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A new model for the mechanical and hydrodynamical processes in
the organ of Corti (OoC) is proposed. In this model the motion of
the basilar membrane is provided as input, and we concentrate on
the other components of the OoC. The model consists of a set of
equations, all based on Newton’s laws, describing the motions and
mutual interactions of the outer hair cells, the outer hair bundles,
Deiter cells, the reticular lamina, Hensen cells, and the inner hair
bundle. In addition, the model includes the equations describing the
endolymph fluid motion in the subtectorial channel. Key ingredients
in the model are the nonlinear constitutive laws governing the vibra-
tions of the outer hair bundles and outer hair cells. The inner hair
bundle oscillates via interaction with the endolymph flow. It is shown
that under a minimal set of assumptions, and using basic mechani-
cal principles, the components of the OoC listed above can act as a
second filter, along with the basilar membrane filter, that enhances
frequency selectivity, amplitude compression and signal to noise ra-
tio.
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1.

Hearing in mammals involves a long chain of transductions
(1–7). Pressure oscillations are collected from the air by the
outer ear, and used by the middle ear to shake perilymph in
the inner ear, while reducing the impedance mismatch. The
wavelength of sound in perilymph is longer than the entire
cochlea, but the partitioned structure of the cochlea extracts
from it a traveling surface wave with shrinking wavelength,
that deposits most of its energy at a short segment of the
partition (8, 9). Most of the elastic energy delivered to the
cochlear partition resides at the basilar membrane (BM).

We will focus on a layer of the organ of Corti (OoC),
that senses the vibrations at a particular position in the BM,
transmits them to the corresponding inner hair bundle (IHB),
and from there to the auditory nerve. From the present point
of view, motion of the BM will be the ‘input,’ and motion of
the IHB, the ‘output.’ Accordingly, in this treatment the OoC
does not include the BM. The shape of the OoC in the basal
region of the cochlea is quite different than the shape near the
apex; we will have in mind the OoC in the basal region, where
higher frequencies are detected, and where the OoC has the
greatest impact on amplification and frequency selectivity.

Figure 1 is a schematic drawing (not to scale) of the OoC,
showing the components with which we will deal. It should
be noted that whereas the outer hair bundles (OHBs) are
attached to the tectorial membrane (TM), the IHB is not. As
a consequence, when a cuticular plate [the top of an outer hair
cell (OHC)] rises, the corresponding OHB tilts clockwise; on
the other hand, motion of the reticular lamina (RL) has no
direct effect on the inclination of the IHB. In order to turn
the IHB and send a signal to the auditory nerve, endolymph

flux in the subtectorial channel is required.
Substantial evidence has led to the conclusion that the OoC

compresses the amplitudes and tunes the frequencies of the
vibrations transferred from the stapes to the BM. By taking
motion of the BM as the input, we will be investigating the
more controversial question of whether there is an additional
filter that provides further compression and tuning on the way
from the BM to the auditory nerve (10–15). The conjecture
of such a “second filter” is usually attributed to motion of
the TM, but our analysis indicates that this feature is not
necessary.

Our aspiration is not to obtain accurate values for the
mechanical performance of the OoC, but rather to gain insight
on how its components cooperate to achieve this performance.
We would like to answer questions such as: Why the IHB is
not attached to the TM? Or, why after transforming fluid flow
into mechanical vibration, this vibration is transformed back
into fluid flow, this time along a narrow channel, involving
high dissipation. Is there any advantage of having several
OHCs, rather than a single stronger OHC? How does an OHC
perform mechanical work on the system? Is there any role to
passive components such as the Hensen cells (HC)?

Many theoretical treatments fall into an extreme category.
At one extreme, mechanical activity of the OoC is substituted
by an equivalent circuit, and it’s not clear where Newton’s
laws come in. At the other extreme, the OoC is divided into
thousands of pieces, and a finite elements calculation is carried
out (16–18). Neither of these approaches enables us to answer
the questions above. Our approach involves postulating a
simplified model for each component, with idealized geometry
and with as few elements and forces as possible, hoping to
capture the features that are essential for its functioning.
After the models are chosen, Newton laws can be meticulously
followed.

Significance Statement

The organ of Corti (OoC) transfers vibrations in the inner ear
to the auditory nerve, while amplifying, filtering, and adapting
them. In spite of decades of intense study, there is no full con-
sensus on its mechanical activity. While most of the work on the
OoC concentrates on the basilar membrane (BM), we consider
the BM’s vibration as given input, and provide a platform that
enables testing the influence of possible models for each of its
components on the performance of the OoC. The present set of
models could explain the high frequency selectivity, amplitude
compression, and signal/noise ratio of the OoC.
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Fig. 1. Schematic drawing, showing the components of the OoC. TM: tectotial
membrane; SM: scala media; IS: inner sulcus; IHB: inner hair bundle; OHB: outer
hair bundle; OHC: outer hair cell; RL: reticular lamina (set of blue segments); HC:
Hensen cells; DC: Deiter cell; BM: basilar membrane. The top of each OHC will be
called ‘cuticular plate’ (CP). The model for each of these components is spelled out in
Section 4. The star marks the position that is taken as the origin, x = y = 0.

The most important difference between our models and
those we have found in the literature is that pressure in the
subtectorial channel is a function of position and time, that
exerts large forces along the RL. Another salient difference is
that the RL is not regarded as a completely rigid body, but
rather the cuticular plates (CPs) can form mild bulges or dents
in response to the local forces exerted by the corresponding
OHC and OHB.

As supporting information we provide a mathematica code.
This code is modular, so that not only the parameters can be
varied, but also the models.

2. Main Results

We regard the maximal contraction of the OHC, ∆, as a
control parameter, i.e., the parameter that quantifies the power
generated within the system, and find that the OoC behaves
as a critical oscillator (see Supporting Information): when the
control parameter is larger than the bifurcation (critical) value
∆c, the system undergoes spontaneous oscillations. For the
parameters in Table 1, we found ∆c = 0.254D0 and in the
limit ∆→ ∆c the oscillation frequency is ωc = 5.338 in units
of ν/D2

0; D0 is the “height” of the subtectorial channel and
ν the kinematic viscosity of endolymph. In the following we
assume that the OoC is adjusted to this bifurcation value,
∆ = ∆c.

We denote by |θin| the amplitude of the output (inclination
of the IHC) and by |yBM| the amplitude of the input (deviation
of the BM from its equilibrium position). Following the general
behavior of critical oscillators near bifurcation (see Supporting
Information), for ∆ = ∆c, input frequency ω ≈ ωc and small
|yBM|, the gain is given by

|θin|
|yBM|

= 1
|B|
√
α2(ω − ωc)2 + 2α cosχ1 (ω − ωc)|θin|2 + |θin|4

,

[1]
where B, α and χ1 are constants.

Figure 2 shows the gain as a function of the frequency,
for several amplitudes of yBM. Our results show remarkable
similarity to those of the gain of the BM with respect to the
stapes (19, 20), suggesting that the OoC performs two filtering
operations: from the stapes to the BM (not studied here),
and from the BM to the IHB. In both cases, weaker inputs
acquire larger amplification and tighter selectivity. Except for
the case of lowest amplitude, the gain becomes independent
of the amplitude far from the resonance frequency.

The gain curves are skewed, providing a faster cut at lower
frequencies than at higher frequencies. This feature is comple-
mentary to the selectivity provided by the cochlear partition,

Fig. 2. Gain supplied by the OoC. |θin| is the root mean square (rms) amplitude of
the deflection angle of the IHB and |yBM| is the rms amplitude of the height of the
BM at the point where it touches the DC, yBM = A cosωBMt (|yBM| = A/

√
2).

