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Abstract 22 

Stoichiometric Models of metabolism have proven valuable tools for increased understanding of 23 

metabolism and accuracy of synthetic biology interventions to achieve desirable phenotypes. 24 

Such models have been used in conjunction with optimization-based and have provided 25 

“snapshot” views of organism metabolism at specific stages of growth, generally at exponential 26 

growth. This approach has limitations in that metabolic history of the modeled system cannot be 27 

studied. The inability to study the complete metabolic history has limited stoichiometric 28 

metabolic modeling only to the static investigations of an inherently dynamic process. In this 29 

work, we have sought to address this limitation by introducing an optimization-based 30 

computational framework and applying to a stoichiometric model of the model plant Arabidopsis 31 

thaliana of four linked sub-models of leaf, root, seed, and stem tissues which models the core 32 

carbon metabolism through the lifecycle of arabidopsis (named as p-ath780). Uniquely, this 33 

framework and model considers diurnal metabolism, changes in tissue mass, carbohydrate 34 

storage, and loss of plant mass to senescence and seed dispersal. p-ath780 provide “snapshots” of 35 

core-carbon metabolism at one hour intervals of growth, in order to show the evolution of 36 

metabolism and whole-plant growth across the lifecycle of a single representative plant. Further, 37 

it can simulate important growth stages including seed germination, leaf development, flower 38 

production, and silique ripening. The computational framework has shown broad agreement with 39 

published experimental data in tissue mass yield, maintenance cost, senescence cost, and whole-40 

plant growth checkpoints. Having focused on core-carbon metabolism, it serves as a scaffold for 41 

lifecycle models of other plant systems, to further increase the sophistication of in silico 42 

metabolic modeling, and to increase the range of hypotheses which can be investigated in silico. 43 
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As an example, we have investigated the effect of alternate growth objectives on this plant over 44 

the lifecycle. 45 

 46 

Author Summary 47 

In an attempt to study the evolution of metabolism across the lifecycle of plants, in this work we 48 

have created an optimization-based framework for the in silico modeling of plant metabolism 49 

across the lifecycle of a model plant. We then applied this framework to four core-carbon tissue-50 

level (namely, leaf, root, seed, and stem) stoichiometric models of the model plant species 51 

Arabidopsis thaliana, and further informed this framework with a wide array of published in vivo 52 

data to increase model and framework accuracy. Unique to the p-ath780 model, comparted to 53 

other models of plant metabolism, is the simultaneous considerations of diurnal metabolism, 54 

carbohydrate storage, changes in tissue mass (including losses), and changes in metabolism with 55 

respect to plant growth stage. This provides a more complete picture of plant metabolism and 56 

allows for a wider array of future studies of plant metabolism, particularly since we have only 57 

modeled the core carbon metabolism of A. thaliana, allowing this work to serve as a framework 58 

for studies of other plant systems.  59 
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Introduction 60 

The use of synthetic biology for the engineering of uni- and multi-cellular organisms to enhance 61 

desirable phenotypes in microbe, plant, and animal systems, has been well established and has 62 

been capable of affecting the lives of millions of individuals, such as in the case of artemisinin 63 

production in yeast or enhancing nutritional value of agricultural products [1-2]. Synthetic 64 

biology techniques have been applied to many plant systems such as tomatoes [3], rice [4], and 65 

maize [5] to produce enhanced phenotypes often with application to human nutrition [2], pest 66 

resistance [5], and resilience to abiotic stresses [6]. Many of these efforts have focused on a 67 

genetic understanding and manipulation of the plant system (or plant tissue) in question, having 68 

relied on intuitive interventions such as changes in regulation, insertion of new gene(s), and 69 

deletion of gene(s) from competing pathway(s) [2,5,6]. Alternatively, computation-based 70 

systems biology approaches, such as the use of stoichiometric genome-scale models (GSMs) of 71 

metabolism, have predicted non-intuitive genetic interventions [7] by accounting for Gene-72 

Protein-Reaction (GPR) links and understanding how a gene knockout, or a change in gene 73 

regulation, affects the entire system through tools such as Flux Balance Analysis (FBA) [8], 74 

OptKnock [9], and OptForce [10]. Other tools are built upon previously existing tools, such as 75 

dynamic FBA (dFBA), which performs FBA over windows of time by solving a non-dynamic 76 

linear or a static linear problem, both of which integrate system variables over discrete time 77 

windows to solve to metabolite concentration, in addition to reaction flux [11]. Such tools have 78 

led to enhanced mechanistic understanding for exploring the system-wide effects of synthetic 79 

biology interventions especially in a microbial or a fungal system, such as E. coli [10], 80 

cyanobacteria [12], and yeast [13].  81 

 82 
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Stoichiometric global plant models, which treat the metabolism of the plant as a single unit, have 83 

been developed for Arabidopsis thaliana (hereafter arabidopsis) [14-17], Zea mayz (maize) [18], 84 

Sorghum bicolor (sorghum) [19], Saccharum officinarum (sugarcane) [19], Brassica napus 85 

(rapeseed) [19], and Oryza sativa (rice) [20]. These models have sought to analyze metabolic 86 

maintenance, response to abiotic stimuli, enzyme regulation changes, and metabolism as a whole 87 

at steady state (or pseudo-steady state). In addition, tissue-specific single-unit models have been 88 

reconstructed for various arabidopsis tissues [21], a maize leaf [22], and a barley seed [23] to 89 

better understand how present metabolites, metabolic pathways, and nutrient availability differ 90 

between tissues. Multi-tissue models have been created to characterize whole-plant metabolism 91 

for arabidopsis [16] and barley [17] and subsequently to study whole-plant metabolic response to 92 

the diurnal cycle and the source-to-sink relationship of leaves and seeds [16,17]. These studies 93 

either have considered metabolism at a single point [14,15,18-20], having taken a metabolic 94 

“snapshot” of a single point in growth time (often in the exponential growth phase) or have 95 

considered a single diurnal cycle [16]. This approach has been inherently limited in that 96 

metabolism is a dynamic and cumulative process. To clarify, metabolic state is dependent on 97 

both on external factors, such as availability of light, carbon sources, and availability of 98 

micronutrients, which these “snapshots” have captured, but also are dependent on metabolic 99 

history. These limitations have been inconsequential for single-cell systems in that laboratory 100 

apparatuses have held single-cell cultures at an exponential growth state; therefore, the 101 

“snapshot” approach has given good approximation of metabolism in these steady-state systems. 102 

In contrast, multi-cellular organisms, such as plants, will have passed through multiple and 103 

distinct stages of growth throughout its lifecycle [24], and the organism cannot be held at a 104 

steady state growth point. For this study, we have chosen Arabidopsis thaliana as the multi-105 
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cellular organism for several reasons. Firstly, since the advent of modern genetics, arabidopsis 106 

has served as a model plant species in that it has a small genome; therefore, arabidopsis has been 107 

well studied. Secondly, arabidopsis has a limited number of basic tissues which will have 108 

required the construction of a tissue-level model. Thirdly, arabidopsis has at least two distinct 109 

metabolic modes dependent on the availability of light. When studying the effects of a synthetic 110 

biology intervention on a plant system, such as arabidopsis, understanding the evolution of 111 

metabolism throughout the plant lifecycle can increase understanding of the cumulative effect of 112 

a synthetic biology intervention. The multi-tissue Edinburgh forest model, which has made use 113 

of Ordinary Differential Equations (ODEs) rather than stoichiometric matrices, has modeled the 114 

lifecycle of a tree for the purposes of studying lumber yield [16,17]; however, the intent of the 115 

aforementioned model has not been to consider individual reactions or genetic interventions, and 116 

therefore the GPR links which are central to the sought understanding and testing hypotheses 117 

when using SMs have not been included.  118 

 119 

In this work, a core carbon stoichiometric metabolic model of arabidopsis has been reconstructed 120 

which consists of major primary carbon metabolism pathways, including, but not limited to, 121 

photosynthesis; the citrate cycle; starch and sucrose synthesis; fatty acid synthesis and 122 

degradation; and amino acid synthesis. The multi-tissue arabidopsis stoichiometric model, 123 

referred to as p- ath780 has 1033 total (and 633 unique) reactions (R), 1157 total (and 325 124 

unique) metabolites (M), and accounts for 780 genes (G) including 42 chloroplastic and 11 125 

mitochondrial genes. The model p-ath780 (plant-scale primary arabidopsis thaliana model 126 

including 780 genes) consists of four tissue-level models of metabolism: leaf (R: 537, M: 479, 127 

and G: 703), root (R: 130, M: 126, and G: 250), seed (R: 428, M: 411, and G: 529), and stem (R: 128 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 9, 2019. ; https://doi.org/10.1101/761189doi: bioRxiv preprint 

https://doi.org/10.1101/761189
http://creativecommons.org/licenses/by-nc/4.0/


 

 

A Lifecycle Metabolic Modeling Framework                                            Schroeder & Saha, 2019 

