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Abstract 

A series of 200 consecutive thin sections were generated from a high-grade serous ovarian tumor 

and laser microdissected four spatially separated “core” regions of tumor epithelium, along with 

tumor epithelium, stroma or whole tissue harvests at 200 µm intervals. These distinct tissue 

collections were analyzed by quantitative proteomics and RNA-Seq. Unsupervised analyses 

revealed co-clustering of tumor cores with enriched tumor epithelium, which were distinct from 

the enriched stroma and whole tumor collections. Strong correlations in protein and transcript 

abundance in tumor epithelium and stromal collections from neighboring thin sections were 

decreased in samples harvested just hundreds of microns apart. Stroma (mesenchymal) and tumor 

epithelium (differentiated) displayed a distinct association with ovarian cancer prognostic 

molecular sub-types with a 2-year difference in median survival. These data reveal substantial 

tumor microenvironment protein and transcript expression heterogeneity that directly bear on 

prognostic signatures and underscore the need to enrich cellular subpopulations for expression 

profiling. 
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Introduction 

Ovarian cancer is the fifth leading cause of death in women in the U.S. [1], with more than 

22,000 new cases and nearly 14,000 deaths projected to occur in 2019. Most ovarian cancer cases 

are diagnosed at an advanced stage after accumulation of numerous genomic and molecular 

signaling alterations resulting in heterogeneous populations and subpopulations of tumor cells that 

confound successful therapeutic intervention. The 5-year survival rate of patients diagnosed with 

metastatic ovarian cancer is less than 30%. 

 Numerous high-throughput sequencing studies aimed at broadly characterizing the 

genomic landscape of specific cancer types have been or are being conducted. Although 

profoundly key in adding to our molecular understanding of cancer, these studies have resulted in 

limited clinical translation, due in part to an ever increasing body of evidence that points to 

previously underappreciated levels of heterogeneity in the tumor microenvironment (TME) [2].  

 Substantial molecular and pathologic differences between HGSOC primary and metastatic 

tumors have also been described [3, 4]. One study demonstrated that stable and/or regressing 

tumors lacked common neoepitopes and mutations compared to progressing tumors in the same 

patient [3], implicating non-somatic factors within the TME as critical determinants of immune 

response and overall tumor fate. Multiregion sampling has revealed extensive variation between 

subpopulations of cells within a single tumor [5-7], allowing individual tumor samples to have 

multiple subtype signatures present with differing levels of activation [8]. Single-cell RNA-Seq of 

HGSOC samples has revealed grade-specific and cell type-specific transcriptional profiles present 

within individual tumor specimens [5]. The presence of subclonal cell populations within primary 

and/or metastatic tumors has been demonstrated to influence the state of immune infiltration and 

activation [6].  
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In this study, we investigated proteomic and transcriptomic heterogeneity in the TME from 

a single representative HGSOC patient tumor using laser microdissection of spatially separated 

tumor “core” regions throughout the depth of the tumor specimen, enriched tumor epithelium and 

stromal cell populations, as well as whole tumor harvests at ~200 µm intervals. These results reveal 

stark molecular heterogeneity in the HGSOC tumor microenvironment and underscore the need to 

account for compartmental heterogeneity in the TME in molecular profiling analyses. 

 

Results 

Proteogenomic analyses of discrete cellular populations within a single HGSOC tumor using 

locoregional multi-sampling 

 Consecutive thin sections (~200) were generated from a single snap frozen primary 

HGSOC tumor to support multi-region sampling by LMD followed by integrated quantitative 

proteomics and transcriptomics (Figure 1A). Tumor “cores” represent defined sub-populations of 

tumor epithelium that were collected as technical replicate areas from alternating tissue sections 

spanning the entirety of the patient tumor and combined into four independent replicate sample 

sets to support proteome and transcriptome analyses. Enriched tumor epithelium, stromal cells, as 

well as whole tumor collections representing all material on a single tissue section, were collected 

at ~200 µm intervals from alternating sections at nine different points throughout the tumor block 

(Figure 1 B). Representative post-LMD collections were imaged along with adjacent hematoxylin 

and eosin (H&E) stained tissue sections to enable co-registration and automated quantification of 

tumor and stroma cell populations collected (Supplemental Table 1) for comparison with manual 

assessment by a board-certified pathologist (UNMR, Supplemental Table 2). Multiregion protein 

samples were analyzed by quantitative proteomics using a multiplexed, isobaric tagging 
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methodology (tandem mass tags (TMT)-10) and RNA samples by targeted RNA-Seq analyses. 

These studies quantified a total of 6,053 proteins (Supplemental Table 3) (Supplemental Table 4) 

and 20,784 transcripts (Supplemental Tables 5 and 6) across all samples. 