The value of A is marked next to each curve. In these evaluations we have ignored
thermal noise. Inset: the dots are calculated values for our system and the lines follow
Eq. [1] with the fitted values |B| = 1.8× 103, α = 6.6× 10−4, χ1 = −0.66 (for
the three lines). Our units are specified in section 3B.

that provides a fast cutoff for high frequencies. Experimental
support for faster cutoff of frequencies below the resonance
can be found in the comparison of the pressure levels required
to shake the BM with a given amplitude against those re-
quired to excite the auditory nerve (13, 15, 20). Note that
since the gain depicted in Fig. 2 considers given amplitudes
of |yBM|, the relevant lines for comparison with the auditory
nerve tuning curves are the isodisplacements contours. Note
also that the resonance for faint amplitudes can be missed
in the measurements of the auditory nerve threshold: for in-
stance, if the smallest audible amplitude is A = 10−5D0 at the
best frequency, corresponding to an order of magnitude below
the typical threshold amplitudes in Refs. (13) and (20), then
it follows from the curves in Fig. 2 that if ωBM changes by just
0.6%, the amplitude required to yield the same excitation of
the IHB would be A = 10−4D0 (i.e., 20 dB difference).

The inset in Fig. 2 is an expansion of the range 5.1 ≤
ωBM ≤ 5.5. It shows that the gains for moderate amplitudes
behave as expected from a critical oscillator in the vicinity of
the bifurcation point.

If the transduction from the BM to the IHB has critical os-
cillator behavior, then the amplitude compression at resonance
of neural activity should be larger than that of BM motion.
Indirect experimental support for this scenario is provided
by measurements of the OoC potential (21) and of the ratio
between the amplitudes of motion of the RL and the BM (22).

Figures 3 and 4 compare the time dependencies of the input
and of the output in the case of a small signal when noise is
present. The signal had the form yBM = A cosωBMt during
the periods 2000 < t < 4000 and 6000 < t < 8000, and was off
for 0 < t < 2000 and 4000 < t < 6000. We took A = 3× 10−5

and ωBM = 5.329 (which corresponds to the highest gain for
this amplitude). Our model for noise is described in Section 4L.
The input ytotal(t) is the sum of the signal and the noise. Panel
A in each of these figures shows the entire range 0 < t < 8000,
and the other panels focus on selected ranges.

Figure 3B shows ytotal(t) in a range such that during the
first half only noise is present, whereas during the second half
also the signal is on. It is hard to notice that the presence of
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Fig. 3. Input when noise is present. The height of the BM relative to its equilibrium
position is ytotal(t) = A cosωBMt + AN

∑4
j=1

cos(ωjt − Φj), with A =

3 × 10−5, ωBM = 5.329, AN = 3.5 × 10−5, ωj periodically randomized and
Φj determined by continuity. A: Entire considered range. B: A range that contains
the instant t = 6000, at which the signal is switched on. C: Three lines obtained
during equivalent periods while the signal was on: the blue line describes the period
7995 < t < 8000 and the brown (respectively red) line describes a lapse of time
that preceded by 400 (respectively 3500) times 2π/ωBM. Our units are specified in
section 3B.

the signal makes a significant difference. Figure 3C contains
three lines: the blue line shows ytotal(t) during the lapse of
time indicated at the abscissa, close to t = 8000; the brown
line refers to the values of ytotal(t) at times preceding by
400×2π/ωBM ≈ 472, after the signal had been on during about
1500 time units, and the red line refers to times preceding
by 3500× 2π/ωBM, close to the end of the first stage during
which the signal was on. Despite the fact that the signal was
identical during the three lapses of time considered, there is
no obvious correlation among the three lines.

In contrast to Fig. 3A, we see in Fig. 4A that θin is signifi-
cantly larger when the signal is on than when it is off. The
blue, brown and red lines in Fig. 4B show θin(t) for the same
periods of time that were considered in Fig. 3C. In this case
the three lines almost coalesce, and are very close to the values
of θin(t) that are obtained without noise. In particular, we
note that the phase of θin(t) is locked to the phase of the
signal.

Figure 4C shows θin(t) for 5995 < t < 6000, and also for
periods of time preceding by 400 and by 3500 times 2π/ωBM.
In the three cases, the signal was off. We learn from here
that the IHB undergoes significant oscillations due to thermal
fluctuations even though there is no signal. We also note
that there is “ringing,” i.e., oscillations are larger after the
signal was on, and it takes some time until they recover the
distribution expected from thermal fluctuations. Unlike the
case of Fig. 4B, the phase is not locked, and wanders within a
relative short time. If the brain is able to monitor the phase
of θin(t), an erratic phase difference between the information
coming from each of the ears could be used to discard noise-
induced impulses, and a continuous drift in phase difference
could be interpreted as motion of the sound source.

Comparison of Figs. 3 and 4 strongly suggests one possible
answer to the question of why the IHB is not attached to the
TM: in this way the signal to noise ratio increases remarkably.

Additional results are reported in Section 5.

Fig. 4. Output, θin(t), for the situation considered in Fig. 3. A: Entire range. B: The
blue, brown and red lines correspond to the same periods of time shown in Fig. 3C;
the dotted green line was obtained by dropping the contribution of noise to ytotal(t).
C: The three lapses of time shown in panel B have been shifted 2000 units to the left,
so that they cover ranges when no signal was present.

3. Analytical Procedure

A. Scope and conventions. We deal with a layer of the OoC,
so that our analysis is at most two dimensional. Whenever
we mention mass, force, moment of inertia, torque, or flow
rate, it should be understood as mass (or force, etc.) per
unit thickness of the layer. Our set of models is sufficiently
simple to permit analytic integrations over space, and we will
be left with a system of differential equations for functions of
time, that can be solved numerically. Since these equations
are nonlinear, we do not perform a Fourier analysis. There
are normally three rows of outer hair cells, but we believe that
the important fact is that there is more than one, and include
just two outer hair cells in our explicit models.

Guided by measurements that indicate that the RL pivots
as a rigid beam around the pillar cells head (23, 24), we
take the origin at this pivot point. We will assume that the
equilibrium positions of the RL and of the upper border of
the HC lie along a straight line, that will be taken as the
x-axis (that will be enviewed as “horizontal”). We will assume
that below the x-axis motion is in the “vertical” direction only
[although in the apical case the x-component of motion can
be important (15, 25)].

By “height” of the RL, the HC, or the TM, yRL(x), yHC(x),
and yT(x), we will imply a position at the surface that is in
contact with the endolymph. The width of the subtectorial
channel is D(x) = yT(x)− yRL(x) [or yT(x)− yHC(x)], and we
will assume that in equilibrium D(x) is constant and denote
it by D0. Vertical forces will be considered positive when
they act upwards and angular variables will be positive when
counterclockwise.

B. Common notations and units. We denote by L, LHC and
LT the lengths of the RL, the HC, and the TM. θ will be the
angle of the RL with respect to the x-axis and θin the angle of
the IHB with respect to the y-axis. We assume that |θ(t)| � 1,
so that the projections of the RL and the HC onto the x-axis
also cover lengths L and LHC.

For an arbitrary function f of position and time, we denote
f ′ := ∂f/∂x and ḟ := ∂f/∂t.

The amplitude of a periodic, or approximately periodic,
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function f (not necessarily sinusoidal) will be defined as the
root mean square deviation from its average,

|f | :=

(∫ t2

t1

f2(t)dt/(t2 − t1)−
[∫ t2

t1

f(t)dt/(t2 − t1)
]2
)1/2

,

[2]
where t2 − t1 is an integer number of periods. The absolute
value of f(t) at a given time will be denoted as |f(t)| (with
the argument written explicitly).

The unit of length will be D0, the unit of time, D2
0/ν,

and the unit of mass, ρD2
0, where ν and ρ are the kinematic

viscosity and the density of endolymph. The expected orders
of magnitude of these units are D0 ∼ 10µm, D2

0/ν ∼ 10−4s,
and ρD2

0 ∼ 10−7kg/m. All our variables and parameters will
be expressed in terms of these units.

