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Abstract

Rapid engineering of biological systems is currently hindered by limited inte-
gration of manufacturing constraints into the design process, ultimately limiting
the yield of many synthetic biology workflows.

Here we tackle DNA engineering as a multi-objective optimization problem
aiming at finding the best tradeoff between design requirements and manufac-
turing constraints. We developed a new open-source algorithm for DNA en-
gineering, called Multi-Objective Optimisation algorithm for DNA Design and
Assembly (MOODA), available as a Python package and web application at
http://mooda.stracquadaniolab.org.

Experimental results show that our method provides near optimal con-
structs and scales linearly with design complexity, effectively paving the way
to rational engineering of DNA molecules from genes to genomes.

1 Introduction

Recent advances in synthetic biology and DNA synthesis technologies are enabling
significant scientific and biotechnological breakthroughs, including the engineering
of pathways for drug production [1], the construction of minimal bacterial cells [2]
and the assembly of synthetic eukaryotic chromosomes [3].

Pivotal to these achievements has been the adoption of an iterative engineer-
ing workflow, known as Design-Built-Test-Learn cycle (DBTL). The DBTL workflow
starts with a design step where biological components, such as genes or promot-
ers, are selected to be assembled into a construct to obtain a specific phenotype;
usually, the output of this process is a sequence of DNA to be synthesized. The
designed sequence is then built and cloned into a host organism, and then tested
to assess whether the design requirements are met, e.g. gene expression levels,
protein abundance. The testing phase then informs the learning step, which in turn
aims at improving the design of the initial construct using the phenotypic information
acquired.

Interestingly, the inherent waterfall structure of the DBTL workflow introduces
dependencies between steps, making engineering biological systems still a com-
plex task. This is especially true for the design and build steps; in particular, the
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design space is strongly constrained by the DNA synthesis process, since current
phosphoramidite synthesis poses limits on molecule length and content. These
limits are usually overcome by splitting the designed sequences into shorter frag-
ments, which can be assembled through molecular assembly techniques [4, 5],
at the cost of increasing complexity both for the design and manufacturing step.
Ultimately, recoding the design to meet manufacturing constraints often leads to
molecules with substantially different content and properties, effectively breaking
the DBTL workflow.

Software have been developed to assist biological engineers in implementing
the DBTL cycle, in particular for the design step, with tools such as Double Dutch
[6], Cello [7], j5 [8], Raven [9], BOOST [10] and BioPartsBuilder [11]. Nevertheless,
current software simply automates the process of designing and adapting the se-
quence for synthesis, often leading to suboptimal designs and lacking quantitative
measures to evaluate design quality.

Here we build on our experience in mathematical programming methods for
electronic design automation [12, 13] to solve the conundrum of designing DNA
for manufacturability. Similar to how electronic circuits design is informed by phys-
ical and silicon manufacturing limits, we formulated the design and build steps as
a multi-objective optimization problem, aiming at finding the best trade-off between
design and manufacturing requirements. Thus, rather than a single construct, bio-
logical engineers will be presented with a set of manufacturable designs to choose
from for downstream work. We also introduce analytical measures to assess de-
sign quality and algorithmic performances, which are sorely lacking in the biological
design automation field.

We developed a new optimization algorithm to solve this complex multi-objective
problem, which is implemented as part of our open-source Python software called
Multi-Objective Optimisation algorithm for DNA Design and Assembly (MOODA);
executable are available on PyPi and Anaconda, whereas source code through
GitHub (http://github.com/stracquadaniolab/mooda) and a ready to use interface at
http://mooda.

We tested MOODA on an extensive synthetic DNA constructs dataset to assess
the quality of the proposed designs and its computational efficiency. Experimental
results show that MOODA can effectively identify near optimal designs regardless
of sequence complexity, and its running time scales linearly with the number of
objectives and sequence length.

2 Methods

Here we introduce a multi-objective formulation of the DNA design and assembly
problem. We assume that the input is a DNA sequence, where coding regions have
been annotated. We then propose an optimization algorithm to identify trade-off
solutions for an arbitrary number of design and manufacturing requirements.

2.1 A multi-objective formulation of the DNA design and manufactur-
ing problem

Let x be a sequence over the DNA alphabet Σ ={A,T,C,G} and F = (f1, f2, · · · , fk),
with fk : Σ→ R and k being the number of design and manufacturing requirements,
which we also call objectives. We assume that requirements can be evaluated
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computationally by a function, which returns a fitness measure for the sequence.
Without loss of generality and to avoid ambiguities, we assume that all objectives
must be minimized.