 

Tumor and stromal cell populations exhibit diverse proteogenomic profiles 

Unsupervised hierarchical cluster analysis of protein (Supplemental Table 7) or transcript 

(Supplemental Table 8) abundance revealed distinct sub-clustering of tumor cores, enriched tumor 

epithelium and stroma, as well as whole tumor collections (Figures 2A and B). Two predominant 

clusters stratifying tumor cores and tumor epithelium from stroma and whole tumor collections 

are apparent. Notably, the cryopulverized tissue proteome exhibited an intermediate cluster 

between these two sample groups (Figure 2A), suggesting this sample type represents a mixture 

of these cellular populations. 

Distribution of individual epithelial markers, i.e. CA-125 (MUC16), KRT19 and CDH1, 

and stromal markers, i.e. VCAN, and FAP in HGSOC are highlighted for (Figure 2C). As 

expected, CA-125 and CDH1 are most abundant in the tumor cores and LMD enriched tumor 

epithelium collections and were least abundant in LMD enriched stroma and whole slide harvests. 

VCAN and FAP expression, in contrast, were highest in LMD enriched stroma and whole slide 

harvests, consistent with these proteins being strong markers of stroma [9, 10]. Cell type 

enrichment scores using the transcript expression data was performed using xCell (Supplemental 

Table 9) [11]. Except for Cores 4A/B, all of the LMD tumor cores and LMD enriched tumor 

epithelium collections correlated most strongly with epithelial cell markers, while the LMD 

enriched stroma and whole slide harvests had the highest correlation with fibroblast markers, 

stroma and microenvironment scores (Figure 2C). 
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A Spearman rank correlation matrix between 5,742 proteins co-quantified proteins and 

transcripts revealed concordant results for corresponding samples (Figure 3). Proteins and 

corresponding transcripts for a given sample largely clustered with other harvests from the same 

LMD collection type (e.g. Core 1A protein clustered most to its corresponding transcript, while 

next nearest to other core collections). Unexpectedly, stromal transcripts clustered most strongly 

with the proteomes from the whole slide harvests. Within the core samples, the strongest 

correlations, apart from intra-core comparisons, were between the “A” and “B” replicates for each 

core. The A and B replicates for each core at the proteome-only and transcriptome-only levels had 

Spearman Rho between 0.65-0.91 and 0.75-0.84, respectively. For replicate cores at the protein 

and corresponding transcript levels the Spearman Rho were 0.38-0.51. Cores 2A/B and 3A/B also 

had stronger correlations to each other (Spearman Rho = 0.35-0.47) than either relative to Cores 1 

and 4 (Spearman Rho = 0.23-0.42). Due to tissue morphology variations that occurred through the 

depth of the block, Cores 2 and 3 became less spatially separated in some sections, likely 

accounting for the observed cross-core similarity.  

Supervised analyses of the proteomic and transcriptomic data revealed common canonical 

pathways, defined by Ingenuity Pathway Analysis (IPA), that were consistently elevated- or 

decreased within LMD collection types (Table 1A). Aryl hydrocarbon receptor signaling, and the 

endocannabinoid cancer inhibition pathway were among the top 5 pathways most activated in 

LMD enriched tumor epithelium relative to stroma in both the proteomic and transcriptomic 

datasets. Conversely, IL-8 signaling and GP6 signaling were among the most highly 

downregulated pathways (least activated in enriched tumor epithelium relative to stroma) 

according to our proteomic and transcriptomic data. Diseases and biofunctions enriched included 

activation of organismal death, morbidity and mortality, and bleeding in LMD enriched tumor 
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epithelium relative to stroma in both proteome and transcriptome data (Table 1B). Organization of 

the cytoplasm and cytoskeleton, as well as cell movement and migration were among the 

biofunctions predicted to be inhibited in tumor relative to stroma. Genes encoding known drug 

targets which were differentially expressed (LIMMA adjusted p-value <0.01) between the LMD 

enriched tumor and LMD enriched stroma were identified in the proteomic and transcriptomic data 

with Log2 fold-changes > ±1 are listed in Supplemental Table 10. Similar results were not seen 

using the proteomic data. 

 

Intratumor Proteogenomic Heterogeneity Impacts Prognostic Molecular Signatures 

Correlating with Altered Disease Outcome in HGSOC 

Several large-scale studies have aimed to categorize HGSOC patients into subtypes having 

distinct molecular signatures correlated with unique prognostic outcomes, primarily using 

genomic and/or transcriptomic data from whole tumor specimens qualified above a set tumor 

cellularity/purity threshold [8, 12-17]. Konecny et al applied transcriptional profiling to HGSOC 

data to determine gene expression signatures and classified the 174 cases into 4 transcriptional 

subtypes with unique prognostic significance [13]. Per their categorization of tumors into 

immunoreactive, differentiated, proliferative, and mesenchymal subtypes, patients whose tumors 

were characterized by mesenchymal signatures had the worst prognosis. We compared the 

abundance of 401 transcripts matching 635 subtype signature genes (Supplemental Table 4, [13]), 