4. Detailed Modelling

A. Subtectorial channel. We denote by p(x, y, t) the pressure
in the endolymph and by v(x, y, t) the x-component of the
local velocity. The flow rate in the x-direction is

Q(x, t) =
∫ yT(x)

yRL,HC(x)
v(x, y, t)dy . [3]

We will assume that motions of the RL, the HC and the TM
are very small in comparison to D0, so that the limits of
integration can be set as 0 and D0 (i.e. 1 in our units). We
assume that endolymph is incompressible, so that the net flow
entering a region has to be compensated by expansion of that
region and therefore

Q′ = −Ḋ . [4]

Invoking incompressibility and the fact that the Reynolds
number is very small, the x-component of the Navier–Stokes
momentum equation can be linearized and reduced to

v̇ − v′′ − ∂2v/∂y2 = −p′ . [5]

By means of a suitable expansion in powers of D0/L (see
Supporting Information) we conclude that the pressure can be
taken as independent of y and obtain the approximate relation

Q+ Q̇/10 = −p′/12 . [6]

We assume that the only input is motion of the BM, whereas
the pressure p(LT) at the exit to the SM is taken as constant.
We will set p(LT) = 0, i.e., pressure in the SM will be taken
equal to the pressure in the tissues below the x-axis.

B. Reticular lamina. We regard it as a straight beam. We
exclude from it the CPs, that will move as independent bodies.
It obeys the rotational equation of motion

IRLθ̈ = −κRLθ +
∑

Fixi + FHL−
∫

RL

p(x)xdx , [7]

where IRL and κRL are the moment of inertia and the rotational
stiffness of the RL, Fi is the force exerted on the RL by the
CP centered at x = xi, FH is the force exerted on the RL
by the HC, and the integration is over the range 0 ≤ x ≤ L
excluding the CPs.

Fig. 5. A: Restoring force exerted on the CP by OHB i, as a function of the height
hi of the CP over its average value, as stipulated in Section 4E. B: Restoring torque
exerted on IHB by the inner hair cell, as a function of the bundle deflection θin, as
stipulated in Section 4J.

C. Cuticular plates. The CPs are the upper edges of the OHCs,
where the OHBs are enrooted. In reptiles and amphibians, the
cytoplasma between a CP and the surrounding RL has scarce
actin filaments and little mechanical resistance (26–28). In
mammals, the CP has a lip that protrudes beyond the OHC
cross section and extends to tight junctions with neighboring
cells. The β-actin density in the CP is much lower than that in
stereocilia or in the meshwork through which stereocilia enter
the plate, and is therefore expected to be relatively flexible
(29). We will assume that each CP can form a bulge (or
indentation) relative to the RL. The length of each CP will be
` and its height yi(x) = θx+ bi(1 + cos[2π(x− xi)/`]), where
bi is the average height above the RL. Attributing to the CP
a mass m and a position yi = hi := θxi + bi, its equation of
motion is

m(θ̈xi + b̈i) = −Fi + FOHBi − FOHCi −
∫ xi+`/2

xi−`/2
p(x)dx , [8]

where FOHBi is the force exerted by the hair bundle and FOHCi

the tension of the cell. We set Fi = kCPbi + βCPḃi, where kCP
and βCP are a restoring and a damping coefficient.

D. Tectorial membrane. We assume that it remains in a con-
stant position, yT(x) = 1.

E. Outer hair bundles. We assume that they exert a force that
is a function of the tilt angle, which in turn is a function of
hi. We mimic the measured force (31), which has an unstable
central region, by means of the expression

FOHBi =
{
−kB [hi − sgn(hi)Hi] |hi(t)| ≥ Hi

kBHi sin(πhi/Hi)/π |hi(t)| < Hi .
[9]

kB defines the stiffness (we will write kBolt for Boltzmann’s
constant) and Hi the range of the unstable region. FOHBi(hi)
is shown in Fig. 5.

Taking FOHBi as a function of hi implies that the work
performed by bundle motility vanishes for a complete cycle.

F. Outer hair cells. We envision an OHC as a couple of objects,
each with mass m, connected by a spring. One object is
located at the CP and the other at the boundary with the
Deiter cell (DC). A special feature of the spring is that its
relaxed length can vary. We denote by ci the contraction of
the cell with respect to its average length, and by si the height
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of the lower object with respect to its average position. We
assume that the tension of the OHC has the form

FOHCi = kC(θxi + bi − si + ci) + βC(θ̇xi + ḃi − ṡi) , [10]

with kC and βC positive constant parameters.
The value of ci is controlled by the inclination of the hair

bundle. We assume that hi, scaled with the length Hi, acts
as a “degree of excitation,” so that ci increases with hi/Hi.
Since there must be a maximum length, ∆, by which an OHC
can contract, and we expect that contraction should saturate
for too large deviations of the OHB from its average position,
we take this saturation into account by writing

ci = ∆ tanh(hi/Hi) . [11]

The degree of excitation hi/Hi may be identified with Z(X −
X0)/2kBoltT in Eq. 3 of (30).

Since ci is not a function of the distance between the objects
on which FOHCi acts, FOHCi can perform non vanishing work
in a complete cycle, as will be spelled out in Section 5D.

G. Deiter cells. We model a DC as a massless spring that con-
nects the lower object in the OHC to the BM (the mass of
the DC is already lumped into m). We also include dynamic
friction between adjacent lower objects, that encourages oscil-
lation in phase. Denoting by yBM the height of the BM above
its average position, we write

ms̈i = FOHCi + kDi(yBM − si)− βDiṡi + βDij(ṡj − ṡi) , [12]

where DC j is adjacent to DC i. Since DC are longer for larger
x, kDi and βDi could depend on i.

H. Hensen cells. We model the HC as a strip with parabolic
shape of evenly distributed mass mH, with its left extreme
tangent to the RL and the other extreme pinned at (x, y) =
(L + LHC, 0). These requirements impose yHC(x) = θ[x −
(L+LHC)(x−L)2/L2

HC]. The torque exerted on the HC with
respect to the pinning point is FHLHC +

∫ L+LHC
L

p(x)(L +
LHC − x)dx, and equals the time derivative of the HC angular
momentum, −(mH/LHC)

∫ L+LHC
L

ÿHC(L+LHC−x)dx, leading
to

FH = −mH

12 (5L+LHC)θ̈− 1
LHC

∫ L+LHC

L

p(x)(L+LHC−x)dx .

[13]
Since we assume that the pressure vanishes in the SM, we
replace the upper limit in the integral with the end of the
subtectorial channel. We will take this end over the position
where the HC has maximum amplitude, namely, LT = L +
L2

HC/2(L+ LHC).

I. Inner sulcus. We assume that the pressure pin in the inner
sulcus (IS) is uniform and proportional to the increase of area
(volume per thickness) with respect to the relaxed IS. We write

ṗin = −CQ(0) . [14]

C is some average value of the Young modulus divided by the
area (in the xy-plane) of the soft tissue that coats the IS and
Q(0) is the flow rate for x = 0.

J. Inner bundle. We locate it at x = 0 and assume that its
length is almost 1. The force exerted by viscosity on a segment
of the IHB between y and y+dy is proportional to the relative
velocity of endolymph with respect to the segment, and we
denote it by µ[Q(0) + yθ̇in]dy, where µ is a drag coefficient
and we have replaced v(y) by its average. On average, the
force per unit length is µ[Q(0) + θ̇in/2]. We identify this force
with the pressure difference and write

pin − p(0) = µ[Q(0) + θ̇in/2] . [15]

p(0) is the pressure at x = 0.
The torque exerted by viscosity is −µ[Q(0)/2 + θ̇in/3]. We

assume that the moment of inertia of the bundle is negligible
and write τIHC − µ[Q(0)/2 + θ̇in/3] = 0, with τIHC the torque
exerted by the cell. We assume that the inner hair cell does
not rotate, and τIHC is a function of θin. It seems reasonable
to assume that the IHB does not have a central range with
negative stiffness as the OHB, since it could cause sticking
of the bundle at any of the angles at which stiffness changes
sign. We will assume that, as a remnant of the OHB negative
stiffness, ∂τIHC/∂θin vanishes at θin = 0 [alike Fig. 1(C) in
(32)], and write

τIHC =
{
−κIHC[θin − sgn(θin)θIHC] |θin(t)| ≥ 3θIHC/2
−4κIHCθ

3
in/27θ2

IHC |θin(t)| < 3θIHC/2 .
[16]

τIHC is a smooth function of θin and the parameters κIHC and
θIHC determine its size and the extension of the low stiffness
region. τIHC(θin) is shown in Fig. 5.