We can define a multi-objective optimisation problem (MOP) as follows:

min
x∈Σ

F (x) = (f1(x), f2(x), · · · , fk(x)) (1)

where for k = 1 the problem reduces to a standard single-objective optimization
problem; however, for k > 1, it is usually not possible to find x such that all ob-
jectives are simultaneously minimized and, instead, we look for trade-off solutions.
Let x1, x2 be two sequences over the DNA alphabet, x1 dominates x2, denoted as
x1 ≺ x2, if:

∃i ∈ {1, · · · , k} fi(x1) < fi(x2) ∧ ∀j ∈ {1, · · · , k} fj(x1) ≤ fj(x2) (2)

In mathematical terms, the set of trade-off solutions, or Pareto optimal set, is
made of all the non-dominated solutions for F , that is the set of sequences that
cannot improve an objective without worsening at least another one. The image of
the non-dominated solutions with respect to the mapping F is called Pareto front;
geometrically, the Pareto front is bounded by an ideal point, which is the vector
defined by all the minima, and the nadir point, which is the vector defined by all
the maxima, thus representing the theoretical worst possible solution. In general,
we cannot find the true Pareto optimal set unless boundary conditions are met, but
approximations are usually sufficient in practice [14].

A plethora of methods have been proposed in literature to solve multi-objective
problems, both deterministic [15, 16] and stochastic [17, 18, 19, 20]. While deter-
ministic methods provide convergence results, they are usually difficult to apply to
non-numerical problems. Conversely, stochastic methods, such as genetic algo-
rithms or evolutionary strategies, are domain agnostic and work well in practice,
although lacking strong convergence results.

2.2 A multi-objective optimisation algorithm for DNA design and as-
sembly

Here we describe a new stochastic optimization algorithm, called Multi-Objective
Optimisation algorithm for DNA Design and Assembly (MOODA). The basic unit
of operation is the solution data-structure z = (s, b), where s is a DNA sequence
and b is the list of DNA fragments (or blocks) required to assemble arbitrary long
sequences. Blocks are represented as sequence intervals to take advantage of
interval algebra for downstream operations. Hereby we refer to z as the solution for
a problem F involving k design and manufacturing constraints.

The algorithm takes as input a DNA sequence s, which is cloned n times to build
an initial pool P of n solutions; the initial sequence is randomly split into fragments
of approximately same size, each one of size lmin ≤ l ≤ lmin, with lmin and lmax
being the minimum and maximum DNA fragment that can be synthesized. Then,
at each iteration t, each solution in P is cloned, randomly edited and evaluated
according to the objective functions F . From the resulting pool of 2n solutions, n
are selected for the next iteration. The algorithm stops when the maximum number
of iterations Tmax is reached. An overview of the algorithm is presented in Alg.1.

Hereby we describe the edit and selection procedures, which are the key com-
ponents of our method.
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Algorithm 1 Multi-objective Optimisation algorithm for DNA Design and Assembly

1: procedure MOODA(s, n, F, Tmax)
2: P ← Initialise(s, n)
3: Evaluate(F, P )
4: t← 0
5: while t ≤ Tmax do
6: R← Clone(P )
7: R← Edit(R)
8: Evaluate(F,R)
9: P ← Select(P,R)

10: t← t+ 1
11: end while
12: end procedure

2.2.1 Sequence editing and assembly operators

The edit operators are local search procedures, which take in input a solution and
return a new, possibly, better design. We defined procedures to edit both DNA se-
quences and blocks; sequence edits are limited to coding regions because we can
safely introduce silent mutations to match requirements, whereas block edits are
limited by the minimum and maximum DNA fragment size that is possible to syn-
thesize. We defined 4 edit procedures that cover most common scenarios; however,
MOODA can be easily extended with custom functions to introduce different types
of changes.