(Figure 4, Supplemental Table 11) revealing that transcripts from LMD enriched tumor cores and 

tumor epithelium were strongly correlated with the differentiated subtype and inversely correlated 

with the prognostically-poor mesenchymal subtype. Contrary to this, the transcript profile from 

LMD enriched stroma were strongly correlated to the prognostically-poor mesenchymal subtype. 
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These results were largely recapitulated at the proteomic level from which we co-quantified 123 

gene products from the Konecny et al. transcript prognostic signature set (Figure 4). Our protein-

level data showed an equivalently negative correlation between the mesenchymal subtype and 

LMD enriched tumor cores and epithelium, yet a strong correlation between this molecular subtype 

and the proteomes from the LMD enriched stroma and whole tissue harvests.  

 We further framed our transcriptomic data against the Liu et al signature genes associated 

with tumor invasiveness thought to influence success of complete surgical debulking [15]. 

Comparing the 11 transcripts of the Liu et al dataset revealed that gene expression was positively 

correlated with our LMD enriched stroma and whole tissue collections (Figure 4).  

 

Discussion  

Ovarian cancers are typically diagnosed at an advanced stage after the accumulation of 

numerous molecular alterations [18]. In this study, we have demonstrated that LMD enrichment 

reveals extensive intratumoral proteogenomic heterogeneity, which has critical implications for 

clinical diagnosis and implementation of appropriate therapeutic interventions, similar to what has 

recently been described in hepatocellular carcinoma [19].  

In an unsupervised hierarchical cluster analysis of proteins (Figure 2A) and transcripts 

(Figure 2B), all samples of the same LMD collection type clustered together. We found that many 

transcripts and/or their associated proteins were negatively correlated with the abundance trends 

of established diagnostic and prognostic signatures within discrete cell populations, as recently 

described by Zhang et al [20]. The clinical relevance of this finding is born out in correlations at 

the transcript and protein level for each LMD enriched collection with four HGSOC prognostic 

molecular subtypes described by Konecny et al [13] (Figure 4). Furthermore, we observe 
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profoundly unique transitioning of molecular subtype assignment based on sampling of the tumor 

microenvironment at the level of the proteome versus the transcriptome. We further note the 

correlation of protein and transcript abundance is higher in tumor epithelium versus stroma 

collections and is likely attributed to the secretory nature of stroma cells [21]. This is supported by 

the higher correlation of transcript abundance in stroma with protein abundance in whole tumor 

collections where we also collect extracellular matrix. The predictive value for estimating patient 

outcome through molecular subtype assignment (using the molecular prognostic signatures 

identified by Konecny et al. [13]) showed a median survival difference of two years depending on 

whether the tumor epithelium or stroma and/or mixed tissue is sampled; notably the contribution 

of the stromal microenvironment to the mesenchymal signature has been recently described [20, 

22]. Taken together, these observations provide evidence for the existence of a pathological 

ovarian stroma and the proposed role of cancer-associated fibroblasts contributing to disease 

development and/or progression [23-26]. Assignment of the cryopulverized tissue in our study to 

a particular subtype was less clear due to profound signal averaging of the proteome (Figure 4).  

Our results suggest that molecular signatures developed to date have reflected variations 

in tumor purity that differentially impact outcome; specifically, lower tumor purity contributes to 

the assignment of tumors to poorer prognostic outcome. Tumors with more interceding stroma 

have lower resectability that decreases the likelihood of achieving compete resection (R0) during 

surgical debulking, leading to worse outcome [27, 28]. TCGA and other large-scale tumor 

characterization efforts to date have applied pre-determined tumor purity cutoff levels to include 

predominantly high purity tumors in their studies. As a result, molecular drivers of disease 

progression specific to prognostically poor/low purity tumors are frequently missed [2, 29], as 

recently realized for colon cancer [30] and gliomas [31].  
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We demonstrate the unexpected stromal distribution of many markers previously published 

as correlative with residual disease and/or suboptimal cytoreduction in ovarian cancer (Figures 2 

and 4 and Supplemental Tables 3 and 6) [14, 15]. Among these, FABP4 and ADH1B expression 

were associated with significantly higher levels of residual disease [14]. Expression and shedding 

of AKAP12 has been recently described in isogenic cell line models of paclitaxel resistance and 

elevation of AKAP12 transcript also correlated with decreased survival in HGSOC patients [32]. 