We assume that the rate of impulses passed to the auditory
nerve is an increasing function of the amplitude |θin|.

K. Basilar membrane. In the absence of noise, we assume that
the BM drives the lower ends of the DCs, all of them by the
same amount, yBM = A cosωBMt.

L. Noise. We mimic white noise by adding to yBM in Eq. [12]
four sinusoidal additions AN cos(ωjt−Φj), where the frequen-
cies ωj are randomly taken from a uniform distribution in
the range 0 ≤ ωj ≤ 2ωBM. ω1 (respectively ω2, ω3, ω4) is
re-randomized at periods of time 0.7 (repectively 0.9, 1.1, 1.3).
The values of Φj are initially random, and afterwards are taken
so that AN cos(ωjt−Φj) is continuous. AN is taken so that the
average energy added to the DC (assuming that the considered
layer has thickness D0) is of the order of kBoltT ∼ 4.2×10−21J.
The initial values of most variables are taken from normal
distributions appropriate for average energies of the order of
0.5kBoltT per degree of freedom; we assume that these initial
values become unimportant after a short time.

M. Procedure. Equations [4]–[16] are integrated as will be now
described. We assume that the variables p(x, t), Q(x, t), θ(t),
bi(t), si(t), θin(t), pin(t), and whenever relevant also their time
derivatives, are known at a given time t. To find their values
at a subsequent time t+dt, we integrate equation [7] to obtain
θ(t+ dt). Then bi(t+ dt) and si(t+ dt) can be obtained by
integrating equations [8] and [12], taking into account the
constitutive relations [9], [10] and [11]. Given θ and bi we can
evaluate yi(t+dt), and from it the time derivative of D at that
time step. Using equation [14], pin can be eliminated from
equation [15]. Then, using p(0, t), and relation [16], equations
[15] and the torque equation can be solved simultaneously for
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Table 1. Parameters used in our calculations

Parameter L LH x1 x2 ` m mH IRL κRL kCP βCP kC βC kD1 kD2 βD1 βD2 βD12 kB H1 H2 κIHC θIHC C µ

Value 10 10 3 7 2 10 120 2 × 103 103 102 3 50 43 400 400 3 3 3 10 6.5 × 10−3 5 × 10−3 10 5 × 10−3 2 10
Definition 3B 3B 4C 4C 4C 4C 4H 4B 4B 4C 4C 4F 4F 4G 4G 4G 4G 4G 4E 4E 4E 4J 4J 4I 4J

We assume that the maximal contraction of the OHC takes its bifurcation value, which for these parameters is ∆c = 0.254. The third row indicates
the section where the symbol is defined. The system of units is defined in Section 3B.

Fig. 6. Amplitude and phase of several variables, relative to the input yBM =
10−4D0 cosωBMt. A: Amplitude, as defined in Eq. [2]. For visibility, s2 is depicted
by a dashed line. B: Phase by which the variable precedes the input. Phases that
differ by an integer number of cycles are taken as equivalent. The phase of a variable
is defined as the phase of its first harmonic (see Supporting Information). C: Phases
of s1 and s2 near the resonance. Here and in the following figures noise has been
neglected.

Q(0) and θin to obtain their values at t+ dt. This enables the
space integration of [4] for Q and then of [6] for p to obtain
all the variables at time t+ dt. The technical details can be
accessed from the Supporting Information.

N. Parameters. Clearly, parameters vary among species,
among individuals, and along the cochlea. We tried to set
parameters of reasonable orders of magnitude. When available,
we took values from the literature. When forced to guess, we
chose values guided by several inklings and criteria, such as
large response, fast stabilization, similar amplitudes of b1(t)
and b2(t), avoidance of beating, resonance frequency in a rea-
sonable range, etc. Some of the parameters have almost no
influence. The parameters we took are listed in Table 1.

5. Further Results and Discussion

A. Why it works. We can show (to be submitted elsewhere)
that a system of two particles, with a “spring” force between
them of the form [10] that depends on the position of one
of the particles, and with appropriate restoring and damping
coefficients, behaves as a critical oscillator. The critical control
parameter of this “bare” oscillator (with the same parameters
used in Table 1) is considerably smaller than the value of ∆c

that we found for the OoC. These bare oscillators (one for
each OHC) drive the entire OoC.

B. Motion of each component. Figure 6 shows the amplitudes
and phases of Q(0)/ν, b1,2, s1,2 and Lθ for a broad range of
input frequencies. b1 and b2, and likewise s1 and s2, nearly
coincide, except for a small range of frequencies slightly above
the resonance, where motion in the first OHC is considerably
smaller than in the second. L|θ| is roughly three times smaller
than |b1,2| and θ is nearly in anti-phase with b1,2 (lags by

∼ 200°). The opposite motions of the RL and the CPs may
be attributed to incompressibility and to our assumption of a
rigid TM, so that when one of them goes up the other has to
go down. Q(0) typically lags behind b1,2 by ∼ 80°; following
the incompressibility argument, Q(0) is positive when the sum
of the subtectorial volumes taken by the CPs, the RL and the
HC is decreasing. All the variables undergo a 180° change
when crossing the resonance.

Separate motion of the CPs and the RL has not been de-
tected experimentally. We could argue that the lateral spacial
resolution of the measuring technique did not distinguish be-
tween the CPs and the surrounding RL, so that the measured
motion corresponds to some average, but the spot size reported
in (23) (less than a µm) excludes this possibility. In the case
of (23) there was electrical simulation, and no input from the
BM. The most likely possibility is that the TM recedes when
the CPs go up, so that the RL does not have to recede and is
mainly pulled by the CPs.

A marked difference between (14) and Fig. 6 is the absence
of phase inversion when crossing the resonance. A possible
explanation could be that the maximum gain (amplitude of
RL motion divided by BM motion) occurs at a frequency that
lies above the range considered in Fig. 5 of (14). A sharp
decrease of the phase of the RL relative to the BM occurs in
(22).

C. Limitations of the models. We have found a possible sim-
plified description of how the components of the OoC could
collaborate to amplify input vibrations, with the result of
increased frequency selectivity, amplitude compression, and
ability to uncover a weak signal from thermal noise. This does
not necessarily mean that the activity of each component of
the OoC in a mammal actually follows our equations: a well
known feature of critical phenomena is that the same common
behavior can be obtained for models with different details
(33–35).

Obviously, by overlooking degrees of freedom such as fluid
flow in the longitudinal direction, interaction of the studied
layer with its neighbors, pressure variations in the SM, and
flexibility of the TM, and by representing mass distributions
by point objects, our description of the OoC is doomed to be
a caricature rather than a portrait. What our results show
is that the ignored degrees of freedom are not essential for
the functioning of the OoC. On the other hand, these features
could be important in the description of the activity of the
OoC as it happens to occur in nature. Most probably, some
of our models are close to reality, while others have to be
reformulated in light of observations.

D. Mechanical energy transfer. The power delivered by elec-
tromotility of OHC i is −kCci(ḣi − ṡi). Using Eq. [11] and
dropping the terms that give no contribution through a com-
plete cycle, the work performed by electromotility during a
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Fig. 7. Work performed during a cycle for frequencies close to resonance. The
dashed lines refer to the work delivered by electromotility,WOHC, and the continuous
lines to the work taken from the BM,−WDC1 −WDC2. yBM = AD0 cosωBMt

and the value of A is shown next to each line.

complete cycle is

WOHC = kC∆
2∑

i=1

∫
tanh(hi/Hi)ṡidt , [17]

where integration involves a complete cycle. Since both hi

and si undergo a phase inversion when crossing the resonance,
the sign of WOHC remains unchanged.