7 

160, M: 140, and G: 250). The models are linked to one another and their respective environment 129 

by a comprehensive Flux Balance Analysis (FBA)-based [8] optimization framework [25] which 130 

considers both inter-tissue and environmental interactions. These four tissues have been chosen 131 

for model reconstruction to represent core plant functions. The root has been chosen and 132 

reconstructed for nutrient uptake and growth; the leaf for photosynthesis, carbon fixation, and as 133 

a source tissue for plant nutrition; the seed for metabolite storage and a sink tissue for metabolic 134 

investment; and the stem for metabolic transport and acting as a conduit for all metabolic 135 

interactions between other tissues. The dFBA method determines metabolite concentrations at 136 

the start and end points of the time frame [11], whereas the method developed does not focus on 137 

concentrations and considers multiple points within the time interval to make more accurate 138 

time-derivative estimates of steps in plant and tissue masses, as well as plant maintenance and 139 

senescence costs. The optimization framework of the p-ath780 model has taken a series of 140 

metabolic “snapshots” of arabidopsis metabolism throughout the lifecycle of a single 141 

representative plant subject to diurnal status, carbohydrate storage/uptake, changes in tissue mass 142 

(including losses), changes in relative tissues masses (due to growth stages), and changes in 143 

metabolism with respect to plant growth stage. p-ath780 has taken “snapshots” at hour intervals, 144 

and information from these snapshots have advanced plant and tissue masses forward one hour, 145 

when the next “snapshot” is taken. The series of “snapshots” produced by p-ath780 has given a 146 

framework for the investigation of the central metabolism of arabidopsis across its lifecycle. 147 

Several different objectives for this optimization-based framework have been investigated, with 148 

the default framework being the maximization of plant growth. Other alternative objectives 149 

investigated have included linear photonic efficiency and seed fatty acid production. This 150 
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framework with the default objective has shown general agreement with experimental data and is 151 

potentially useful as an initial framework for other plant systems. 152 

Results 153 

Reconstruction of arabidopsis primary carbon metabolism in tissue-specific models. Figure 1 154 

shows an overview of the workflow designed for determining the optimal reaction rates and mass 155 

step for each “snapshot” (top), how these “snapshots” have been advanced from one time point 156 

to the next; and how tissues have interacted at various stages of growth along with listing some 157 

important characteristics of a given growth stage that differs from other stages (bottom). In order 158 

to track the important metabolic interactions and transactions within and between major tissues 159 

of arabidopsis plant, namely seed, leaf, root, and stem, corresponding tissue-level metabolic 160 

models have been reconstructed. Model files for each tissue can be found in Supplemental Files 161 

1 (seed), 2 (leaf), 3 (root), and 4 (stem). Figure 2 shows a summary of the distribution of model 162 

reactions across KEGG-defined pathways of each tissue model and an overview of reasons for 163 

reaction inclusion through confidence scoring (see Method section) [26]. Figure 2(A) 164 

summarizes the pathways common to all tissues, Figure 2(B) summarizes the pathways common 165 

to seed and leaf tissues, and Figure 2(C-G) graphically summarize the sources of reactions in 166 

each tissue model and p-ath780 as a whole through confidence scores (see methods section) [26]. 167 

First, the seed model has been reconstructed based on gene annotations and available MFA data 168 

[27] and then tissue model reactions have been distributed across five compartments based on 169 

literature evidence (see list of works cited in Supplemental File 5): extracellular space, cytosol, 170 

non-green plastid, inner mitochondria, and outer mitochondria. Next, transport and exchange 171 

reactions have been added to the model based on literature evidence (see list of works cited in 172 

Supplemental File 5) or modeling necessity to increase model connectivity [26]. The leaf model 173 
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has been reconstructed using common reactions and pathways from the seed model and having 174 

added new pathways and functions essential to the major functions of the leaf tissue, such as 175 

photosynthesis [18]. In addition to the five compartments in the seed model, the leaf model 176 

contains chloroplast and thylakoid compartments. Similarly, by having extracted common 177 

reactions/pathways from the seed model, the root and stem models have been reconstructed. The 178 

root and stem models have been focused primarily on nutrient uptake (root) and transport (root 179 

and stem). Both these models contain necessary transport/exchange reactions to ensure model 180 

connectivity and to facilitate their roles in transport processes. The stem and root models have all 181 

the subcellular compartments present in the seed model. Once initial reconstructions have been 182 

accomplished, thermodynamically infeasible cycles in addition to atom and charge imbalances 183 

have been resolved [26] and tissue-specific biomass equations based on literature information 184 

have been defined [18,27,28].  185 

 186 

Figure 1. The design-build-test used cycle in constructing the p-ath780 model, where each box 187 

represents a step used in this cycle. The numbers in the lower left corner of each box indicates 188 

the approximate order in which these steps are undertaken for this cycle. This cycle is repeated 189 

until the in silico representation of Arabidopsis thaliana that is p-ath780 converges satisfactorily 190 

with in vivo experimental data as described in the results section.  191 

 192 

Figure 2. A heuristic look at the four tissue models in terms of number of reactions in various 193 

KEGG-defined pathways which provides some clarity as to the metabolic functions of each 194 

model (A and B) and in terms of the sources of included model reactions, indicated by 195 

confidence scores (C through F). A) A bar graph showing tissue model reaction counts in 196 

KEGG-defined pathways (with the exceptions being the user defined pathways of exchange and 197 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 9, 2019. ; https://doi.org/10.1101/761189doi: bioRxiv preprint 

https://doi.org/10.1101/761189
http://creativecommons.org/licenses/by-nc/4.0/


 

 

A Lifecycle Metabolic Modeling Framework                                            Schroeder & Saha, 2019 

10 

transport) common to most or all tissue (threshold: at least one model has at least three reactions 198 

in that pathway). B) Additional KEGG-defined pathways common to the seed and/or leaf model 199 

as these models contain more complete metabolism. C) - F) The source of each reaction included 200 

in the models through confidence scores for each tissue. G) The source of all reactions included 201 

in the p-ath780 model. See the methods section discussion related to confidence scores in this 202 

model.   203 

 204 

Development and tuning of the p-ath780 model. Once these core tissue models have been 205 

reconstructed and curated, these have been linked within a comprehensive FBA-based 206 

optimization framework (provided in Supplemental File 6) for in silico representation of 207 

metabolic behavior across the arabidopsis lifecycle. This framework has next been applied to the 208 

p-ath780 model that includes all four tissue-specific models and has 1033 total reactions, 1157 209 

total metabolites, and 780 unique genes. Further details of the model development steps can be 210 

found in the methods section. The seed and leaf tissue have been selected to model an important 211 

source-to-sink relationship, whereas the stem and root tissues have been included to model 212 

nutrient transport and nutrient uptake in arabidopsis, respectively. The FBA-based framework 213 

has defined constraints related to tissue interactions and whole-plant growth heuristics based on 214 

experimental data, and also helped align in silico growth with experimentally determined in vivo 215 

growth through the modified design-build-test cycle shown in Figure 3, which will be discussed 216 

in greater detail later in this subsection.  217 

 218 

Figure 3. A simplified workflow of the calculations made to estimate the plant mass step size 219 

taken from one “snapshot” to the next (large top box) and visual representation of how these 220 
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“snapshots” are strung together and grouped into stages and transitions (large bottom box). Each 221 

“snapshot” has been represented visually as small boxes containing initial time point, a figure 222 

highlighting major metabolic interactions, initial plant mass, step estimate, and cumulative 223 

relative growth rate. The contained figures show some major metabolic interactions across the 224 

plant system boundaries (full-headed arrows crossing the dashed system boundary) and indicates 225 

which tissues interact (single-headed arrows with circles to indicate a shared metabolic pool 226 

between the two tissues) for the given stage of growth which is indicated by the beveled box 227 

below the group of “snapshots”. The beveled boxes below a group of snapshots indicate the stage 228 

name (or transition name), the time points in growth which this stage encompasses, and some 229 

distinguishing characteristics of that stage.  230 

 231 

The output of this framework has given metabolic “snapshots”, consisting of plant mass, growth 232 

rate, and flux rate of each reaction, at one-hour intervals across 61 days of growth, as the plant 233 

disperses all new seeds (through silique shattering) by 61 days after germination (DAG) [24]. 234 

After 61 DAG the plant begins to desiccate, eventually resulting in plant death [24]. The p-235 

ath780 model is not used to model plant metabolism after 61 DAG because no in vivo data has 236 

been found in literature concerning the metabolomics of plant death and desiccation. This 237 

optimization-based framework has allowed for the sampling of changes in central carbon 238 

metabolism at different stages in the arabidopsis lifecycle (see Figure 3). For all the following 239 

analyses, the objective of this framework at each point has been the maximization of the sum of 240 

all tissue biomass production rates, unless otherwise indicated.  241 

 242 
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In having determined the mass steps taken for each hour intervals, three FBA-like calculations at 243 

0, 1/3, and 2/3 hours past the hour have been made to increase the accuracy of the derivative 244 

estimate by an explicit numerical integration method calculating the mass step at each hour 245 

interval using Heunn’s rule for the third order Runge-Kutta method (see methods for greater 246 

detail). Figure 4 shows a more detailed workflow for each individual step in the form of a 247 

workflow diagram. Optimal flux points at every whole hour have been saved as the optimal flux 248 

rates at that growth point. To evaluate these balanced flux estimates, Flux Variability Analysis 249 