We observe AKAP12 transcript is elevated in stroma versus tumor epithelium (data not shown) 

suggesting that elevation of AKAP12 in drug-resistant HGSOC cells may be due to chemotherapy-

induced epithelial to mesenchymal transition and association with poor disease outcome may 

correlate with patients harboring lower-purity, likely mesenchymal-subtype tumors. COL11A1 

transcripts were abundant in the stroma and some of the whole tumor collections, consistent with 

implications of COL11A1 overexpression by cancer-associated fibroblasts (CAFs) [24]. PTEN 

[33] and TP53 [34] mutations and/or loss are well-recognized alterations in HGSOC, and in some 

cases the presence of BRCA1/2 somatic mutations [12] may be predictive of outcome. Functional 

loss of BRCA1 has been correlated with dysregulation of several proteins involved in actin 

cytoskeletal and cell adhesion remodeling for cell migration in epithelial ovarian cancers [35]. 

PTEN and BRCA1 transcripts were overall reduced in the cores and LMD enriched tumor 

epithelium collections, although some pure tumor epithelial fractions showed elevated levels.  

Compartmentalized expression of genes encoding known anticancer drug targets [36] was 

found in both the LMD enriched tumor epithelium and stroma collections (Supplemental Table 

10). VEGFA and FLT1 (also known as VEGFR1) are targets of bevacizumab, an anti-angiogenic 

therapy often used in treating HGSOC patients [37]. Dysregulated VEGF/VEGFR expression has 

been demonstrated to contribute to epithelial ovarian cancer development and/or progression 
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through increased vascularization and improved survival of endothelial cells via anti-apoptotic 

signaling in the newly formed vessels [38, 39], though bevacizumab targeting of VEGF/VEGFR 

has disputed levels of improvement on HGSOC patient survival [40]. In our study, VEGFA 

transcript expression was significantly enriched in tumor epithelium whereas transcript expression 

of FLT1/VEGFR1 was enriched in LMD enriched stroma. Several additional drugs often employed 

in the clinical management of HGSOC patients [36] target genes that we find to be significantly 

elevated in LMD enriched stroma relative to tumor epithelium, including imatinib, paclitaxel, 

gemcitabine, doxorubicin, and crizotinib. 

In conclusion, we demonstrate a critical need to account for cellular subtype and regional 

TME proteogenomic heterogeneity in cancer molecular profiling efforts that will substantially 

enable in-depth characterization of spatially distributed subclonal cell populations that have 

underappreciated roles in driving carcinogenesis. Further work in this direction will aid clinical 

diagnosis, improve the efficacy of therapeutic intervention, and increase capabilities to identify 

druggable molecular markers of disease development and progression.  
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Table 1A: Top altered canonical pathways in laser microdissection-enriched tumor 

epithelium versus stroma identified using Ingenuity Pathway Analysis. Comparison of the 

most differential pathways and diseases/functions between LMD enriched tumor and stroma was 

determined using pairwise supervised analysis of proteomic and transcriptomic data with LIMMA 

adjusted p-value < 0.01 exhibiting a Log2 fold-change cut-off ± 1. 
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Table 1B: Top altered diseases and functions in laser microdissection-enriched tumor 

epithelium versus stroma identified using Ingenuity Pathway Analysis. Comparison of the 

most differential diseases/functions between LMD enriched tumor and stroma was determined 

using pairwise supervised analysis of proteomic and transcriptomic data with LIMMA adjusted p-

value < 0.01 exhibiting a Log2 fold-change cut-off ± 1. 
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Figure Legends  

Figure 1. Study workflow. Illustration of histological tissue preparation, laser microdissection, 

proteomic analysis (TMT LC-MS/MS), and RNA-Seq (Ion Torrent) (A), with representative pre- 

and post-LMD images from the top and bottom levels of the tissue (B). (A) Four spatially separated 

core regions with adjacent replicate regions were laser microdissected (LMD) from each of 100 or 

50 slides evenly distributed through the depth of the specimen for proteomics or transcriptomics, 

respectively. Additional sets of 9 slides were each discretely microdissected for all remaining 

tumor and stroma after harvesting the cores by LMD, as well as a nearest neighboring whole tissue 

harvest. The remainder of the specimen was cryopulverized in liquid nitrogen. Proteins and 

transcripts isolated from each of these distinct collections were analyzed by isobaric tagging and 

high-resolution liquid chromatography-tandem mass spectrometry and next generation 

sequencing, respectively. (B) Pre- and post-LMD images were collected for tissue sections are 

shown for the top level used for proteomic analysis from tissue section #7 as the representative 

H&E, #8 for collection of tumor cores, then LMD enriched tumor epithelium, then LMD enriched 

stroma, and #12 for collection of tumor cores, then whole tumor harvest. Images for the bottom 

level are from tissue sections #176 as the representative H&E, #177 for collection of tumor cores, 

then LMD enriched tumor epithelium, then LMD enriched stroma, and #178 for collection of 

tumor cores, then whole tumor harvest. 

