simulation tools could help to break data silos and thus               
enhance progress in biomedical research. 
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UPDRS - Unified Parkinson’s Disease Rating Scales 
ESS - Epworth Sleepiness Scale 
RBD - REM sleep behavior disorder 
CSF - cerebrospinal fluid 
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