(FVA) [29] has been performed, at nine points, selected to represent each non-transition growth 250 

stage and diurnal status in those stages, subject to all growth constraints and a growth rate 251 

equivalent to the optimal growth rate (see methods for enumeration of these points).  252 

 253 

Figure 4. The workflow diagram of the p-ath780 model, including inputs (orange), outputs 254 

(green), and internal workflow (blue). The inputs for the p-ath780 model include each individual 255 

tissue model, a file of growth specifications, and a list of point at which to take metabolic 256 

“snapshots”. The internal workflow has read these inputs and then used them to construct model 257 

objects (bold, Times New Roman text) which are used to perform FBA, to solve for what the 258 

plant mass step is from the current to the next “snapshot”, and to perform FVA. For each 259 

iteration, the time of the snapshot is stepped forward 1/3 step (hour), the FBA model object is 260 

solved, the mass step is calculated, and process is repeated. Every third iteration (e.g. where step 261 

= 3), Heun’s method for a third order Runge-Kutta is used to estimate the plant mass step from 262 

the previous whole hour to the next whole hour and FVA is performed on the model at the 263 

previous whole hour using saved values. Once all iterations are complete (e.g. model is at final 264 

time point), then the output files are written.  265 
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 266 

The simulations of the p-ath780 model has been advanced through several growth stages using 267 

time point for changes in growth stage taken from experimental data [24]. In the seed 268 

germination stage, uptake of fatty and amino acids from seed storage has been modeled as a 269 

constant rate of fatty acid usage which results in all stored fatty and amino acids being depleted 270 

by the end of the seed germination stage [30]. The 12 hours of light and 12 hours of dark diurnal 271 

rhythm has been chosen to match experimental conditions for studies on starch and sucrose 272 

storage/uptake dependence on the diurnal cycle [31]. These patterns have been fit to a sine wave 273 

model constraint with �1% tolerance. In growth stages when plant tissue ratios have been 274 

constant, the tissue mass ratio values had been taken from values typical for herbaceous plants 275 

[32].  276 

 277 

Returning to the design-build-test cycle used to improve the p-ath780 model, experimental data 278 

related to plant growth and plant growth stages have been collected from a variety of literature 279 

sources to serve as checks for the accuracy of the modeled system [24,33]. The first set of 280 

experimental data has included mass data, including whole plant and individual tissue. At 281 

approximately 17, 24, and 31  DAG the total dry plant mass should be between 0.5 and 2.0 mg; 2 282 

and 5 mg; and 10 and 30 mg, respectively [33]. Once the design-build-test cycle has been 283 

completed, the p-ath780 model has shown a total dry plant mass of 0.554 mg at 17 days (408 284 

hours), 3.74 mg at 24 days (576 hours), and 25.2 mg at 31 days (744 hours) after germination, 285 

demonstrating growth consistent with in vivo data. Furthermore, the relative growth rate for the 286 

first 31 days of plant growth has been reported as between 0.21 and 0.25 day-1 [33], and the final 287 

p-ath780 has shown a relative growth rate of 0.246 over this time period. To adjust model 288 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 9, 2019. ; https://doi.org/10.1101/761189doi: bioRxiv preprint 

https://doi.org/10.1101/761189
http://creativecommons.org/licenses/by-nc/4.0/


 

 

A Lifecycle Metabolic Modeling Framework                                            Schroeder & Saha, 2019 

14 

behavior in latter stages of growth, tissue-specific mass data has been obtained from literature. 289 

Specifically, the dry weight of the stem, the leaves, and the seeds has been reported as 290 

approximately 188 mg (standard deviation 39.3 mg), 163.7 mg (standard deviation 52.0 mg), and 291 

127.9 mg (standard deviation 52.7 mg), respectively [24]. As p-ath780 models both plant growth 292 

and loss of seed (and other) mass in the silique ripening stage, the peak mass of each of these 293 

tissues has been comparted to this data. In the final p-ath780 model, the peak mass of the stem, 294 

leaves, and seeds has been determined as 189 mg, 177 mg, and 130, respectively, all of which are 295 

within one standard deviation of the experimental value (see the methods section for how tissue 296 

masses are determined). In summary, through the results of the design-build-test cycle 297 

implemented, in silico tissue and plant mass values are similar to in vivo data, thus showing 298 

strong agreement with respect to growth trends. 299 

 300 

In early rounds of model reconstruction, it has been noticed that the plant model’s photosynthesis 301 

is too efficient at fixing carbon. This is due to the fact that plants do not make full use of 302 

available light source(s), but the reconstructed metabolic model had been. Published in vivo data 303 

which has been used in the modeling and verification of p-ath780 made use of fluorescent lights, 304 

which have tight transmission spectra peaks at 544 and 609 nm [34]. In contrast, peak 305 

absorbance for plant leaves is at approximately 440 and 680 nm [35]. The problem of the 306 

availability of light has been addressed by scaling the transmission of the fluorescent lights by 307 

the absorbance of plant leaves. This has left approximately 21.06% of light transmitted by the 308 

fluorescent bulbs usable by the plant (see Supplemental File 5 and methods). An additional 309 

restriction, namely biomass yield, has also been placed on metabolic efficiency in plant systems. 310 

Biomass yield has been defined as the carbon fraction of biomass produced appearing in new 311 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 9, 2019. ; https://doi.org/10.1101/761189doi: bioRxiv preprint 

https://doi.org/10.1101/761189
http://creativecommons.org/licenses/by-nc/4.0/


 

 

A Lifecycle Metabolic Modeling Framework                                            Schroeder & Saha, 2019 

15 

growth for each unit of carbon used for growth [36]. This yield value accounts for repair of 312 

existing biomass and replacement of lost biomass. Experimentally, this value has been identified 313 

as generally between 0.7 and 0.85 [37]. Here, for p-ath780 mass values to align with 314 

experimental data, two separate mass yield vales have been set at 0.32 and 0.23 for when the 315 

plant system lacks and has seed tissue respectively. This represents an incongruity with 316 

experimental evidence, although this value is still in the same order of magnitude as 317 

experimental evidence. All files necessary for p-ath780 have been included with this work in 318 

Supplemental Files 7 through 16. The in silico results of the final p-ath780 model can be found 319 

in Supplemental File 17. 320 

 321 

In silico Plant Growth under Alternative Objective Functions. A total of six different objective 322 

functions for p-ath780 have been investigated and a summary of that investigation has been 323 

shown in Table 1. In all cases, root and stem tissue objectives have been defined as biomass 324 

production, where the leaf and seed objective functions are varied. When any tissue has a non-325 

biomass objective, that objective is weighted by some scaling factor (either α for light-based 326 

objectives or β for fatty acid-based objectives) to ensure the new terms do not dominate or be 327 

insignificant compared to biomass (e.g. be an order or magnitude or more different) and to 328 

investigate the different effects of weight factors. The first row (green) of Table 1 contains the in 329 

vivo arabidopsis data which has been used as targets and verification of the p-ath780 model. The 330 

second row (blue) contains the in silico data from p-ath780 where the objective for all tissues is 331 

biomass production (default objective), and has summarized the findings of the preceding 332 

subsection. For the mathematical definition of this and other objective functions discussed here 333 

see the methods section. The next two objective functions presented (grey) we have considered 334 
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set the seed tissue-level objective as the maximization of fatty acid stored in the seed tissue at 335 

two different weight factor values (β). At low β values, this causes a scavenging of carbon 336 

wasted in the plant metabolism which is then diverted to the seed fatty acid production without a 337 

change in plant growth. At high β values, this alternate seed objective results in stunted plant 338 

growth as carbon used elsewhere is diverted to the seed tissue. This alternate objective function 339 

has no effect when the plant does not have seed tissue present. Photonic efficiency for the leaf 340 

tissue has been attempted as an alternative objective function and results are reported in the next 341 

two grey rows; however, depending on the weight of the photonic efficiency parameter, the 342 

model is generally photophobic (no light has been uptaken) or grows as normal. In all 343 

photophobic growth cases, the plant mass of the model eventually becomes negative, leading to 344 

nonsense in later time points, thus the results of these α values are not reported. No α value has 345 

been identified which produced a result between these extremes (photophobic and normal 346 

growth), and these attempts are not included in this work. The full output of each reported result 347 

can be found in Supplemental File 17. The final objective function investigated (and reported in 348 

Table 1) is one which combined the leaf linear photonic efficiency objective and the seed fatty 349 

acid storage objective at a moderate weight value (values enumerated in Table 1). As with other 350 

linear photonic efficiency objectives, the amount of light uptaken by the plant is unaffected, and 351 

as with other investigations of the seed fatty acid objective, the plant growth is stunted when the 352 

seed tissue is present. In summary, the p-ath780 model is robust to small and moderate 353 

perturbations in the objective related to photonic efficiency, fails with large perturbations to 354 

photonic efficiency objectives, and results in continuously changeable growth levels to 355 

metabolite production objectives.  356 

 357 
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Discussion 358 

In the current work, a multi-tissue core metabolism stoichiometric model, including leaf, root, 359 

seed, and stem tissues, of Arabidopsis thaliana has been reconstructed (Figure 3), and linked in 360 

an FBA-based optimization framework (Figure 1). This framework has been embedded in a 361 

workflow (Figure 1) which has simulated how plant metabolism evolves over time with respect 362 

to the presence or absence of light, the transition to different growth stages, and the gain or loss 363 

of tissues (such as seed). This model has incorporated a wide variety of data which has not been 364 

incorporated in other stoichiometric modeling efforts such as the effect of plant mass, the effect 365 

of tissue mass difference on tissue interactions, whole-plant growth heuristics such as yield, the 366 

availability of usable light, and biomass-based plant maintenance (as opposed to ATP-based). 367 