 

Figure 2. Unsupervised hierarchical cluster analysis of 1,928 differentially abundant proteins 

(A) and 3,861 transcripts (B) with median absolute deviation (MAD)>0.5. (C) Protein and 

transcript abundance of epithelial and stromal markers in HGSOC as well as cellular 

admixture analyses (xCell - Aran D, 2017).  
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Figure 3. Protein-RNA Spearman Correlation Matrix. Spearman correlation analysis of 5,742 

genes that were co-measured as proteins and corresponding transcripts. 

 

Figure 4. Protein and transcript abundance of epithelial and stromal markers in HGSOC as 

well as cellular admixture analyses (xCell - Aran D, 2017). 
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Methods 

Tissue Specimen 

 A surgically resected primary HGSOC specimen was obtained from a BRCA1+/- patient 

with a familial history of ovarian cancer under an IRB-approved research protocol. The specimen 

was frozen within 30 minutes following surgery after being embedded in Optimal Cutting 

Temperature (O.C.T.) medium (Fisher Scientific). The patient was stage 3C, grade 3 and 

chemotherapy-naïve at the time of surgical debulking. The tissue was sectioned into ~200 

consecutive slices ranging from 165-209 mm2, 10 µm thick (2 mm total depth), by microtome and 

placed on PEN membrane slides (Leica Microsystems). The tissue sections used in this study 

spanned a depth of 1.91 mm. Representative sections were mounted onto glass slides without the 

PEN membrane after every 20 sections (200 µm) and stained with hematoxylin and eosin (H&E). 

Tissue sections on PEN membrane slides were H&E-stained prior to LMD. For the slides 

microdissected for proteomics, phosphatase inhibitors (Sigma Aldrich) were added to the 70% 

ethanol fixative and the first DEPC water; slides for transcriptomics were stained with RNAse 

inhibitors (ProtectRNA; Sigma Aldrich) added into all aqueous solutions. 

 

Laser Microdissection 

Four regionally separated areas within the tissue were discretely laser microdissected for 

isolation of pure tumor epithelium on a LMD7 (Leica Microsystems) from each of 100 slides for 

proteomics or 50 slides for transcriptomics. These four microdissected “cores” were pooled from 

approximately 1 mm2 per slide for a depth spanning the entire block (1 mm x 1 mm x 2 mm). An 

adjacent 1 mm2 was microdissected to serve as a replicate from each core; in total each core plus 

their respective adjacent replicate regions covered an approximate 2 mm x 2 mm x 2 mm area. For 
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a set of 9 sections (200 µm apart) each for proteomics and transcriptomics, all remaining tumor 

epithelium (between 20-44 mm2/section) and stroma (44-80 mm2/section) were discretely 

collected after isolation of the 8 core regions. A second set of 9 sections was used for non-discrete 

whole-slide mixed tissue harvests of all remaining tissue (96-155 mm2/section), with the exclusion 

of necrosis, blood, and fat. Microdissected tissue was collected into LC-grade water (Fisher 

Scientific) or Buffer RLT (Qiagen) for proteomic or transcriptomic analysis, respectively. 

 

OracleBio Image Analysis 

Pre- and post-LMD images were collected using the Aperio ScanScope XT slide scanner 

(Leica Microsystems). Image analysis was performed by OracleBio using the Indica Labs HALO 

platform. Post-LMD images were used to develop classification algorithms for identification of 

the “dissection area” and “all remaining tissue”. A separate algorithm was developed which 

involved co-registration of post-LMD images with corresponding adjacent H&E-stained sections 

on glass slides for detection and quantification of the cell nuclei abundance within the LMD 

regions. Quantification of the size and number of cells and nuclei harvested in each LMD 

collection was determined using matched sets of reference glass H&E sections and PEN membrane 

slides following LMD enrichment of tumor (n=15) and stroma (n=6) cell populations. 

 

Pathology Review 

 Reference glass H&E sections were manually reviewed by a board-certified pathologist 

(UNMR) for estimation of percent tumor cellularity and composition of the TME. Cellular features 

examined included the percent by area of necrosis, stroma, normal ovarian epithelium, 

lymphocytes, and polymorphonuclear leukocytes (PMN). 
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Peptide Preparation for TMT LC-MS/MS 

 LMD tissue in LC-grade water was dried, re-suspended in 100 mM triethylammonium 

bicarbonate (TEAB)/10% acetonitrile (ACN), and digested using SMART trypsin (1 µg/30 mm2 

tissue; Thermo Fisher) and pressure cycling technology (PCT) [41]. The remaining tissue 

embedded in the O.C.T. block was washed with water and cryopulverized using liquid nitrogen in 

a mortar and pestle. Cryopulverized tissue was re-suspended in 100 mM TEAB/10% ACN and 

digested using SMART trypsin (1 µg protease/ 30 mm2 tissue) and PCT. Peptide concentrations 

from trypsin digests were determined using the bicinchoninic acid assay (Pierce BCA). 