Similarly, the work per cycle performed by DC i on the
BM is

WDCi = −AkDiωBM

∫
si sinωBMt dt . [18]

Since the speed of the traveling wave vanishes at the charac-
teristic place of the cochlear partition, quite a few cycles occur
as the traveling wave passes through a layer of the OoC close
to a position that corresponds to its frequency.
WDCi > 0 if and only if the phase of si is in the range

between 0° and 180° (or equivalent). We see from Fig. 6C that
very near the resonance WDC1 and WDC2 are both negative,
indicating that the OoC takes mechanical energy from the
BM. Below this region (but still in the range shown in this
figure), WDC1 < 0, WDC2 > 0, and the opposite situation
occurs above this region.

Figure 7 shows the values of these works close to the res-
onance frequencies, for A = 10−4 and A = 10−3. Most of
the energy required for motion in the OoC is supplied by
electromotility, and a small fraction is taken from the BM.
We note that WDC1 + WDC2 < 0 in the entire range shown
in the figure. Since in our set of models WDC1 +WDC2 is the
only exchange of mechanical energy between the considered
layer of the OoC and its surroundings, this result implies that
mechanical energy is taken from the traveling wave, leading
to attenuation. Since it is experimentally known that the
traveling wave is amplified for frequencies below resonance,
our models will have to be upgraded.

E. Time dependence of the output. Figure 8 shows θin(t) for
A = 10−5 and frequencies near resonance. The blue envelope
was obtained at resonance frequency, the pink envelope at
ωBM = 5.34 and the green envelope at ωBM = 5.32. In the
case of resonance, the output amplitude raises monotonically
until a terminal value is attained. Out of resonance, the
amplitude starts increasing at the same pace as at resonance,

Fig. 8. Angle of the IHB as a function of time in response to yBM =
10−5D0 cosωBMt. Blue: resonance frequency, ωBM = ωR = 5.334; pink:
ωBM = 5.34; green: ωBM = 5.32. A: 0 ≤ t ≤ 600. B: t ≥ 600.

Fig. 9. θin(t) during a short period of time. Black: ωBM = (2/3)ωR; red: ωBM =
(4/3)ωR. t is the time elapsed after a maximum of θin, roughly 4000 time units after
the input was set on. A = 10−5.

overshoots its final value, and then oscillates until the final
regime is established. This initial behavior has the effect of
sending a fast alarm from several layers of the OoC telling
that something is happening, before it is possible to discern
the precise frequency.

In contrast with a forced damped harmonic oscillator, when
out of resonance, motion of the OoC does not assume the
frequency of the input even after a long time, but is rather
the superposition of two modes, one with the input frequency
ωBM, and the other with the resonance frequency ωR. If
ωBM = (n1/n2)ωR, where n1,2 are mutually prime integers,
then the motion has period 2n2π/ωR. Figure 9 shows θin(t)
for ωBM = (2/3)ωR and for ωBM = (4/3)ωR.

F. Nonlinearity. We studied the deviation from sinusoidality
of θin(t) at resonance frequency, when the periodic regime is
established. Writing θin(t) =

∑∞
n=0 an cos[n(ωBMt+ φn)], the

even harmonics vanish. Taking the origin of time such that
φ1 = 0, we found the values in Table 2.

G. Additional mechanisms. According to our models, the rea-
son for fluid flow at the IHB region is the vertical motion of
the CPs, the RL and the HC, but other drives are also possible
(36, 37). Flow could be due to shear between the TM and the
RL, squeezing of the IS, or deviation of part of the RL from
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Table 2. θin ≈ a1 cosωBMt+a3 cos[3(ωBMt+φ3)] +a5 cos[5(ωBMt+
φ5)]

A a1 a3/a1 φ3 a5/a1 φ5

10−3 1.25 × 10−2 0.0344 0.70 0.0050 −0.34
10−4 5.75 × 10−3 0.0097 0.67 0.0001 −0.51
10−5 2.54 × 10−3 0.0017 0.66 0.0000

A is the peak value of the input and ωBM equals the resonance frequency.
φ3,5 are the phases with respect to the first harmonic of θin.

Fig. 10. Work performed on the BM as a function of the amplitude of the BM
oscillations, for the case considered in Section 5H. The parameter ωBM is shown
next to each curve. The travelling wave is amplified if this work is positive and
attenuated if it is negative. After many cycles, the amplitude of the BM oscillations
would be largest for ωBM ≈ 5.0

the x-axis, implying an x-component of its velocity when it
rotates.

For comparison of the relative importance of each of these
mechanisms, we examine the peak values that we obtained
for A = 10−4 at resonance frequency. For Q(0), which in our
units equals the average over y of v(y), we found ∼ 2× 10−2.
The vertical velocity of the CPs is less than 10−2. From here
we expect that the shear velocity of the RL with respect to
the TM will be less than that, and the average fluid velocity
even smaller.

The peak value of θ̇ is ∼ 5 × 10−4. Assuming that the
length of the RL that invades the IS is ∼ 4D0, squeezing
would cause a flux rate of ∼ 10−3. It therefore seems that the
mechanism that we have considered is the most important. In
the case of a flexible TM, θ would be larger and the flux due
to squeezing would grow accordingly.

H. Variations of parameters. We will consider an example in
which varying a parameter can qualitatively modify the be-
havior of the OoC. In this example, we raise kD2 by 10%, to
440. With this change, ∆c becomes 0.290 and ωc, 5.506. An
increase of ∆c implies additional effort of the OHCs, which
have to undergo larger contractions. This extra investment
is rewarded by the possibility to amplify the traveling wave
in some ranges, as shown in Fig. 10. In the limit that the
traveling wave spends a very large number of cycles while
passing a region with parameters similar to those of the layer
we consider, it will be either amplified or attenuated, until it
reaches the amplitude for which the work performed on the
BM vanishes. In general, the initial amplitude will be shifted
towards this limiting value.

We do not claim that this is actually the mechanism by
which the OHCs transfer energy to the BM; we just illustrate
how this transfer can be manipulated by a suitable adjustment
of parameters. Conceivably, the advantage of having several
OHCs per layer (rather than a single stronger OHC) is the
increase of the number of degrees of freedom, that might be
necessary to permit coalescence, or at least closeness, of the
tuning at the BM with that of the transfer from the BM to
the IHB.

I. Variations of the models.

I.1. Bundle motility. Bundle motility can be eliminated from the
model by setting Hi = 0 in Eq. 9 (but not in [11]). We still
obtain that the OoC can behave as a critical oscillator, but
the critical value for OHC contraction rises to ∆c = 0.262.
Our conclusion is thus that bundle motility helps attainment
of critical oscillator behavior, but is not essential.

I.2. Asymmetric contraction. OHCs contract by a greater amount
when depolarized than what they elongate when hyperpolar-
ized. For simplicity, this property was overlooked in Eq. 11
[which corresponds to the assumption that there are equal
probabilities for open and for closed channels (30)]. We have
found that, with this symmetric dependence, the OoC is un-
able to demodulate the envelope of a signal, as it occurs in (21).
The study of a model in which ci is an asymmetric function
of hi/Hi is underway.

I.3. Removal of the HC. This was done by setting LT = L and
FH = 0. The bifurcation value of ∆ increased to ∆c =
0.273, suggesting that an advantage of the HC is reduction of
the value of contraction required to achieve criticality. The
comparison may be somewhat biased by the fact that our
parameters were optimized with the HC included.