Algorithm 2 GC content operator

1: procedure GC CONTENT(σGC , TGC , CDS)
2: CDSreference ← RandomSelect(CDS)
3: CDSediting ← Copy(CDSreference)
4: while |GC(CDSediting)−GC(CDSreference)| ≤ σGC do
5: C ← RandomSelect(CDSediting)
6: A← Translate(C)
7: CL← GetCodonsList(A)
8: if TGC ≥GC(CDSediting) then
9: C ← LowGCSelection(CL) . selection of a codon decreasing GC

10: else if TGC < GC(CDSediting) then
11: C ← HighGCSelection(CL) . selection of a codon increasing GC
12: end if
13: end while
14: return CDSediting
15: end procedure

GC optimization operator. The GC content of a DNA fragment is often a ma-
jor hurdle to its synthesis; usually, synthesis providers have stringent admissible
ranges on GC content and sequences have to be recoded to meet this require-
ment. Nonetheless, the GC content is often associated with specific biological
phenotypes; for example, in prokaryotic organisms, the GC content of coding se-
quences correlates with their optimal growth temperatures [21]. Here we define a
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GC optimisation operator, which recodes a particular coding sequence CDSediting
by probabilistically using codons that bring its GC content closer to a user-defined
target TGC (see Alg. 2). The GC procedure acts only on one coding region at
the time and allows improvement of at most σGC percent respect to the original
sequence; here, we adopted this strategy to increase design diversity and avoid
biases and divergent sequences.

Codon optimization operator. Transplanting genes and pathways between or-
ganisms often require changing their primary sequence at the codon level to ensure
expression. Moreover, coding regions are often recoded to increase gene expres-
sion, as a way to maximise the production of a particular protein [22]. However,
how to recode the codons of a gene to control its transcription is poorly understood
[23]. Our codon optimisation operator probabilistically recodes a fraction σc of the
codons of a given gene, by silently replacing the current codons, according to the
frequency specified in a input codon usage table TCF . As for the GC optimization
operator, to increase the diversity of the pool of designs generated by our method,
we do not apply codon optimisation to all coding sequences at the same time, but
only to one at random (see Alg. 3).

Algorithm 3 Codon usage operator

1: procedure CODON USAGE(σc, TCF , CDS)
2: CDSediting ← RandomSelect(CDS)
3: NCR← σc∗ length(CDSediting) . NCR= number of codons replacement
4: for R in NCR do
5: C ← RandomSelect(CDSediting)
6: A← Translate (C)
7: C ← SelectCodon(A, TCF )
8: end for
9: return CDSediting

10: end procedure

Block split operator. Current technologies do not allow synthesis of arbitrary
long DNA molecules, thus requiring a construct to be split into shorter fragments
and then reassembled using DNA assembly techniques. [24]. Indeed, excessive
fragmentation can be both expensive and increase the turn-around of the assembly
process. The block split operator divides a DNA sequence into shorter fragments,
whose length is between lmin and lmax nucleotides; by design, the operator en-
forces homogeneity in block length by splitting sequences into blocks of discrete
length and controlled by a parameter σb.

Block join operator. The block join operator reduces the number of blocks by
joining two consecutive blocks, thus decreasing the number of parts to assemble.
The procedure selects 2 blocks at random and join them into a new longer block;
if the new block exceeds the block maximum size, it is divided again into two new
blocks with a size multiple of the step size parameter σb and within the maximum
and minimum block length, respectively lmax and lmin. As for all our operators, we
enforce diversity in our pool of designs by applying the join procedure only to a pair
of blocks at the time.
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All our operators are designed to generate overlaps between adjacent blocks
compatible with Gibson assembly [24]; however, new assembly methods can be
easily defined in Python and integrated with our package.

2.2.2 Selection of trade-off solutions

A crucial step of our method is the selection procedure, where non-dominated so-
lutions are picked for the next iteration. To do that, all individuals are compared to
each other and assigned a rank based on the number of solutions they are domi-
nated by; in this case, non-dominated solutions are those with the lowest rank. The
domination criteria give the same weight to every objective function, improving the
probability to find balanced trade-offs [25].

Once all individuals are ranked, they are ordered first based on their rank, and
second based on a distance metric, called crowding distance, defined as follows:

wfi(zj) = (fi(zj+1)− fi(zj−1))/(fmaxi − fmini ) (3)

d(zj) =

k∑
n=1

wfi(zj) (4)

where d(zj) is the crowding distance related to the j solution, wfi(zj) is the
crowding distance with respect to the objective function fi, whereas fi(zj+1) and
fi(zj−1) are the closest solutions to zj with respect to fi. We also denote with
fmaxi and fmini the maximum and the minimum value found by the algorithm for
the objective function fi, respectively. The crowding distance is a measure of the
similarity between individuals and favours individuals with low similarity to improve
the Pareto Front exploration. After the ranking, the top n individuals, are selected
for the next iteration.