The tissue models taken together with these literature-based constraints has been named the p-368 

ath780 model. The whole-plant growth characteristics of p-ath780 have shown general 369 

agreement with experimental data, particularly with respect to whole plant mass at certain 370 

growth milestones and lifecycle tissue yields.  371 

 372 

The design-build-test cycle used to develop and tune p-ath780, shown in Figure 3, has been 373 

implemented. As a result, in the final p-ath780 model, in silico predictions compared well to in 374 

vivo data, particularly plant, leaf, seed, and stem masses, with the exception of biomass yield. 375 

The incongruity between in vivo and in silico biomass yield has likely resulted from the p-ath780 376 

model only having included primary carbon metabolism, which in turn means that plant biomass 377 

has been built entirely from generally less metabolically expensive primary metabolites. This had 378 

resulted in too efficient biomass production, hence the lower yield for the model. This 379 

discrepancy in biomass yield has served to highlight the large effect of secondary metabolism on 380 
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plant growth and has served as a correction factor on the model due to the lack of modeled 381 

secondary metabolism. In addition, likely the plant mass yield is lower when seed tissue is 382 

present because flower tissue is metabolically expensive yet is not modeled in this work. In 383 

additional, biomass drains for plant senescence and maintenance have been included [36,37]. 384 

 385 

Once the model has been developed, six different objective functions have been applied to it, 386 

including the default objective of maximizing plant growth, linear photonic efficiency, and seed 387 

fatty acid production. In summary, the p-ath780 model is robust to small and moderate 388 

perturbations in the objective related to photonic efficiency, breaks when large perturbations are 389 

made to the photonic efficiency objective, and is capable of some fine tuning with respect to 390 

metabolite production objectives. The behavior of p-ath780 with respect to the linear photonic  391 

efficiency objective function is due to multiple factors. First, as the partially photophobic case 392 

exists, this suggests that seed tissue is the most metabolically expensive tissue to create. This is 393 

as expected because the seed tissue requires storage of high-energy molecules such as fatty acids, 394 

proteins, and sugars to feed its embryo when dispersed. Further, the rate of biomass production 395 

for all tissues are linked in the optimization-based framework. Secondly, seed tissue has a target 396 

fraction of overall plant mass which it must grow to for each hour interval of the flower 397 

development stage. If seed tissue is too metabolically expensive to produce, relative to the cost to 398 

uptake more light, it appears that the solution strategy then becomes to decrease the mass of 399 

other tissues while leaving the growth of the seed tissue to be minimal. This can result in sharp 400 

changes in mass which falls outside the realm of stability for Heunn’s third order Runge-Kutta 401 

rule, resulting in predictions with no biological relevance. Thirdly, biomass composition and 402 

metabolic cost is not dependent on the amount of light uptaken, so the biomass cost is constant 403 
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with respect to light uptaken so there is no steady equilibrium between the two terms except at 404 

the extremes. Fourthly, minimizing light uptake and maximizing biomass growth as objectives 405 

are competitive, increase light uptake results in increased growth in stoichiometric models. In 406 

contrast, this is not an issue for maximizing fatty acid production as biomass partially consists of 407 

fatty acids, therefore these two objectives can be complimentary to some degree and a variety of 408 

β values can be used without the model failing to find a solution. Theoretically, there exists some 409 

highly-specific value of α at which the cost to the light needed to drive growth is balanced with 410 

the rate of production of new biomass, but this is an unsteady equilibrium which when the value 411 

of α is slightly perturbed finds the new equilibrium at either extreme. Therefore, the value of α 412 

might be imagined as a fulcrum between the two terms as illustrated in Figure 5. Figure 5(A) 413 

restates the linear photonic efficiency objective equation, and Figure 5(A-D) represents the 414 

action of α as a fulcrum. Figure 5(D) in particular illustrates why the p-ath780 model is robust to 415 

changes in the value of α below this theoretical balance point.  416 

 417 

Figure 5. This figure highlights how the weight factor, α, fails to reach some kind of equilibrium 418 

between light uptake and biomass production in the linear photonic efficiency objective. A) 419 

Restates the linear photonic efficiency objective function. B) Shows the theoretical balance 420 

which might exist between light uptake and biomass production at some highly specific value of 421 

α. C) Shows how as slight increase in α from that point causes light to outweigh biomass in 422 

terms of influence on the objective function value. This results in photophobic growth as light 423 

“outweighs” growth. D) Shows how as slight decrease in α from that point causes light to 424 

outweigh biomass in terms of influence on the objective function value. This results in normal 425 

growth as growth “outweighs” light. 426 
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 427 

This work does not account for diurnal rhythms in the transcriptome of Arabidopsis thaliana for 428 

several reasons. Firstly, the majority of transcriptomic studies have focused on the regulatory 429 

network of proteins which regulate metabolism based on the availability of light and rhythm 430 

[43,44], rather than considering metabolic proteins which are represented in the p-ath780 model. 431 

Secondly, tissue-specific diurnal transcriptomic information is only available for the leaf tissue 432 

[43,44]. Further, these experiments generally consider a single point in the growth cycle of 433 

arabidopsis under specific growth conditions. The framework of p-ath780 is already highly 434 

constrained, and that the inclusion of too much data will invariably cause model failure. This is 435 

because in vivo experiments, in general and those used in this work, often occur under different 436 

conditions, at different points in the plant lifecycle, have different methods to some degree, or 437 

even seem quantitatively difference due to the noise inherent to biological systems, making 438 

alignment of quantitative in vivo data from too many sources impossible. In this work, we have 439 

decided to use data which described a wide range of time point in arabidopsis growth, such as 440 

biomass yield, relative growth rate, growth up to a certain time point, and overall tissue yield, 441 

rather than data which may be specific to a single point in growth, such as transcriptomics.  442 

 443 

This work provides the basis for much future development and sophistication. For instance, the 444 

current p-ath780 model could be further sophisticated by adding the secondary metabolism of the 445 

plant system, which is a considerable resource drain in many plant systems. Further, at present 446 

several simplifications are made regarding tissues, particularly related to seed tissue. For 447 

instance, the model currently assumes that when the plant is flowering, that flower biomass and 448 

metabolism is roughly equivalent to that of the seed. While this resulted in a simpler model, this 449 
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model cannot be then used to investigate certain metabolic hypothesis such as the cost to the 450 

plant resulting from flower pigmentation, pollen, and nectar production. Future work will include 451 

producing models for other plant tissues, such as flowers. In addition, as this is a core carbon 452 

metabolism model, it is likely quite similar to the core metabolism of other plant systems; 453 

therefore, the p-ath780 model can serve as a basis for the development of lifecycle models for 454 

other plant systems, particularly annual eudicots which are of agricultural interest, such as rice 455 

(Oryza sativa), potatoes (Solanum tuberosum), tomatoes (Solanum lycopersicum), and soybeans 456 

(Glycine max).  457 

 458 

Methods 459 

Overview of the reconstruction of core metabolic models of leaf, root, seed, and stem tissues. 460 

The seed tissue model. The general workflow which has been used for the development of the 461 

four core tissue models has been illustrated in Figure 3. We have developed the seed model first, 462 

with the central metabolic pathways based on a Metabolic Flux Analysis (MFA) of four seed 463 

genotypes published previously [27]. We have then manually filled gaps in this model with 464 

reactions based on literature and genomic evidence [26] or with reactions being necessary for 465 

ensuring model connectivity. The stoichiometric coefficients of biomass precursors have been 466 

determined using sink reactions, dry biomass weight composition, and amino acid mass ratios 467 

provided in a previous work [27] (see Supplemental File 22). The resultant seed tissue model has 468 

focused on storage, respiration, and growth, and consists of 428 reactions, 529 genes, and 411 469 

metabolites (included as Supplemental File 1).  470 

 471 

The leaf tissue model. Next, we have reconstructed the leaf model by taking common 472 

reactions/pathways from the seed model and adding synthesis pathways for amino acids that are 473 
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not synthesized in the seed, in addition to photosynthesis, carbon fixation, gluconeogenesis, and 474 

transport reactions. We have then developed the biomass equation for the leaf tissue using that of 475 

a previously published Arabidopsis model [18] (see Supplemental File 22). The resultant leaf 476 

tissue model has focused on photosynthesis, respiration, gas exchange, fatty acid synthesis, and 477 

growth, and contains of 537 reactions, 703 genes, and 479 metabolites. We have included the 478 

leaf model with this work as Supplemental File 2.  479 

 480 

The root and stem tissue models. We have constructed the root and stem models, similarly, by 481 

extracting common reactions/pathways from the seed model and adding necessary transport and 482 

exchange reactions. Then exchange reactions have been added to allow the root to be linked to 483 

micronutrient uptake processes from the soil, and the stem to be involved in inter-tissue transport 484 

processes. In the absence of Arabidopsis-specific estimates, the dry weight composition of 485 

switchgrass (Panicum virgatum) root and stem [28] have been assumed to be equivalent to the 486 

biomass composition of these tissues in Arabidopsis. Due to the low detail level of the dry 487 

weight composition analysis, the biomass of root and stem tissues have been composed entirely 488 

of carbohydrates. The resultant root tissue model has focused on nutrient uptake, transport, and 489 

growth, consisting of 130 reactions, 250 genes, and 126 metabolites, while the stem tissue model 490 

focuses on transport and growth, consisting of 160 reactions, 250 genes, and 140 metabolites. 491 