J. Bottom line. We have built a framework that enables to
test many possibilities for the mechanical behavior of the
components of the OoC. The models we used imply that even
by taking the basilar membrane motion as an input, the OoC
behaves as a critical oscillator, thus providing a second filter.
This filter enhances frequency selectivity, improves the signal
to noise ratio, and exhibits self-oscillations. This framework
can be used to explore and theoretically predict different effects
that would be hard to observe experimentally. In particular,
applying the basic models developed here enabled us to obtain
features that are compellingly akin to those observed in the
real OoC.
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Fluid flow in a narrow channel with small rapid wall motion11

The channel is defined by T = {(x, y)| 0 < x < L, ξ(x, t) < y < D0}. The flow problem is characterized by three12

nondimensional parameters:13

ε = D0/L, ζ = D2
0ω/ν, ξ/D0 = O(δ), [S1]14

where ω is the oscillation period (in time) of ξ, and ν ∼ 1mm2/s is the kinematic viscosity. Typical values for the length
parameters above are

D0 ∼ 5µm, L ∼ 50µm, ξ ∼ 5 nm.

Thus, ε ∼ 0.1, while δ ∼ 10−3. We shall work under the canonical scaling ζ = αε, where α = O(1).15

The fluid velocity (v, u) and pressure p satisfy the time-dependent Stokes equation:16

ν∆v = 1
ρ

∂p

∂x
+ ∂v

∂t
, [S2]17

ν∆u = 1
ρ

∂p

∂y
+ ∂u

∂t
, [S3]18

∂v

∂x
+ ∂u

∂y
= 0. [S4]19

Here ∆ is the Laplacian operator. No-slip boundary conditions are assumed on the channel’s lateral boundary.20

To convert the problem to a nondimensional formulation we scale (v, u) by P̄D2
0/(νρL), where P̄ = ρνωδ/ε2 is the scale21

for p. We further scale x by L, y by D0, and time by 1/ω. Finally, we introduce the scaling ξt = δD0ωηt, where η(x, t) is22

dimensionless. Substituting all of this into the fluid equations, and retaining the original notation for the scaled variables, we23

obtain24

ε2vxx + vyy = px + αεvt, [S5]25

ε2uxx + uyy = ε−1py + αεut, [S6]26

vx + ε−1uy = 0. [S7]27

First order expansion. We expand v = v0 + εv1 + ... and similarly for p, u, and the flux Q =
∫ 1

0 v(x, y)dy. To leading order28

p0 = p0(x, t), and u0 = u0(x, t) due to [S6] and [S7]. However, the no-slip boundary conditions imply u0 = 0. To leading order29

in δ the horizontal motion of the wall is negligible up to ε3, and we retain only the vertical motion. Therefore, the kinematic30

boundary condition at y = 0 is31

u(x, y = 0, t) = εηt. [S8]32

The leading order term v0 satisfies v0
yy = p0

x with boundary conditions v0(x, 0, t) = v0(x, 1, t) = 0. Therefore,33

v0(x, y, t) = p0
x

2 (y2 − y), Q0 = −p
0
x

12 . [S9]34

Integrating the incompressibility equation [S7] over (0, 1), and since to leading order u = εu1, we obtain35

Q0
x = −

∫ 1

0
u1
y dy = ηt. [S10]36

Combining equations [S9] and [S10] provides an equation for the pressure p0
xx = −12ηt. Given the boundary motion η(x, t),37

this equation, together with boundary conditions for p0, can be solved to find the pressure and from it the velocity v0 and the38

flux Q0.39

Second order expansion. Since u0 = 0, it follows from equation [S6] that also p1 satisfies p1 = p1(x, t). At the next order we40

obtain41

v1
yy = p1

x(x, t) + αv0
t (x, y, t), v1(x, 0, t) = v1(x, 1, t) = 0. [S11]42

Using equation [S9], v0 can be expressed in the alternative form v0(x, y, t) = −6Q0(x, t)(y2 − y). Solving equation [S11] for v1

we find
v1 = p1

x

2 (y2 − y)− αQ
0
t

2 (y4 − 2y3 + y).

Integrating v1 over (0, 1) we obtain43

Q1 = −p1
x/12− αQ0

t/10 . [S12]44

Addition of [S9] and [S12] gives the following equation, that is exact up to O(ε):45

Q+ ζ
Qt
10 = −px12 , [S13]46

which is equivalent to equation [6].47
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Similarly, up to O(ε), v(x, y, t) = −6Q(x, t)(y2 − y)− ζQt(x, t)(5y4 − 10y3 + 6y2 − y)/10. We recall that Q(x, t) is available48

from the solution of the system of differential equations in our code. Once v(x, y, t) is known, u can be obtained from [S4] and49

the boundary conditions, and the full equations [S2] and [S3] can be checked for self consistency. We have found that while the50

expansion above was carried out for values of ζ smaller than 1, numerical evidence indicates that equation [S13] is valid for51

much larger values of ζ. For instance, we consider a representative problem with ζ ∼ 5. Expansion up to O(ε) entirely drops52

vxx when evaluating px in [S5]. Support for this approximation can be based on Fig. S1, where we see that vxx is significantly53

smaller than px. Similarly, Fig. S2 shows that p is essentially independent of y.54

Critical Oscillators55

Let us deal with an oscillator in which the signal f can be expressed in terms of the response x in the form56

f = A(ω,∆)x+B|x|2x+ o(|x|3) , [S14]57

such that A(ωc,∆c) = 0. The meaning of the symbols in this section is not necessarily the same as in the article. Here |f | will58

be the amplitude of the BM motion, |x| will be the amplitude of the IHB (between x and f there may be a phase) ω will59

have the meaning of frequency of the IHB (that either equals ωBM or the frequency of spontaneous oscillations in the absence60

of signal), and ∆ has the meaning of control parameter. Let us write Ω = ω − ωc, δ = ∆ −∆c and assume that B can be61

approximated as constant and A can be expanded as62

A = B(αeiχ1 Ω + βeiχ2δ) , [S15]63

with α, β > 0 and χ1,2 ∈ R.64

In the case that there is no signal, αeiχ1 Ω + βeiχ2δ + |x|2 = 0. From the imaginary part we obtain65

Ω(δ) = −β sinχ2

α sinχ1
δ [S16]66

and then, from the real part,67

|x|2 = −β sin(χ1 − χ2)
sinχ1

δ . [S17]68

Equation [S17] indicates that non-vanishing spontaneous responses occur either for δ > 0 or for δ < 0, depending on whether69

the signs of sin(χ1 − χ2) and sinχ1 are opposite or the same. In our case, spontaneous responses are found for δ > 0.70

Let us now consider forced oscillations, f 6= 0. From [S14] and [S15] we have71

|f |2/|x|2 = |B|2[α2Ω2 + β2δ2 + 2αβ cos(χ1 − χ2)Ωδ + 2(α cosχ1 Ω + β cosχ2 δ)|x|2 + |x|4] . [S18]72

In particular, for ∆ = ∆c,73

|f |2/|x|2 = |B|2[α2Ω2 + 2α cosχ1 Ω|x|2 + |x|4] . [S19]74

For small values of |f |, |δ| and |Ω|, and for appropriately fitted values of ∆c, ωc, |B|, α, β, χ1 and χ2, our results are in75

good agreement with Eqs. [S16], [S17] and [S19].76

Phase difference between nonsinusoidal functions77

We consider two real functions, f1(t) and f2(t), that have the same period 2π/ω. We define the ‘phase’ φ of f2 with respect to78

f1 by the value that maximizes the overlap between these functions when the time is advanced in f1 by φ/ω, i.e., by the value79

that maximizes
∮
f1(t+ φ/ω)f2(t)dt.80

Equivalently, if we write fi(t) =
∑∞

n=0 ani cos[n(ωt + φni)], we have to maximize
∑∞

n=1 an1an2 cos[n(φ + φn1 − φn2)],81

implying
∑∞

n=1 an1an2n sin[n(φ+ φn1 − φn2)] = 0. We note a dc component in any of the functions has no influence on the82

phase. If f1(t) and f2(t) have the same shape, then φn1 − φn2 is independent of n and φ = φ12 − φ11.83

In the case of quasi-sinusoidal functions, such that |an1an2/a11a12| < ε� 1 for n > 1, we look for a solution φ = φ12−φ11 +84