The selection step is the most critical step for two reasons; first, since the non-
dominated sorting procedure has complexity O(kn2) and it is executed at each iter-
ation, using large pool sizes will dramatically increase the running time of the algo-
rithm. Second, since at most n solutions are selected at each iteration, other non-
dominated solutions can be discarded because of poor crowding distance score,
effectively causing loss of information.

Here we address these problems by storing all solutions in a specific data-
structure, called archive, whose size m >> n is set by the user. When the archive
is full, m non-dominated solutions are retained, eventually discarding the others
based on their crowding distance value. By setting the pool size smaller than the
archive size, we are decreasing the running time of the sorting procedure with only
a negligible cost in terms of memory consumption; moreover, by storing m >> n
non-dominated solutions found during the optimization process, we are effectively
returning more solutions at a fraction of the running time required for optimizing a
pool of size m.

2.3 Design and manufacturing objectives

We assessed the performance of our method by studying 4 competing design and
manufacturing requirements; these are common to most DNA engineering tasks
and have an easily interpretable form useful to assess the performance of our
method.
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GC content objective function. The GC content of each designed DNA frag-
ment must be within the limits specified by a DNA synthesis provider. Here we
assume that an ideal GC value, TGC , is provided in input. Thus, we can mathemat-
ically define the GC content objective as follows:

f1(z) =
∑

b∈B(z)

|TGC −GC(b)| (5)

where z is a solution, and B(z) are the set of blocks defined in z. The optimal value
for f1 is 0, which is obtained when GC(b) = TGC . To obtain an upper-bound we
used a heuristic procedure, where we replaced the codon of each coding region
in the input sequence with the one maximizing the difference with respect to TGC ;
successively, we divided the sequence into the maximum admissible number of
blocks and evaluated the objective function.

Codon usage objective function. One of the most common operations in syn-
thetic biology is the transfer of genes or pathways from one organism to another.
Nevertheless, each organism has its codon usage, since for each amino acid some
codons are less common than others, and so are the related tRNAs [23], ultimately
resulting in slower translation. Thus, we considered an objective function that re-
wards designs using the most frequent codons as follows:

f2(z) =
∑
c∈C(z)

|Q(aa(c))− q(c)| (6)

where z is a candidate solution, Q is the frequency of the most frequent codon
for the amino acid aa(c) encoded by c, and q is the frequency of codon c used
in z. The lower bound for the codon usage objectives function is 0, which is ob-
tained when each amino acid is encoded by the most frequent codon in the target
species; conversely, the upper-bound is obtained when all rare codons are used.
Although our objective function is not accurate, introducing a new accurate model
for evaluating translation efficiency is outside the scope of this paper.

Block length variance objective function. DNA assembly methods work best
when the fragment of DNA have approximately the same size. Thus, we reward de-
signs with blocks of homogeneous size by defining the following objective function:

f3(z) =
1

|B(z)|
∑

b∈B(z)

(l(b)− l̄(b))2 (7)

where b belongs to the set of blocksB(z) of the solution z, l is the length of the block
and l̂ is the average block length in the design z. The block variance minimum is
0 when each block has the same length, whereas its maximum is (lmax − lmin)2/4,
with lmin and lmax being the minimum and maximum admissible fragment length,
respectively.

Block number objective function. A small number of blocks usually simplifies
and speeds up the assembly process. Thus, we evaluated each solution consider-
ing the number of blocks required for the assembly as follows:

f4(z) = |B(z)| (8)
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where B(z) is the set of blocks defined by z. Obviously, the minimum value is
l(z)/lmax, whereas the maximum number of blocks is simply l(s)/lmin.

Achieving an optimal design with respect to all 4 requirements is not trivial, as
they have conflicting objectives. For example, optimizing codon usage can intro-
duce AT/GC rich regions in a construct; similarly, while splitting the construct in
fragments could overcome GC restrictions, it increases manufacturing complexity.
It is clear that as the complexity of the constructs and the number of requirements
increase, finding an optimal trade-off is challenging.

3 Results

We tested MOODA on an extensive dataset of DNA constructs to assess the quality
of solutions and its computational efficiency.

Currently, no benchmark is available to evaluate DNA design methods, effec-
tively hindering a fair assessment of the methods available in literature. Therefore,
as part of our work, we developed a testbed to generate DNA sequences with tun-
able features.