We have included the root and stem models with this work as Supplemental Files 3 and 4 492 

respectively.  493 

 494 
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Confidence scoring. Reaction confidence scores have been defined in a manner consistent with a 495 

previously published protocol [26]. Additional information on confidence scoring of the p-496 

ath780 model can be found in Supplemental File 22.  497 

 498 

Curation of all these tissue models. For all four models, we have balanced (both in terms of 499 

elements and charge) all model reactions and have resolved thermodynamically infeasible cycles 500 

by removing reactions, breaking composite reactions, and adding metabolic costs to transport 501 

reactions. For all these tissue models, GPR links have been established through a largely 502 

automated workflow utilizing the KEGG API for the majority of reactions using the code 503 

included in Supplemental File 18. This is followed by having manually curated the GPR links 504 

and/or inclusion rational of reactions with non-KEGG identifiers. The count of tissue model 505 

reactions present in KEGG-defined pathways is shown in Figure 2(A), showing pathways 506 

common to most all tissue models, and Figure 2(B), showing pathways common to seed and leaf 507 

tissues, these figures have been created using code included in Supplemental Files 19, 20, and 508 

21. The results of this automated workflow can be found in Supplemental File 5. Sources for 509 

reactions included in leaf, root, seed, and stem models are shown in Figure 2(C-F), respectively 510 

through confidence scoring (see confidence score section). Similarly, the confidence scores for 511 

all reactions in the p-ath780 model have been reported in Figure 2(G).  512 

 513 

Overview of the developed of the optimization-based framework of p-ath780. The models have 514 

next been linked using well-known computational framework known for modeling microbial 515 

communities [25]. An objective function for each of these models has then been defined, 516 

specifying the maximization of the tissue-level biomass production rate followed by adding 517 
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constraints for simulating growth in light and dark conditions. Next, literature information 518 

including embryo mass [30], initial tissue masses [38], growth stages [24], time points at which 519 

growth stages occur [24], constraints to link tissue growth rates to appropriate tissue ratios, 520 

transpiration [33,39], leaf surface area [28], usability of provided light [31,34,35], and defining 521 

changes in tissue mass ratios [24,40] has been integrated into these models, which are typically 522 

overlooked in most other SMs. In this work, we have decided to simulate arabidopsis biomass 523 

across 61 days (1464 hours) of growth, as all plant seeds are dispersed by day 61, and after 524 

which in vivo data on plant growth and mass is sparse. More specific details can be found in the 525 

following sub-sections. The full optimization-based framework used in this work has been 526 

provided in Supplemental File 6, and further requires Supplemental Files 7 through 16.  527 

 528 

Generalized statement of the FBA-like optimization-based framework used. The optimization-529 

based framework used can be stated in general terms as follows. The FBA-based framework 530 

which determines the optimal rates of flux through each reactions can be stated as follows (using 531 

the default objective). 532 

 533 
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 534 

Where I is the set of metabolites; J is the set of reactions; Micro is the set of micronutrients 535 

(phosphate, ammonium, and sulfate) and is a subset of I; X is the set of amino acids which are 536 

synthesized in the leaf tissue and exported to other tissues; and Y is the set of sugars stored by 537 

various plant tissues. In addition, M is defined as a very large number, tleaf is the mass-538 

normalized transpiration rate from the leaf; sla, ssa1, and ssa2 are the amplitudes of the sine wave 539 

modeling of starch storage in the leaf and stem and sucrose storage in the stem, respectively; slf, 540 

ssf1, ssf2 are the frequencies of the sine wave modeling of starch storage in the leaf and stem and 541 

sucrose storage in the stem, respectively; slx, ssx1, and ssx2 are the x-intercept shifts of the sine 542 

wave modeling of starch storage in the leaf and stem and sucrose storage in the stem, 543 

respectively; s is the level of seeding of the model; xtissue is the fraction of total plant mass 544 
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accounted for by that tissue; and Mtissue is the mass of the given tissue. The following subsections 545 

will explain the constraints used in the FBA framework. 546 

 547 

Defining model objective functions. For most analyses and results, the objective function of p-548 

ath780 has been to maximize the sum of the biomass production rates for all four tissues 549 

according to the following equation (referred to as the default objective). 550 

 551 

�������� � 
 ������� ���� � ������� ���� � ������� 
��� � ������� 
��	 (31) 

 552 

Where � has been defined the objective function and ������� ��

�� is defined as the rate of 553 

biomass production, in units of h-1, of the tissue referenced. This objective function is 554 

approximately equivalent to having maximized the growth rate (change in mass per unit time) of 555 

the plant as a whole. This objective function has led to one major issue, namely how to avoid the 556 

model producing only the metabolically “cheapest” tissue which could result in the maximum 557 

objective value but is biologically unrealistic. This is addressed by equations (23) through (28) 558 

and will be further discussed later. 559 

 560 

It has been noted that the maximization of plant biomass has not been the only feasible objective 561 

function for plant SM system, for instance one alternate objective function is the maximization 562 

of plant photonic efficiency [15,16]. This objective has generally been framed as minimizing the 563 

amount of light used by the plant system, given a required growth rate [15,16]. As it has been 564 

assumed that the only (significant) photosynthetic tissue in the p-ath780 model is the leaf tissue, 565 
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only the objective with relation to the leaf tissue has been altered. As a result, the leaf tissue term 566 

in equation (1) has been replaced with a photonic efficiency term in the following equation. 567 

 568 

�������� � 
 09:������� ������; � ������� ���� � ������� 
��� � ������� 
��	 (32) 

 569 

Where 9 has been defined a correction factor to scale ������� ������ to be on the same order of 570 

magnitude as the growth rates for each other tissue.  571 

 572 

An alternative objective function has also been defined for the seed tissue. Specifically, as fatty 573 

acids have been shown to one of the most prominent forms of carbon storage in the seed tissue 574 

[38], the alternate objective function is the maximization of seed fatty acid stores. This has 575 

resulted in seed objective function as follows: 576 

 577 

�������� � 
 ������� ���� � ������� ���� � < � ��  
���
 � ������� 
��	 (33) 

 578 

 Where the new seed flux term is defined as the sum of fatty acid storing (sink) reactions and < 579 

serves to reduce this term to be equal in order of magnitude to the other objectives. Similar to 9, 580 

< has been determined through trial and error. One additional objective function has been studied 581 

which combines linear photonic efficiency and fatty acid storage: 582 

 583 

�������� � 
 09:������� ������; � ������� ���� � < � ��  
���
 � ������� 
��	 (34) 

 584 
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Equation (33) has combined three separate objective types: linear photonic efficiency (leaf), 585 

biomass production (root and stem), and fatty acid storage (seed). It should be noted that the 586 

objective for the root and stem tissues are always to maximize biomass production. For more 587 

details see Supplemental File 22. 588 

 589 

Mass balance. In this model, the mass balance, equation (2), is allowed some flexibility for the 590 

storage of metabolites in the plant tissue up to 10 mmol per gDW hour. This has been found to 591 

be necessary in the design-build-test cycle so that all points would be feasible. 592 

 593 

Enforcing net CO2 consumption O2 production. In equations (3) and (4), it is required that the net 594 

effect plant metabolism is carbon fixation and oxygen production, since this is a well-known role 595 

of plant systems (see Supplemental File 22). 596 

 597 

Enforcing logical flow of micronutrients. In equations (5) through (9) the logical flow of 598 

micronutrients is dictated. Equation (5) ensures that the uptake rate is bounded, equation (6) 599 

ensures that the rate of each micronutrient exported by the root to the other tissues is less than or 600 

equal to that uptaken by the root from the soil, allowing for the root to use a portion of the uptake 601 

nutrients. Equation (7) ensures that all micronutrient exported by the root is uptaken by the stem, 602 

and equation (8) is essentially the same as equation (6), but for the stem tissue. Finally, equation 603 

(9) ensures that the micronutrients exported by the stem are all given to other tissues, specifically 604 

leaf or seed. Both sides of the equation in equations (6) through (9) are multiplied by each tissues 605 

mass to convert the units of the constraint from mmol per gDW hour to mmol per hour as each 606 

tissue has a different mass value in gDW. For more details see Supplemental File 22. 607 
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 608 