 Tryptic peptides were labeled using isobaric Tandem Mass Tags (TMT) according to the 

manufacturer’s instructions using the TMT 11-Plex Kit from Thermo Fisher, excluding labeling 

with TMT-131C. Briefly, 30 µg peptides from the 8 cores, 9 non-discrete whole slide harvests, 

and cryopulverized tissue sample were individually mixed with respective TMT reagents for 1 h 

at room temperature, then quenched using 5% hydroxylamine. For the 9 discrete collections each 

of remaining LMD-enriched tumor epithelium or stroma, 10 µg peptides/sample were similarly 

TMT labeled.  

Each TMT-10 multiplex set of samples were loaded onto C-18 trap column in 10 mM 

NH4HCO3 (pH 8.0) and fractionated by basic reversed-phase liquid chromatography (bRPLC) 

into 96 fractions through development of a linear gradient of acetonitrile (0.69% acetonitrile/min). 

Thirty-six concentrated fractions were generated by pooling the samples in a serpentine manner. 

Ten percent (volume) of each fraction was removed for LC-MS/MS.  

 

Liquid Chromatography-Tandem Mass Spectrometry 
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The TMT-10 sample multiplex bRPLC fractions (36 total fractions for global proteomics) 

were analyzed by LC-MS/MS employing a nanoflow LC system (EASY-nLC 1200, ThermoFisher 

Scientific, Inc.) coupled online with an Orbitrap Fusion Lumos Tribrid MS (ThermoFisher 

Scientific, Inc.). In brief, each sample (5 µL) was loaded on a nanoflow HPLC system outfitted 

with a reversed-phase trap column (Acclaim PepMap100 C18, 2 cm, nanoViper, ThermoFisher 

Scientific, Inc) and a heated (50 °C) reversed-phase analytical column (Acclaim PepMap RSLC 

C18, 2 µm, 100 Å, 75 µm × 500 mm, nanoViper, ThermoFisher Scientific, Inc) connected online 

with an Orbitrap mass spectrometer. Peptides were eluted by developing a linear gradient of 2% 

mobile phase B (95 % acetonitrile with 0.1% formic acid) to 32% mobile phase B within 120 min 

at a constant flow rate of 250 nL/min. High resolution (R=60,000 at m/z 200) broadband (m/z 400-

1600) mass spectra (MS) were acquired from which the top 12 most intense molecular ions in each 

MS scan were selected for high-energy collisional dissociation (HCD, normalized collision energy 

of 38%) acquisition in the orbitrap at high resolution (R=50,000 at m/z 200). Monoisotopic 

precursor selection mode was set to “Peptide” and MS1 peptide molecular ions selected for HCD 

were restricted to z = +2, +3 and +4. The RF lens was set to 30% and both MS1 and MS2 spectra 

were collected in profile mode. Dynamic exclusion (t=20s at a mass tolerance=10 ppm) was 

enabled to minimize redundant selection of peptide molecular ions for HCD.  

 

Quantitative Proteomic Data Processing Pipeline for Global Proteome Analysis 

Peptide identifications were generated by searching the .raw data files with a publicly-

available, non-redundant human proteome database [Swiss-Prot, Homo sapiens, Proteome 

UP000005640, 20,257 sequences, downloaded 12-01-2017; http://www.uniprot.org/] appended 

with porcine trypsin (Uniprot: P00761) and iRT peptide [40] sequences using Mascot (Matrix 
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Science) and Proteome Discoverer (Thermo Fisher Scientific). The .raw data files corresponding 

to each LC-MS/MS injection of the 36 offline high pH RPLC-fractions for a given TMT-10 

multiplex were searched using the following parameters: precursor mass tolerance of 10 ppm, 

fragment ion tolerance of 0.05 Da, a maximum of two tryptic miscleavages, static modification for 

TMT reporter ion tags (229.1629 Da) on N-termini and lysyl residues, and dynamic modifications 

for oxidation (15.9949 Da) on methionine residues. The resulting peptide spectral matches (PSMs) 

were filtered using a false-discovery rate (FDR) < 1.0% (q-value < 0.01), as determined by the 

Percolator [42] module of Proteome Discoverer (ThermoFisher Scientific, Inc.). TMT reporter ion 

intensities were extracted using Proteome Discoverer (ThermoFisher Scientific, Inc.) at a mass 

tolerance of 20 ppm and PSMs lacking a TMT reporter ion signal in TMT channel m/z 126 (TMT-

126, the pooled study reference combined from all sample digests), PSMs lacking TMT reporter 

ion intensity in all TMT channels, or PSMs exhibiting an isolation interference of ≥50% were 

excluded from downstream analyses. Log2-transformed TMT reporter ion ratios corresponding to 

individual tissue samples were calculated for each PSM against the pooled reference standard 