O(ε). We expand sin[n(φ+φn1−φn2)] = sin[n(φ12−φ11 +φn1−φn2)] +n cos[n(φ12−φ11 +φn1−φn2)](φ−φ12 +φ11) +O(ε2)85

and obtain86

φ = φ12 − φ11 −
∑∞

n=2 an1an2n sin[n(φ12 − φ11 + φn1 − φn2)]
a11a12 +

∑∞
n=2 an1an2n2 cos[n(φ12 − φ11 + φn1 − φn2)]

+O(ε2) . [S20]87

In our article f1(t) is proportional to cosωt, so that the phase depends solely on the first harmonic of f2(t) and becomes88

φ = φ12 = arctan2
[∮

sinωtf2(t)dt,
∮

cosωtf2(t)dt
]
. [S21]89

We note that the phase is not additive, i.e., the phase of f3 with respect to f1 not necessarily equals the phase of f2 with90

respect to f1 plus the phase of f3 with respect to f2.91
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Number of cycles during which the traveling wave is amplified/attenuated92

We want to estimate the number of cycles ncy experienced by a wave of frequency ωBM as it travels across the region z1 ≤ z ≤ z0,93

where z0 is the position (distance from the oval window) of the layer we consider and z1 is the position where the wave starts94

to be amplified or attenuated significantly.95

The dispersion relation can be obtained from Eqs. (2.17) and (2.40) (neglects damping) in (1):96

k tanh(kh) = ω2
BM

a[1− ω2
BM/ω

2
0(z)] , [S22]97

where k is the wave number, h the height of the chamber above or below the partition, a is a constant and ω0(z) is the resonant98

frequency at position z.99

For kh � 1 and ωBM � ω0(z), [S22] becomes k2h = ω2
BM/a, and therefore a = V 2(0)/h, where V (0) is the speed of the100

traveling wave in the long wavelength limit. For ωBM close to ω0(z), kh is significantly larger than 1 and [S22] becomes101

k = hω2
BMω

2
0(z)

V 2(0)[ω2
0(z)− ω2

BM] . [S23]102

The number of cycles is ncy = (2π)−1 ∫ z0
z1
k(z)dz. Assuming that dw0/dz = −λw0 with constant λ, and using [S23] we103

obtain104

ncy = hω2
BM

2πλV 2(0)

∫ ω0(z1)

ω0(z0)

ω0dω0

ω2
0 − ω2

BM
= hω2

BM
4πλV 2(0) ln ω0(z1)2 − ω2

BM
ω0(z0)2 − ω2

BM
. [S24]105

Taking h = 0.0005m, ωBM = 2π × 5kHz, λ = 150m−1 (2) and V (0) = 15m/s (3), we obtain hω2
BM/4πλV 2(0) ≈ 1.106
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Core of Mathematica Code107

For further details, you are welcomed to contact the authors.108

Geometric parameters109

L = 10; (* length of RL *)110

LH = 10; (* length of HC *)111

LT = L + 0.5 LH^2/(L + LH); (* length of TM *)112

x1 = 3; (* center of 1st OHC *)113

x2 = 7; (* center of 2nd OHC *)114

ell = 2; (* extension of OHC in radial direction *)115

Dynamic parameters116

m = 10; (* mass at each end of an OHC *)117

mH = 120; (* mass of HC *)118

IRL = 2.*^3; (* moment of inertia of RL *)119

KRL = 1.*^3; (* torsional spring constant on RL *)120

KCP = 1.*^2; (* spring constant between RL and CP *)121

betaCP = 3; (* damping constant between RL and CP *)122

KC = 50; (* spring constant between ends of OHC *)123

betaC = 43; (* damping constant between ends of OHC *)124

DEL = 0.25375; (* maximum contraction *)125

KD1 = 4.*^2; (* spring constant between 1st DC and BM *)126

KD2 = 4.*^2; (* spring constant between 2nd DC and BM *)127

beta1 = 3; (* damping 1st DC *)128

beta2 = 3; (* damping 2nd DC *)129

beta12 = 3; (* friction between DC 1-2 *)130

KB = 10; (* spring constant outer bundles *)131

H1 = 6.5*^-3; (* extension unstable range OHB1 *)132

H2 = 5.*^-3 ; (* extension unstable range OHB2 *)133

KIHC = 10; (* torsional spring constant inner bundle *)134

HIN = 5.*^-3; (* extension soft range IHB *)135

cs = 2; (* inner sulcus resistance to compression *)136

mu = 10; (* drag coefficient IHB *)137

amp = 3 10^-5; (* input amplitude *)138

wbm = 5.3294; (* input angular frequency *)139

noise = 2.*^-6; (* representative value for 2k_B T/thickness *)140

Variables141

(not executable cell)142

q: Q(0, t); tet: θ; b1: b1; b2: b2; s1: s1; s2: s2; tin: θin; pin: pin143

wn1, wn2, wn3, wn4: noise frequencies144

ph1, ph2, ph3, ph4: noise phases145

Initial values146

(* Letter "p" stands for time derivative and "0" for initial value *)147

tet0 = RandomVariate[NormalDistribution[0, Sqrt[noise/KRL]]];148

tetp0 = RandomVariate[NormalDistribution[0, Sqrt[noise/IRL]]] ;149

b10 = RandomVariate[NormalDistribution[0, Sqrt[noise/KCP]]];150

b1p0 = RandomVariate[NormalDistribution[0, Sqrt[noise/m]]];151

b20 = RandomVariate[NormalDistribution[0, Sqrt[noise/KCP]]];152

b2p0 = RandomVariate[NormalDistribution[0, Sqrt[noise/m]]];153

s10 = RandomVariate[NormalDistribution[0, Sqrt[noise/KD1]]];154

s1p0 = RandomVariate[NormalDistribution[0, Sqrt[noise/m]]];155

s20 = RandomVariate[NormalDistribution[0, Sqrt[noise/KD1]]];156

s2p0 = RandomVariate[NormalDistribution[0, Sqrt[noise/m]]];157

pin0 = RandomVariate[NormalDistribution[0, Sqrt[noise cs]]];158

q0 = 0; tin0 = 0;159
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Input160

ybm = amp Cos[wbm t]; (* signal; case of steady amplitude *)161

an = Sqrt[0.5 noise/(KD1 + KD2)];162

wn10 = RandomReal[{0, 2 wbm}];163

wn20 = RandomReal[{0, 2 wbm}];164

wn30 = RandomReal[{0, 2 wbm}];165

wn40 = RandomReal[{0, 2 wbm}];166

ph10 = RandomReal[{0, 2 Pi}];167

ph20 = RandomReal[{0, 2 Pi}];168

ph30 = RandomReal[{0, 2 Pi}];169

ph40 = RandomReal[{0, 2 Pi}];170

yn1 = an Cos[wn1[t] t - ph1[t]];171

yn2 = an Cos[wn2[t] t - ph2[t]];172

yn3 = an Cos[wn3[t] t - ph3[t]];173

yn4 = an Cos[wn4[t] t - ph4[t]];174

ytot = ybm+yn1+yn2+yn3+yn4; (* signal + noise *)175

x-dependence, forces and torques176

(* evaluation of this cell may take a few seconds *)177

ylow = tet[t] x + Piecewise[{{b1[t] (1 + Cos[2 Pi (x - x1)/ell]), x1 - ell/2 < x < x1 + ell/2},178

{b2[t] (1 + Cos[2 Pi (x - x2)/ell]), x2 - ell/2 < x < x2 + ell/2},179

{-tet[t] (L + LH) (x - L)^2/LH^2, x > L}}, 0];180

qx = Integrate[Evaluate[D[ylow, t]], {x, 0, xx}, Assumptions -> xx > 0] /. xx -> x; (* Q(x,t)-Q(0,t) *)181

px = -12 Integrate[Evaluate[qx + D[qx, t]/10] + q[t] + q’[t]/10, {x, LT, xx},182

Assumptions -> xx < LT] /. xx -> x // Simplify; (* p(x,t) *)183

p0 = px /. x -> 0;184

torqueRL = -Integrate[px x, {x, 0, x1 - ell/2}] - Integrate[px x, {x, x1 + ell/2, x2 - ell/2}] -185