Enforcing logical flow of amino acids. Similar to micronutrients, the logical flow of amino acids 609 

has been defined explicitly via equations (10) to (12), as having been synthesized in the leaf 610 

tissue and exported to seed tissue. This is because seed tissue has not been shown to produce all 611 

needed amino acids in the MFA study consulted [27], and the root and stem models do not 612 

require amino acids for biomass production in the defined biomass composition. Essentially, 613 

these constraints ensure that all amino acids exported by the leaf are uptaken by the stem 614 

[equation (6)]; that these amino acids are not stored in the stem [equation (7)]; and that all amino 615 

acids are exported by the stem to the seed tissue. For more details see Supplemental File 22. 616 

 617 

Enforcing logical flow of sucrose. As with amino acids, sucrose is modeled as being produced in 618 

the leaf tissue and exported to other tissues. In contrast to amino acids, sucrose is necessary for 619 

all tissue models. Therefore, equation (13) is analogous to equation (10), equation (14) allows 620 

the stem to use the sucrose it receives from the leaf, unlike equation (11), and equation (15) 621 

exports sucrose both to the seed and root, unlike equation (12). For more details see 622 

Supplemental File 22. 623 

 624 

Enforcing diurnal patterns of carbohydrate storage. Plants store carbohydrates in leaf and stem 625 

tissues in the form of starch (leaf and stem) and sucrose (stem) in a pattern where the rates of 626 

storage may be modeled by a sine wave with a period of 24 hours [31,41]. The calculations for 627 

defining the necessary parameters, parameters sla, ssa1, ssa2, slf, ssf1, ssf2, slx, ssx1, and ssx2 in 628 

equations (16) through (18), of the fit sine waves (see Supplemental Files 5 and 22).  629 

 630 
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Enforcing logical flow of water. The flow of water in the p-ath780 model is constrained as similar 631 

to that of micronutrients and are defined in equations (19) through (22), but without the 632 

equivalents of equations (6) and (8), and with the addition of a transpiration constraint. This 633 

difference is because oxidative phosphorylation in tissues creates water. Hence, in tissues 634 

without significant photosynthetic activity, water might be produced in this model, and the 635 

largest usage to which plants put water, to maintain turgor pressure, is not modeled as SMs use 636 

gDW as a basis of calculation, rather than fresh weight (see Supplemental File 22).  637 

 638 

Defining the relationship between tissue growth rates. To avoid the aforementioned problem of 639 

having p-ath780 produce only the “cheapest” biomass, the growth rates of all four tissues have 640 

been linked by a series of constraints which ensure that they grow at rates which maintain the 641 

desired tissue mass ratios. The rate of biomass production determined by a SM is the exponential 642 

growth rate of the biological system being modeled [8]; therefore, plant mass can be defined as: 643 

 644 

���

,�!�  
 ���
,��"��� ���	�
,��     ���$ � =���>, !""�, $��?, $���@ (35) 

 645 

Where � has been defined as the plant mass at time � � 1, ������ ������,� is defined as the rate 646 

of plant growth at time �, and ��#� is defined as the plant mass at time �. Further, the ratio of 647 

the masses to two tissues can be defined with reference to a single tissue, such as leaf, in the 648 

following manner: 649 

 650 

���

,�  
 ���
�����
�����,�     ���$ � =���>, !""�, $��?, $���@   

(36) 

 651 
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By having substituted the former equation into the latter and simplifying the result (see 652 

Supplemental File 22), linear equations have been written to constrain biomass production rates 653 

of root, seed, and stem tissues with respect to leaf tissue as follows: 654 

 655 

���

,� 
 ln A���
,�!������,������,�!����
,�
B � �����,�     ���$ � =!""�, $��?, $���@   

(37) 

  656 

This constraint we have added to the SM model, as equations (23) through (28) in order to ensure 657 

that all tissues do have biomass production (or loss) and that it is in an amount which will result 658 

in tissue masses in the correct proportions. 659 

 660 

Ensuring non-productive loss of seed mass in silique shattering. A constraint has been found 661 

necessary to enforce that metabolites associated with the loss of seed biomass, modeled by the 662 

biomass production constraint having reversed flow, when seeds are being lost during silique 663 

shattering (in the Silique Ripening Stage) and are not recycled into other parts of plant 664 

metabolism. This constraint just does that by forcing recovered metabolites into the biomass loss 665 

reaction of the seed tissue.  666 

 667 

Defining model maintenance and senescence costs. An important consideration in any SM is 668 

the definition of a maintenance cost, which is typically defined as ATP hydrolysis [26]. Biomass-669 

based maintenance and senescence costs have been defined as they have been suggested as more 670 

accurate or applicable for plant systems [36,42], but have not yet been used in an SM. We have 671 

defined maintenance and senescence costs as a biomass drain on each tissue scaled by tissue 672 

mass in equation (30). A maintenance cost value of km=0.03 day-1 has been defined which is in 673 
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an order of magnitude typical for plant systems [42], and the same value has been defined for 674 

plant senescence, ks, as this parameter appears to generally be of the same order of magnitude 675 

[36,42]. These rates are then converted into their per hour equivalent and scaled by tissue mass to 676 

enforce these constraints. Only a single constraint has been defined for both phenomena as both 677 

are biomass drains whose effect is additive. Literature evidence, including pictorial evidence of 678 

plant phenotype at various growth stages, appears to suggest that the rate of plant senescence 679 

increases drastically as the flowering production stage finishes and the Silique Ripening phases 680 

begin (in literature, growth stage 0.65 to 9.70) [24]. Further, it appears that the plant no longer 681 

maintains current mass, but allows tissues to die and desiccate [24]. This has been included in the 682 

p-ath780 model in that plant senescence is increased by two orders of magnitude and plant 683 

maintenance is set to zero following the end of the Flower Production stage. This results in a 684 

growth curve in-line with in vivo evidence (see Table 1).  685 

 686 

Other constraints enforced on the FBA-like optimization framework. There are other constraints 687 

enforced on the optimization framework discussed above that are more difficult or cumbersome 688 

to state mathematically and are therefore discussed here.  689 

 690 

Defining the usage of seed stores by the seedling. A seedling’s source of carbon is primarily its 691 

reserves of stored carbohydrates, proteins, and lipids. Namely, it has been shown that seeds have 692 

stores of approximately 0.425 +g of sucrose, 6 +g of fatty acids, and 6 +g of proteins (modeled 693 

here as component amino acids) available [30]. As no information concerning the pattern of 694 

usage of the seed storage has been found, it has been assumed that the stores are utilized at a 695 

constant rate during the duration of the seed germination period and that all the storage is fully 696 
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consumed by 88.5 hours after germination, which has been defined the point at which the 697 

cotyledons are fully open and leaf development intensifies [24]. The rate at which the seedling 698 

should have uptaken the seed storage has been determined by identifying the moles (mmol) of 699 

each major component of the seed storage and dividing by the time over which the seedling 700 

consumes those. This has resulted in a mmol/h quantity. See Supplemental File 5 for this 701 

calculation. This quantity has then been scaled by plant mass to result in a mmol/gDW�h 702 

quantity, which is used to bound the uptake rates of seed store metabolites. As the leaf has 703 

proven the most metabolically active tissue, it is assumed that the leaf tissue of an arabidopsis 704 

seedling uptakes the stored fatty acids, amino acids, and carbohydrates which is provided for 705 

seedling growth during the Seed Germination stage when the leaves have no access to light   (see 706 

Figure 1, Seed Germination).  707 

 708 

Defining initial plant and tissue ratios. As the model advances plant and tissue masses with 709 

respect to time, the establishment of initial mass for plant and tissues has become important in 710 

this framework. Experimental evidence has shown that arabidopsis seeds have a fresh weight 711 

(FW) of 25.3 +g and have only about 7% water content [30]. The embryo itself is assumed equal 712 

to the seed mass less the mass of seed stores of sucrose (0.425 +g), Fatty Acids (6 +g), and 713 

proteins (6 +g) [30]. Having assumed that the dry matter content ratio holds for the embryo as 714 

well, this has left approximately 11.0 +g dry weight (DW) for the embryo. As information on the 715 

ratio of tissue masses in arabidopsis has not been documented in literature, the general ratio for 716 

herbaceous plants has been used as a starting point, namely 0.46:0.24:0.3 leaf:root:stem FW [32]. 717 

This ratio has been converted to DW ratio for stoichiometric modeling. Experimental data has 718 

shown that the dry matter content of leaf tissue is 0.212 DW/FW, of root tissue is 0.170 DW/FW, 719 
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and of the stem tissue is 0.176 DW/FW [44]. Having converted the FW ratios to DW ratios has 720 

given the ratio of 0.511:0.267:0.211 leaf:root:stem DW. While the dry matter content of an 721 

embryonic arabidopsis is much higher than that of a mature plant (the source of the utilized dry 722 

matter content ratios), this DW tissue ratio has non-the-less been assumed to be accurate for the 723 

embryo due to lack of evidence to the contrary. 724 

 725 

Defining stage times. Time points which define the transition between different stages of growth 726 

have been taken from a single source of experimental evidence [24]. Stage transitions selected 727 

include the transition to stage 0.70 (Seed Germination to Leaf Development transition in Figure 728 