(TMT-126 channel). Log2-transformed PSM abundance distributions were normalized by 

calculating the mode-centered z-score transformation for each channel in the TMT-10 multiplex 

as follows: normalized PSM (Log2Ratio) = [PSM (Log2Ratio) – ModeCenter PSM (Log2Ratio) / 

σ PSM (Log2Ratio). For global protein level abundance, the abundance of proteins identified by 

unique PSMs (i.e. in which a PSM maps uniquely to a single protein accession) were determined 

by calculating the median Log2-transformed abundance ratios of all PSMs corresponding to a 

unique protein accession. The abundance of PSMs mapping to multiple proteins (i.e. “multi-

mapper” PSMs) were compared to mapped, unique protein abundances using a mean squared error 

approach to assign these to unique proteins based on comparative abundance analyses. Briefly, 
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mean squared Log2-transformed abundance ratios are calculated for multi-mapper PSMs with 

intensity data observed in ≥50% of all TMT channels for a given TMT sample plex; redundant and 

multiply charged versions of a given PSM were considered as unique biochemical events. Multi-

mapper PSMs were assigned to the corresponding unique protein accession exhibiting the smallest 

difference in relative abundance levels comparatively. Multi-mapper PSMs mapping to protein 

accessions not identified by any unique PSMs were excluded from downstream analyses. Protein-

level abundance was calculated from normalized, median Log2-transformed TMT reporter ion 

ratio abundances from a minimum of two PSMs corresponding to a single protein accession. 

Normalized Log2-transformed protein-level abundance for each TMT-10 multiplex were merged 

and protein-level abundance for proteins not quantified in all samples, but in ≥50%, were imputed 

using a k-nearest neighbor (k-NN) strategy using pamr prediction analysis for microarrays R-

package [43].  

 

RNA sequencing  

 LMD tissue in Buffer RLT was purified using the RNeasy Micro Kit (Qiagen) per the 

manufacturer’s instructions. RNA concentrations were determined using Qubit HS and BR kits 

(Thermo Fisher). RNA integrity numbers (RIN) were calculated using the RNA 6000 Pico Kit 

2100 Bioanalyzer (Agilent). All RNA was high-quality with RIN values of 7.2 or greater.  

RNA samples were reverse transcribed from 10 ng input using the SuperScript VILO 

cDNA Synthesis Kit. Barcoded cDNA libraries containing 5 LMD samples plus a Universal 

Human Reference RNA (UHR) standard (Stratagene) were prepared on the Ion Chef System using 

the Ion Ampliseq Chef DL8 materials and the Ion AmpliSeq Transcriptome Human Gene 

Expression Panel Chef-ready Kit (Thermo Fisher). Libraries were then purified via solid phase 

reversible immobilization (SPRI) using AMPure XP beads (Beckman Coulter) to remove 
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fragments less than 100 bp, quantified by qPCR (TaqMan Quantitation Kit; Applied Biosystems), 

and 25 µl of 100 pM diluted library was used for templating, amplification via emulsion PCR, and 

loading onto Ion 550 chips on the Ion Chef System. 

Sequencing was performed on the Ion Torrent S5 XL (Thermo Fisher) and mapped to the 

hg19 human reference transcriptome (hg19_Ampliseq_Transcriptome_21K_v1). Successful 

sequencing runs achieved ≥18M reads/sample (with one exception) and 169-234X AQ20 mean 

coverage depth. Per the Torrent Suite Software (Torrent Suite v5.8.0), the number of reads aligning 

to a given gene target represents an expression value referred to as “counts”. The read count per 

million mapped reads (RPM) for each barcoded sample was calculated by the software as (read 

count) x 106 / total number of mapped reads (Supplemental Table 5). Normalized RPM-level 

transcript abundances were calculated relative to the average RPM abundance quantified across 

all samples for a given transcript followed by Log2 transformation (Supplemental Table 6). 

 

Bioinformatic and Statistical Analyses 

Unsupervised analyses were performed using protein and transcript alterations exhibiting 

a median absolute deviation (MAD) >0.5 across all samples and clustered by Pearson correlation 

as heatmaps using gplots (version 3.0.1.1) in R (version 3.5.2). Differential analyses of global 

proteome and transcript data matrixes was performed using the LIMMA package (version 3.8, 

cite) in R (version 3.5.2); protein alterations passing LIMMA p-value < 0.01 exhibiting a Log2 

fold-change cut-off ± 1 were prioritized for downstream analyses. Cell type enrichment analyses 

was performed using RPM-level RNA-seq data in xCell (http://xcell.ucsf.edu/, [44]) xCell cell 

type signature score scores of interest were categorized by relative rank from highest to lowest 

spanning a range of 1 to -1 to enable co-visualization with similarly categorized transcript and 
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protein abundance for candidates of interest (Figure 2C). Log transformed RNA-Seq data was 

correlated to HGSOC molecular subtypes previously described [13]. Specifically, Spearman 

correlations were calculated for transcripts co-quantified by RNA-Seq analyses for 635 molecular 

subtype genes from Supplemental Table 4 in Konecny GE et al, 2014 [13] in R (version 3.5.2). 