Here we assume that our input sequences represent modular designs consist-
ing of a set of transcription units (TUs) made of a promoter, a coding sequence
(CDS), and a terminator [26]. We then parametrized our dataset considering the
number of TUs encoded, the length of the constructs, their GC content and codon
usage. The length of the CDS of each TU was set by sampling the number of
codons from a Poisson distribution with λ = 250, which is approximately equal to
the average number of codons in E. coli genes (288.67 codons in the HUSEC2011
strain) [27], whereas the amino acid sequence and the frequency of each codon
were generated at random. We then set the length of promoters and terminators by
sampling from a Poisson distribution with λ = 500 bp. For each TU component, the
GC content of the sequence was set at random by sampling from a Beta distribution
with α = k× t and β = k× (1− t) with k = 150 and t = 0.55; this leads to TUs with a
GC content of ∼ 55% on average. Finally, we generated 3 datasets consisting of 10
sequences made of 5, 10, 20 TUs, with a final sequence length ranging from 8, 481
bp to 35, 264 bp.

We then redesigned our 30 sequences with respect to 4 design problems char-
acterized by a varying number objectives, namely P1, P2, P3 and P4 (see Tab. 1);
ultimately, we tested our method on a benchmark of 120 design problems.

We run the standard MOODA implementation on our benchmark using the pa-
rameters reported in Tab. 2, and in Tab. 3 for the sequence editing operators. Since
MOODA is a stochastic algorithm, we performed 5 independent runs for each prob-
lem and parameters combination to estimate the expected quality and optimality of
the designs.

3.1 Evaluation of design quality

Evaluating the quality of solutions returned by multi-objective optimization algo-
rithms is not trivial, since standard metrics, such as the root mean square error
(RMSE), are poor performance indicators. Instead, we used the hypervolume in-
dicator, which is a robust metric used for assessing the quality of a set of Pareto
optimal solutions [28]. Let y ∈ Rk be a vector of size k, where yi is the value of
the i-th objective function. The hypervolume indicator is a function Vk : Rk → R re-
turning the volume enclosed by the union of the polytopes p1, · · · , pi, · · · , pk, where
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Problem Objective functions Parameters

P1
GC content TGC = 50%
Block number

P2
GC content TGC = 50%
Block length variance

P3
GC content TGC = 50%
Block length variance
Block number

P4
GC content TGC = 50%
Codon usage TCF = E. coli
Block number

Table 1: Benchmark design problems. For each problem, we report a unique identifier, the
objective functions and the corresponding parameters used.

Pool size (n) Number of iterations (Tmax)

50 100
50 200

100 100
100 200

Table 2: Standard parameter settings used to test MOODA.

Operator Parameters
GC content TGC = 50% , σGC = 0.05
Codon usage TCF =E. coli, σc = 0.05
Block join lmax = 2000 bp, lmin = 200 bp, σb = 50 bp
Block split lmax = 2000 bp, lmin = 200 bp, σb = 50 bp

Table 3: Sequence design and manufacturing operators used in MOODA. For each opera-
tor we report, its name and the parameters used.

pi is the intersection of the hyperplanes arising from yi and the axes. In practice,
Vk provides an approximation of how many solutions are dominated by a set of
Pareto optimal solutions, where the higher the values of Vk, the better is the quality
of the non-dominated set. Computing the hypervolume requires the definition of a
reference point, estimated either analytically or numerically; in our case, we used
the minimum value of each objective function as reference point. It is important to
note that the hypervolume value is an un-scaled metric, thus its interpretation is not
straightforward. To overcome this problem, we first evaluate the hypervolume of the
search space, VΩ, by computing the hypervolume for the polytope bounded by the
reference point and the nadir point; here we defined the nadir point as the vector
of the maxima of each objective function. Then, we computed the normalized hy-
pervolume, NVk, as Vk/VΩ; intuitively, NVk values close to 1 are associated with
optimal trade-off solutions.

We analysed the quality of solutions for problems P1 and P2 and observed
that MOODA achieves near-optimal results regardless the number of TUs in each
construct, with an average normalized hypervolume of 0.95, ranging from 0.93 to
0.97 (see Fig.1). Interestingly, we observed negligible differences in design quality
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between parameters settings, although better solutions are usually found with a
higher number of iterations rather than large design pools.