3), stage 6.00 (Leaf Development to Flower Production transition in Figure 3), and stage 8.00 729 

(Flower Production to Silique Ripening transition in Figure 3). Not all lifecycle stage transitions 730 

for which there is experimental evidence have been incorporated into this model. In some cases, 731 

this has been due to a lack of metabolic relevance, such as the transition from stage 1.04 to stage 732 

1.05 where the plant transitions from 4 rosette leaves to 5 rosette leaves that are greater than 733 

1mm in length. This has not been important to the p-ath780 model as a ratio of plant mass to leaf 734 

surface area ratio is used instead [33] (see Supplemental File 5). Others cannot be modeled by 735 

the current framework tissues such as stage 5.10 which is when the first flower bud is visible 736 

[24], as the current p-ath780 model has no flower bud tissue. The length of the seed ripening 737 

stage is also determined by experimental evidence [24]. 738 

 739 

Defining the change in tissue mass ratios with growth stage. Using available literature evidence, 740 

two endpoints for the plant tissue mass ratios have been defined when no seeds are present and 741 

all seeds are produced [24,38]. The transition between these states are assumed to be linear with 742 
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respect to a parameter called seeding, defined above as s. These relationships are then modeled 743 

as:  744 

 745 

����� 
  ���� C $��?��� � �����,$ (38) 

����� 
  ���� C $��?��� �  �����,$ (39) 

�
��� 
  
��� C $��?��� � �
���,$ (40) 

�
��	 
  
��	 C $��?��� � �
��	,$ (41) 

 ���� 
 00.2514;  ���� 
 00.02862;  
��� 
 0.2030;  
��	 
 0.07698  

�����,$ 
 0.511; �����,$ 
 0.267; �
���,$ 
 0; �
��	,$ 
 0.211  

 746 

Where ���

�� has been defined as the tissue mass fraction with respect to the total mass of the 747 

plant,  ��

�� is defined as the change in tissue mass fraction with respect to seeding, and ���

�� 748 

is defined as the initial mass fraction of each tissue. The gain in the seeding parameter has been 749 

assumed to be linear with time and is fit to experimental time point describing the fraction of 750 

flowers produced [24] (see Supplemental Files 5 and 22).  751 

 752 

Defining the availability of light. The amount of light available to the model to use for 753 

photosynthesis has been defined initially by literature sources used for other constraints [31], and 754 

scaled by the transmittance of that light source (fluorescent lights) [34] and the absorbance of 755 

arabidopsis leaves [34] and surface area to plant mass of arabidopsis leaves [33] to define the 756 

amount of light usable by the plant system, which has been  approximately estimated to be 4.00 757 

mmol/gDW plant·h. This value has been shown to be 21.50% of the total photons output by the 758 

fluorescent light (see Supplemental Files 5 and 22).   759 
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 760 

 761 

Defining the FVA for the p-ath780 model. A Flux Variability Analysis (FVA) model has been 762 

defined for growth both in light and dark growth. All flux bounds and constraints are the same 763 

and the FBA models, but the objective function is defined as: 764 

 765 

��������/�������� � 
 M�  (42) 

 766 

Where the FVA model solution has been iterated for each reaction N, and M has been valued at 1 767 

for the current reaction whose maximum and minimum are to be investigated and 0 for all others 768 

and is stepped through first maximizing and then minimizing each reaction. Due to restrictions of 769 

the time allowed for model solutions, nine points has been selected at which to perform FVA. 770 

These points are 70 hours after germination (HAG, seed germination stage, dark), 408 HAG (leaf 771 

development stage, light), 576 HAG (leaf development stage, light), 590 HAG (leaf development 772 

stage, dark), 800 HAG (flower production stage, light), 810 HAG (flower production stage, 773 

dark), 1156 HAG (flower production to silique ripening transition), 1200 HAG (silique ripening 774 

stage, light), and 1220 HAG (silique ripening stage, dark).  775 

 776 

Defining the mass step between time points. Using the biomass production rates calculated by 777 

the FBA-like optimization framework, a Constrained Non-linear System (CNS) of equations can 778 

be defined to advance the plant mass by treating the growth rates as constants. This system of 779 

equations has been derived from the basic principles of FBA (e.g. that growth rates are 780 

exponential rates of growth) through a sequence of simplifications and assumptions which can be 781 
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found in Supplemental File 22, and therefore will not be elaborated on here. The end result is 782 

shown below for a given time point t. 783 

 784 
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 785 

Where, μ, θ, λ are parameters defined in equations (24), (26), and (28), The above system of nine 786 

equations has nine corresponding variables: the mass step [LHS of equation (43)], ξ, ψ, π, ζ, ρ, ι, 787 

and the time derivative of the leaf growth rate [LHS of equation (53)].  788 

 Equation (51), as shown above, comes from a backwards finite difference formula of error order 789 

h2. For the purposes of increased model accuracy and stability, the FBA-like framework is solved 790 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 9, 2019. ; https://doi.org/10.1101/761189doi: bioRxiv preprint 

https://doi.org/10.1101/761189
http://creativecommons.org/licenses/by-nc/4.0/


 

 

A Lifecycle Metabolic Modeling Framework                                            Schroeder & Saha, 2019 

39 

every 1/3 of an hour to more accurately calculate the mass step at each hour (error is 791 

approximately one ninth of that when using full hour values as estimates). As equation (51) is an 792 

estimate (rather than an exact equation), should CNS not find a feasible solution, it is further 793 

relaxed using a tolerance parameter (tol) to a pair of inequalities: 794 

 795 
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 796 

Where, tol begins at 0.00 and increases by 0.10 for each iteration if a solution is not found. This 797 

results in an mixed-integer non-linear programming (MINLP) problem (8 equality constraints 798 

and 9 variables), and the BARON solver has been used to attempt to solve the model. In all cases 799 

where a solution has not been found via a CNS solver, a solution has been found using the 800 

MINLP solver at tol = 0.10. The above set of equations [either equations (43) through (51) as a 801 

CNS problem or (43) through (50), (52), and (53)] is solved three times to make estimates of the 802 
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LHS of equation (42) usable in Heunn’s rule for explicit third-order Runge-Kutta method. For 803 

why this method has been used (see Supplemental File 22).  804 

 805 
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 806 

After each partial step, the plant and tissues masses are updated for the next solution. These mass 807 

step estimates are then combined using Heunn’s rule for explicit third-order Runge-Kutta 808 

method, where the new mass is calculated as follows.  809 

 810 
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 811 

And the mass of each individual tissue is then updated as follows: 812 

 813 
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Why p-ath780 updates overall plant mass rather than solving the above problem for each 815 

individual tissue is discussed in Supplemental File 22.  816 

 817 

Software platforms used. See Supplemental file 23 for which programming language various 818 

supplemental files utilize. For Python code, version 3.3 is used; for Perl, version 5.26 for 819 

Supplemental Files 18 through 21 and Strawberry Perl version 5.24.0.1 is used for Supplemental 820 

File 8; GAMS code utilizes version 24.7.4. All GAMS and Python code, in addition code 821 

included in Supplemental File 8 is run using the Holland Computing Center at the University of 822 

Nebraska, Lincoln. Supplemental Files 18 through 21 utilize the additional module the LWP (the 823 

world-wide web library for Perl) module 6.39, and have been run on a windows desktop 824 

computer.  825 

 826 

Code availability. The authors declare that the code supporting the findings of this study is 827 

available within the article’s Supplementary Information files.  828 

 829 

Abbreviations used. For the convenience of our readers, a list of abbreviations used is given 830 

below: 831 

GPR: Gene-Protein-Reaction 832 

SM: Stoichiometric Model 833 

FBA: Flux Balance Analysis 834 

FVA: Flux Variability Analysis 835 

LP: Linear Problem 836 

CNS: Constrained Non-linear System 837 
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MINLP: Mixed Integer Non-Linear Problem 838 

arabidopsis: Arabidopsis thaliana 839 

LHS: Left-Hand Side 840 

wrt: with respect to 841 

gDW: grams Dry Weight 842 

DW: Dry Weight 843 

gFW: grams Fresh Weight 844 

FW: Fresh Weight 845 

MFA: Metabolic Flux Analysis 846 

KEGG: Kyoto Encyclopedia of Genes and Genomes 847 

DAG: Days After Germination 848 

HAG: Hours After Germination 849 
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Supplementary information is provided. To help readers navigate the extensive set of included 859 

data and replicate this study, Supplemental File 23 provides an overview of the included 860 

supplemental files and lays out the file structure to use in conjunction with the p-ath780 model. 861 
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Supporting Information Captions 975 

Supplemental_File_1.txt: This file is a text file (extension “.txt”) which contains the seed tissue 976 

model of p-ath780. This file is referenced as “p-ath780Seed.txt” by other supplemental files, 977 

particularly code, and this correct name should replace the default name for attached code to run 978 

properly.  979 

 980 

Supplemental_File_2.txt: This file is a text file which contains the leaf tissue model of p-981 

ath780. This file is referenced as “p-ath780Leaf.txt” by other supplemental files, particularly 982 

code, and this correct name should replace the default name for attached code to run properly.  983 