Spearman correlations were categorized by relative rank from highest to lowest spanning a range 

of 1 to -1 to enable co-visualization with similarly categorized transcript and protein abundance 

for candidates of interest (Figure 4). Molecular subtype classifications were further compared by 

Spearman correlation analyses using MedCalc (Version 19.0.7). Functional pathway inference and 

drug targets were assessed using Ingenuity Pathway Analysis.  
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Supplementary Discussion 

Images were evaluated digitally via OracleBio’s image analysis software and manually by 

a pathologist for tumor purity, necrosis, immune involvement overall and in the LMD collections. 

There was significant discrepancy regarding estimation of tumor purity between the automated 

and manual evaluations. Digital analysis estimated 23-56% tumor cellularity at different depths of 

the block, calculated as dissection area ROI / annotated tissue area (Supplemental Table 1). The 

software estimated that the median cell number per area is approximately 7,482 cells/mm2. By cell 

type, this represents an average of 7,527 ± 172 tumor cells (n=15 protein and RNA collections) or 

3,899 ± 263 stroma cells (n=6 protein and RNA collections) harvested by LMD per mm2 of tissue 

area (Supplemental Table 1). Given the average mammalian cell is ~20 µm and the tissue was cut 

into 10 µm sections, this equates to 267 pg protein/cell, consistent with previous estimates [45]. 

Comparatively, manual review estimated 75-95% tumor cellularity (Supplemental Table 2). This 

difference can likely be attributed to the presence of small regions of interceding stroma and other 

cell types in and around the tumor epithelium, which were excluded from the LMD tumor 

epithelium harvests. 
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Supplemental Table Legends 

Supplemental Table 1. LMD enriched tumor epithelium and stroma cell areas acquired by 

laser microdissection and automated analyses of collected regions of interest (ROI). ROI are 

denoted as millimeter squared (mm2) areas, cell nuclei as µm2 areas or as total cell counts derived 

from cellular nuclei measured in LMD enriched tumor or stroma ROIs. 

 

Supplemental Table 2. Manual pathology assessment of tumor purity throughout the depth 

of the HGSOC patient specimen block. Representative H&E stained glass slides from were 

examined at ~200 µm intervals by a board-certified pathologist for percent by area estimation of 

tumor cellularity, necrosis, stroma, normal ovarian epithelium, lymphocytes, and 

polymorphonuclear leukocytes (PMN). 

 

Supplemental Table 3. Global protein matrix. Log2 transformed fold-change abundances of 

6,053 proteins imputed across all samples. 

 

Supplemental Table 4. Co-quantified proteins and transcripts. Log2 transformed fold-change 

abundances of 5,742 imputed proteins that were co-measured at the transcriptome level. 

 

Supplemental Table 5. Global transcriptome matrix. Normalized abundances of 20,784 RNA 

transcripts calculated relative to the average RPM abundance quantified across all samples for a 

given transcript, as reported by the Torrent Suite (v5.8.0) software, before Log2 fold-change 

transformation. 
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Supplemental Table 6. Global transcriptome matrix. Log2 transformed fold-change 

abundances of 20,784 RNA transcripts measured across all samples. 

 

Supplemental Table 7. Unsupervised analysis of protein abundance (median absolute 

deviation > 0.5).  

 

Supplemental Table 8. Unsupervised analysis of transcript abundance (Log2 fold-change 

abundances with median absolute deviation > 0.5).  

 

Supplemental Table 9. Cell type enrichment analyses as performed using RPM-level RNA-

Seq data and default settings in xCell (http://xcell.ucsf.edu/, [44]). 

 

Supplemental Table 10. Significantly differentially expressed alterations between LMD 

enriched tumor epithelium versus stroma identified using Ingenuity Pathway Analysis (IPA) 

of known gene targets of FDA-approved anticancer drugs. Comparison of prevalent drug 

targets present in LMD enriched tumor versus stroma was determined using pairwise supervised 

analysis of proteomic and transcriptomic data with LIMMA adjusted p-value < 0.01 exhibiting a 

Log2 fold-change cut-off ± 1. The complete list of all differentially expressed genes that are known 

drug targets from our transcriptomic-level and proteomic-level data was compared with a list of 

150 FDA-approved anticancer drugs as of 2014 analyzed in a study by Sun et al [36]. 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/761155doi: bioRxiv preprint 

http://xcell.ucsf.edu/
http://xcell.ucsf.edu/
https://doi.org/10.1101/761155


31 
 

Supplemental Table 11. Spearman Rho correlations for transcripts and proteins co-

quantified with molecular subtype genes from Supplemental Table 4 in Konecny GE et al, 

2014 [13]. 
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