Integrate[px x, {x, x2 + ell/2, L}] // Simplify; (* torque, pressure on RL *)186

FH = -mH (5 L + LH) tet’’[t]/12 - Integrate[px x, {x, L, LT}]/LH // Simplify; (* force, HC on RL *)187

Fp1 = -Integrate[px, {x, x1 - ell/2, x1 + ell/2}]; (* force, pressure on CP1 *)188

Fp2 = -Integrate[px, {x, x2 - ell/2, x2 + ell/2}]; (* force, pressure on CP2 *)189

F1 = KCP b1[t] + betaCP b1’[t]; (* force, CP1 on RL *)190

F2 = KCP b2[t] + betaCP b2’[t]; (* force, CP2 on RL *)191

bund = KB Piecewise[{{-h - H, h < -H}, {-h + H, h > H}}, (H/Pi) Sin[Pi h/H]]; (* auxiliary *)192

FB1 = bund /. h -> tet[t] x1 + b1[t] /. H -> H1; (* force, bundle on CP1 *)193

FB2 = bund /. h -> tet[t] x2 + b2[t] /. H -> H2; (* force, bundle on CP1 *)194

FC1 = KC (tet[t] x1 + b1[t] - s1[t] + DEL Tanh[(tet[t] x1 + b1[t])/H1]) +195

betaC (tet’[t] x1 + b1’[t] - s1’[t]); (* force, OHC on CP1 *)196

FC2 = KC (tet[t] x2 + b2[t] - s2[t] + DEL Tanh[(tet[t] x2 + b2[t])/H2]) +197

betaC (tet’[t] x2 + b2’[t] - s2’[t]); (* force, OHC on CP2 *)198

tauIHC = -KIHC Piecewise[{{tin[t] + HIN, tin[t] < -1.5 HIN}, {tin[t] - HIN, tin[t] > 1.5 HIN}},199

4 tin[t]^3/(27 HIN^2)]; (* torque, IHC on IHB *)200

Dynamic equations201

eqRL = Simplify[IRL tet’’[t] == -KRL tet[t] + F1 x1 + F2 x2 + FH L + torqueRL];202

eqCP1 = Simplify[m (tet’’[t] x1 + b1’’[t]) == -F1 + FB1 - FC1 + Fp1];203

eqCP2 = Simplify[m (tet’’[t] x2 + b2’’[t]) == -F2 + FB2 - FC2 + Fp2];204

eqD1 = Simplify[m s1’’[t] == FC1 + KD1 (ytot - s1[t]) - beta1 s1’[t] + beta12 (s2’[t] - s1’[t])];205

eqD2 = Simplify[m s2’’[t] == FC2 + KD2 (ytot - s2[t]) - beta2 s2’[t] - beta12 (s2’[t] - s1’[t])];206

eqIS = pin’[t] == -cs q[t];207

eqP = pin[t] - p0 == mu (q[t] + tin’[t]/2);208

eqIHB = tauIHC == mu (q[t]/2 + tin’[t]/3);209

Time integration210

tend = 1000; (* desired follow up lapse of time *)211

sol = NDSolve[{eqRL, eqCP1, eqCP2, eqD1, eqD2, eqIS, eqP, eqIHB,212

tet[0] == tet0, tet’[0] == tetp0, b1[0] == b10, b1’[0] == b1p0,213

b2[0] == b20, b2’[0] == b2p0, s1[0] == s10, s1’[0] == s1p0,214

s2[0] == s20, s2’[0] == s2p0, tin[0] == tin0, q[0] == q0,215
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pin[0] == pin0, wn1[0] == wn10, wn2[0] == wn20, wn3[0] == wn30,216

wn4[0] == wn40, ph1[0] == ph10, ph2[0] == ph20, ph3[0] == ph30,217

ph4[0] == ph40,218

WhenEvent[Mod[t, 0.7] == 0.0, {prev = wn1[t], wn1[t] -> RandomReal[{0, 2 wbm}],219

ph1[t] -> Mod[ph1[t] + (wn1[t] - prev) t, 2 Pi]}],220

WhenEvent[Mod[t, 0.9] == 0.07, {prev = wn2[t], wn2[t] -> RandomReal[{0, 2 wbm}],221

ph2[t] -> Mod[ph2[t] + (wn2[t] - prev) t, 2 Pi]}],222

WhenEvent[Mod[t, 1.1] == 0.0707, {prev = wn3[t], wn3[t] -> RandomReal[{0, 2 wbm}],223

ph3[t] -> Mod[ph3[t] + (wn3[t] - prev) t, 2 Pi]}],224

WhenEvent[Mod[t, 1.3] == 0.070707, {prev = wn4[t], wn4[t] -> RandomReal[{0, 2 wbm}],225

ph4[t] -> Mod[ph4[t] + (wn4[t] - prev) t, 2 Pi]}]},226

{tet, q, b1, b2, s1, s2, pin, tin, wn1, wn2, wn3, wn4, ph1, ph2, ph3, ph4}, {t, 0, tend},227

DiscreteVariables -> {wn1, wn2, wn3, wn4, ph1, ph2, ph3, ph4}] [[1]];(* output information *)228

Re-initialization for extension of follow up time229

tet0 = tet[tend] /. sol ; tetp0 = tet’[tend] /. sol;230

b10 = b1[tend] /. sol; b1p0 = b1’[tend] /. sol;231

b20 = b2[tend] /. sol; b2p0 = b2’[tend] /. sol;232

s10 = s1[tend] /. sol; s1p0 = s1’[tend] /. sol;233

s20 = s2[tend] /. sol; s2p0 = s2’[tend] /. sol;234

tin0 = tin[tend] /. sol; pin0 = pin[tend] /. sol;235

q0 = q[tend] /. sol;236

Amplitude and phase237

tinit = tend - 7; (* beginning of desired lapse of time *)238

tfin = tend - 2.1 Pi/wbm; (* end of desired lapse of time *)239

func = tin[t] /. sol; (* pick desired function *)240

t1 = t /. FindMaximum[func, {t, tinit, tinit + 0.1/wbm}][[2]];241

(* refine lapse of time to obtain integer number of periods *)242

t2 = t /. FindMaximum[func, {t, tfin, tfin - 0.1/wbm}][[2]];243

average = NIntegrate[func, {t, t1, t2}, Method -> "Oscillatory",244

MaxRecursion -> 20, PrecisionGoal -> 2]/(t2 - t1);245

averagesq = NIntegrate[func^2, {t, t1, t2}, Method -> "Oscillatory",246

MaxRecursion -> 20]/(t2 - t1);247

amplitudesq = averagesq - average^2; (* this is the square of the amplitude *)248

phase=ArcTan[NIntegrate[func Cos[wbm t], {t, t1, t2}],249

-NIntegrate[func Sin[wbm t], {t, t1, t2}]]; (* phase of func *)250
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Fig. S1. Left: Contour plot of normalized pressure gradient, (D3
0/ρν

2)∂p/∂x, as a function of position and time, obtained using [S13] and thus neglecting ε2vxx in [S5].

Right: y-average of the neglected term,(D2
0ν)
∫ D0

0
dy∂2v/∂x2. The white lines are places where vxx is discontinuous. The time span describes one cycle, beginning and

ending when θ assumes its most negative value. For disambiguation, all quantities in the legends and in this caption are dimensional. The color scale bars are different for each
graph.
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Fig. S2. Pressure p(x, y, t = 1.2π/ωBM) in the in the subtectorial channel. The pressure unit in the color scale bar is ρν2/D2
0 . At the moment depicted in this snapshot

the RL is moving downwards and the CPs are moving upwards. At the white lines the pressure is discontinuous, but since the y-dependence is small the discontinuity is not
visible in the figure. For t 6= 1.2π/ωBM, |p(x, y = 0.5D0, t)− p(x, y = 0, t)| is typically smaller.
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