 984 

Supplemental_File_3.txt: This file is a text file which contains the root tissue model of p-985 

ath780. This file is referenced as “p-ath780Root.txt” by other supplemental files, particularly 986 

code, and this correct name should replace the default name for attached code to run properly.  987 

 988 

Supplemental_File_4.txt: This file is a text file which contains the stem tissue model of p-989 

ath780. This file is referenced as “p-ath780Stem.txt” by other supplemental files, particularly 990 

code, and this correct name should replace the default name for attached code to run properly.  991 

 992 

Supplemental_File_5.xlsx: This file is a Microsoft Excel file which store a wide variety of 993 

information concerning the p-ath780 model. This include the manually-curated GPR results for 994 

each tissue model, the calculations pertaining to the determination of the biomass equation for 995 

each tissue model, calculations for various parameters used in the p-ath780 model to incorporate 996 

literature data, and calculations pertaining to the diurnal storage and uptake of carbohydrates. 997 
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 998 

Supplemental_File_6.txt: This file is the GAMS code for the p-ath780 model itself. It is 999 

generally named “p-ath780.gms”. 1000 

 1001 

Supplemental_File_7.txt: This is an executable Python code which takes the input of a model 1002 

(such as Supplemental Files 1 through 4) and outputs a number of files which can be read by 1003 

GAMs code. Generally, this code is named “convert.py”. This code requires slight modifications 1004 

depending on which model file is to be converted (see in-code comments). 1005 

 1006 

Supplemental_File_8.txt: This is an executable Perl code which takes the results of converting 1007 

each tissue model file using Supplemental File 11 and creates some of the necessary inputs for 1008 

the p-ath780 GAMS code. This is generally referenced as “makeGrowthInputs.pl”. 1009 

 1010 

Supplemental_File_9.txt: This is a text file which contains a list of the names of parameters 1011 

used to defined p-ath780 model growth. This is referred to by other files as 1012 

“growthSpecsNames.txt”. 1013 

 1014 

Supplemental_File_10.txt: This is a text file which contains the actual specifications used for 1015 

growing by the p-ath780 model. This is referred to by other files as “growthSpecs.txt”, 1016 

importantly it is referred to as this by Supplemental File 6. 1017 

 1018 

Supplemental_File_11.txt: This is a text file containing the list of time points to iterate over for 1019 

each day, e.g. this contains each hour of the day, beginning at 0 and ending at 23. This file is 1020 
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referenced by others as “timepointsH.txt”, importantly it is referred to as this by Supplemental 1021 

File 6. 1022 

 1023 

Supplemental_File_12.txt: This is a text file containing a list of days to solve the model over, in 1024 

this case from day 0 to day 61. This file is referred to by others as “timepoints.txt”, importantly it 1025 

is referred to as this by Supplemental File 6. 1026 

 1027 

Supplemental_File_13.txt: This is a text file containing a list of data labels for much of the data 1028 

saved at each time point (combination of day and hour) and reported on in the troubleshooting 1029 

file. This file is referred to by others as “timeData.txt”, importantly it is referred to as this by 1030 

Supplemental File 6. 1031 

 1032 

Supplemental_File_14.txt: This is a text file which lists the time at which the sun rises (or light 1033 

is made available) each day. At present, light is made available at a default time of 0. This file is 1034 

referred to by others as “sunrise.txt”, importantly it is referred to as this by Supplemental File 6. 1035 

 1036 

Supplemental_File_15.txt: This is a text file which lists the time at which the sun sets (or light 1037 

is no longer made available) each day. At present, light is made available at a default time of 0. 1038 

This file is referred to by others as “sunset.txt”, importantly it is referred to as this by 1039 

Supplemental File 6. 1040 

 1041 

Supplemental_File_16.txt: This file basically converts the set time of day to a parameter of 1042 

equal value. Necessary because mathematical operations cannot be performed on sets. This file is 1043 
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referred to by other files as “timeofday.txt”, importantly it is referred to as this by Supplemental 1044 

File 6. 1045 

 1046 

Supplemental_File_17.xlsx: This is a Microsoft Excel file which contains the results of the p-1047 

ath780 model for various alternative objective functions. The sheet tabs indicate which 1048 

alternative objective function the data corresponds to. The key is as follows: 1049 

lpe_g_g_g_X: linear photonic efficiency objective for the leaf, growth objective for other tissues. 1050 

The number which replaces “X” indicates the run number. 1051 

g_g_g_g: Growth objective for all tissues. 1052 

nlpe_X: Non-linear photonic efficiency objective, the number which replaces the “X” denotes 1053 

the run number. 1054 

g_g_fa_g_X: Fatty acid storage objective for the seed tissue, growth objective for all other, the 1055 

number which replaces the “X” denotes the run number. 1056 

 1057 

Supplemental_File_18.txt: This is an executable Perl code file which is used to automatically 1058 

curate the Gene-Protein-Reaction (GPR) links for all tissue models using the KEGG API 1059 

(advanced programming interface, rest.kegg.jp). Inside the documentation of the code is the 1060 

instructions for adapting it to investigate the GPR links for each tissue. Generally, this file is 1061 

named “RxnstoGenes.pl”. This file requires the LWP Perl package. 1062 

 1063 

Supplemental_File_19.tex: This file is a comma separated values file. This file contains a list of 1064 

73 KEGG pathways for which to get the list of associated reactions. This file is referred to by 1065 
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code as “.csv”, and must have the proper name for the code to function properly. Generally 1066 

referred to as “PathRxns.csv”. 1067 

 1068 

Supplemental_File_20.txt: This file is an executable Perl code file (extension of “.pl”) which 1069 

automatically generates the lists of reactions associated with various KEGG pathways. The 1070 

KEGG pathways used are listed in Supplemental File 19. This file is generally named 1071 

“PathGetRxnsComps.pl”. 1072 

 1073 

Supplemental_File_21.txt: This file is an executable Perl code file which is used to 1074 

automatically read the files created from Supplemental Files 7 to give counts of how many 1075 

reactions a model has which belong to each of the pathways indicated by Supplemental File 7. 1076 

Generally, this file is named “ModelPathComp.pl”. 1077 

 1078 

Supplemental_File_22.docx: This file is a Microsoft Word file which contains all the 1079 

calculations simplifications, and rational used for the determination of the function for whole-1080 

plant mass step with respect to time.  1081 

 1082 

Supplemental_File_23.docx: A Microsoft Word file designed to help navigate other files 1083 

provided as well as to outline the general file structure and barebones workflow used with the p-1084 

ath780 model to make model implementation easier. 1085 

  1086 
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Table Legends 1087 

Table 1: This table compares the critical mass-based metrics which have been used for in silico to 1088 

in vivo data comparison across different objective functions for the p-ath780 model. The final 1089 

two columns are for metrics which have been targets of change when applying different 1090 

objective functions. The green row is the in vivo data ranges which have served as targets for in 1091 

silico model behavior. The blue row is the behavior of the p-ath780 model with the usual 1092 

objective function used in all other analyses (maximizing biomass production of all tissues). The 1093 

grey rows are alternate objective functions we have explored. The photonic efficiency objective 1094 

functions for the leaf tissue have caused lower fractions of available light used, while the fatty 1095 

acid production objective for the seed tissue has caused greater diversion of carbon resources 1096 

toward fatty acid production and storage. All alternative objective functions have resulted in 1097 

lower mass production in silico.  1098 
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Tissue-Level Objectives 
Total Plant Mass (mg) 

Relative Growth 

Rate (RGR) 

 

Peak Tissue Mass (mg) 

Resource utilization or 

production (median %) 

 

Leaf 

 

Seed 

Root & 

Stem 

17 

DAG 

24 

DAG 

31 

DAG 

Whole-plant RGR 

(day-1) 
Leaf Stem Seed 

Of usable 

light used 

in light 

Of carbon 

uptaken by 

seed to fatty 

acid storage 

In vivo 

data 

In vivo 

data 

In vivo 

data 
0.5-2 2-8 10-30 0.21 � 0.25 

163.7 

�52.0 

188 

�39.3 

127.9 

�52.7 
? ? 

Biomass 

production 

Biomass 

production 

Biomass 

production 
0.554 3.74 25.2 0.246 177 189 130. 100% 0% 

Biomass 

production 

Fatty acid 

Storage 

(� � 1� � 6) 

 

Biomass 

production 

0.554 3.74 25.2 0.246 177 189 130. 100% 61.6% 

Biomass 

production 

Fatty acid 

Storage 

(� � 2� � 2) 

Biomass 

production 
0.554 3.74 25.2 0.246 94.1 100. 68.9 100% 61.7% 

Linear Biomass Biomass 0.554 3.74 25.2 0.246 177 189 130. 100% 0% 

.
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photonic 

efficiency 

(� � 25) 

production production 

Linear 

photonic 

efficiency 

(� � 50) 

Biomass 

production 

Biomass 

production 

0.554 3.74 25.2 0.246 177 189 130. 100% 0% 

Linear 

photonic 

efficiency 

(� � 50) 

Fatty acid 

Storage 

(� � 1� � 2) 

Biomass  

production 
0.554 3.74 25.2 0.246 133 142 97.7 100% 61.7% 

 1099 
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