We then analyzed solutions for the 3-objective problems P3 and P4. Consistent
with our previous findings, we obtained excellent results for P3 regardless of the
number of TUs, with an averageNVk = 0.94, ranging from 0.90 to 0.97; as expected,
we see a linear decrease in quality with the increasing number of TUs, albeit always
approximately > 0.93. As already observed, better solutions are usually obtained
by increasing the number of iterations rather than the size of the pool; this difference
becomes evident when designing constructs with 20 TUs (Fig.1c).

Surprisingly, we found worse performances on P4, which includes the codon
usage objective function, withNVk = 0.5 on average (see Fig. 1d). Upon inspection
of the non-dominated sets, we found that the codon usage objective function was
consistently far from the optimal value. We then reasoned that this could be due
to the codon usage procedure changing very few codons, resulting in extremely
suboptimal designs. Thus, we run MOODA on P4 by allowing the codon usage
operator to alter more codons, by setting σc = 0.75; as expected, we observed an
increase in quality, albeit limited to 0.64 on average (see Supp. Fig. 2). This result
suggests that as GC content is taken into account, finding a tradeoff with codon
usage becomes more difficult.

Taken together, we showed that MOODA provides near-optimal designs for the
vast majority of test cases. We found that the algorithm performs remarkably well
despite no tuning of the editing operators, suggesting overall robustness of our
framework.

3.2 Evaluation of design optimality

The normalized hypervolume indicator provides a quantitative measure of solutions
quality, but it does not inform on whether the solutions found by the algorithm are
the best trade-offs possible. Here we studied which parameter settings are likely
to provide optimal trade-off solutions, that is solutions that are globally Pareto opti-
mal. In general, rigorous proof of global optimality is NP-hard, thus we relaxed our
requirements and reverted to an approximate measure.

We defined the approximately global Pareto optimal set as the union of all non-
dominated solutions identified by u independent algorithms for a given set of ob-
jective functions. In our experiments, for each design problem, we obtained an
approximate global Pareto optimal set, P̂f , by combining non-dominated solutions
obtained by running MOODA with different parameters settings. Then, we com-
puted Rθ, that is the proportion of global Pareto optimal solutions found by running
MOODA with parameters setting θ, normalized according to the pool size (see Tab.
2); intuitively, the best parameters setting will have values of Rθ close to 1.

We found that MOODA consistently finds the vast majority of global Pareto op-
timal solutions when setting the pool size to n = 100 and the maximum number
of iterations to Tmax = 200, with Rθ values ranging from 0.3 for problem P1 to 1
for problem P4 (Fig.2). Consistent with our design quality analysis, we observed
a linear dependency between the number of iterations and higher Rθ values (0.5
on average), with significant differences depending on the number of TUs in the
construct, ranging from 0.05 for P1 to 1 P4. Conversely, we observed that the al-
gorithm requires large pools when increasing the number of objectives in P3 and
P4, suggesting that as the design space becomes bigger, more solutions need to
be sampled.
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Here we showed that the probability of finding globally optimal trade-off depends
on the number of iterations the algorithm is allowed to perform. This result suggests
that promising solutions are likely to be found as a result of iterative improvements,
rather than by simple stochastic sampling.

3.3 Computational complexity analysis

We then analyzed the running time of our algorithm on all instances of our bench-
mark. For consistency, we performed all our experiments on a system with 2 Intel
Xeon Gold 6130 CPUs (16 cores, 2.10Ghz), 128Gb DDR4 RAM and running Sci-
entific Linux 7; we then recorded the user time and averaged across 5 independent
runs.

We found the running time to scale linearly with the number of TUs and iterations
(see Fig. 3), with a running time ranging from 100 to 8000 seconds. Moreover,
while the time remains comparable across P1, P2 and P3, we found MOODA to be
substantially slower on P4; this can be explained by the use of the codon usage
operator, which is computationally taxing.

Pool size(n) Number of iterations(Tmax) Archive size (m)

10 100 100
10 200 100
20 100 100
20 200 100

Table 4: Parameter settings used for testing the MOODA archive system.

Since the quality and the number of global Pareto optimal solutions depends
more on the number of iterations than the pool size, we decided to test whether we
could obtain the same performances at a lower computational cost, by using the
same number of iterations but reducing the pool size by 5-fold. To mitigate the risk
of finding fewer Pareto optimal solutions, we used the archive system implemented
in MOODA, by setting its size m = 100 for all experiments (see Tab. 4); with these
settings, the maximum number of non-dominated solutions remains approximately
comparable between different experiments. We then evaluated the quality of the
designs obtained in terms of normalized hypervolume, and compared these values
to the normalized hypervolume values obtained with standard parameters settings
(see Tab. 2), limiting our analysis to experiments with an equal number of iterations.

Interestingly, we found that using the MOODA archive system effectively com-
pensates for the smaller pool size; specifically, the algorithm was able to produce
near-optimal results (see Fig. 4), showing negligible differences compared to the
design produced by running MOODA with standard parameters settings (see Fig.
5), ranging from−0.3 in P3 to 0.8 in P3. Conversely, the difference in running time is
extremely significant (see Fig. 6), with a drop of 2000 seconds on average; in par-
ticular, the archiving system exponentially reduces the running on more complex
problems (e.g TUs= 20), leading to MOODA being up to 2.2 h faster for P4.

Taken together, we showed that MOODA has a running time growing linearly
with sequence complexity. The use of an archiving system to keep track of non-
dominated solutions effectively reduces the computational burden of our method;
ultimately, we proved that MOODA can be easily scaled to tackle the design of
complex constructs.
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4 Discussion

Advances in chemical synthesis and molecular assembly techniques have enabled
a plethora of synthetic biology applications of increasing complexity. Nonetheless,
designing a DNA construct that can be easily manufactured remains a complex and
time consuming task.

Here we developed a new mathematical framework and a companion algorithm
to tackle the design and assembly of a biological construct as a multi-objective op-
timization problem, aiming at finding the best trade-offs between conflicting design
and manufacturing requirements. To the best of our knowledge, this is the first
time that the concept of Pareto optimality has been proposed to simultaneously
design and plan the assembly of DNA molecules. Moreover, we introduced quanti-
tative measures of design quality, which provide useful information to speedup the
design-build-learn-test cycle.

We performed extensive experiments and showed that our approach can find
near-optimal manufacturable designs for arbitrary long and complex DNA molecules.
We found that the probability of finding optimal trade-off solutions scales linearly
with the number of iterations allowed to our method, and it is only marginally af-
fected by the size of the pool of solutions. We further refined our algorithm by
adding an archiving system to keep track of non-dominated solutions found through-
out the optimization process, which dramatically reduces the running time of our
method and ultimately allows end-users to run complex analyses on standard desk-
top machines. We released our software as an open-source Python package, which
can be easily installed from PyPi or Anaconda and extended through plugins.

We are also aware of the limitations of our work. In particular, like every op-
timization methods, the quality of solutions depends on the effectiveness of the
search procedures and the accuracy of the objective functions to capture specific
requirements; in biology, this has often proved to be a complex problem itself, as we
experienced in our codon usage optimisation experiments. Nonetheless, as mod-
els of biological processes become more accurate, defining objective functions that
can exactly capture biological behaviour will be feasible and our method is ready to
take advantage of these advances.

Ultimately, with the advent of large scale synthetic genome projects, we be-
lieve that our framework for DNA engineering provides exciting opportunities to do
extensive chromosome editing in mammalian and plant systems.
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iments. VZ developed MOODA web application. AG and GS analyzed experimental
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Figure 1: Evaluation of design quality. We report the normalized hypervolume values,
NVk, for different parameters settings for the design problems a) P1 (GC content, block
number), b) P2 (GC content, block variance), c) P3 (GC content, block variance and block
number) and d) P4 (GC content, codon usage, block number). The normalized hypervol-
ume, NVk, is the ratio between the hypervolume, Vk, of the trade-off solutions generated
by MOODA and the hypervolume of the design space, VΩ. We report normalized hypervol-
ume values for each design problem at increasing number of transcription units; here n and
Tmax represent the pool size and the number of iterations, respectively.
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Figure 2: Evaluation of design optimality. We report the percentage of globally Pareto
optimal solutions, Rθ, derived from the global Pareto front, P̂f , for the 4 design problems
a) P1 (GC content, blocknumber), b) P2 (GC content, block variance), c) P3 (GC content,
block variance and block number) and d) P4 (GC content, codon usage, block number). We
report Rθ values for each design problem at increasing number of transcription units; here
n and Tmax represent the pool size and the number of iterations, respectively.
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Figure 3: Running time analysis. We report the average running time, measured in
seconds, of each parameter settings for the 4 design problems a) P1 (GC content, block
number), b) P2 (GC content, block variance), c) P3 (GC content, block variance and block
number) and d) P4 (GC content, codon usage, block number). We report the average
running time at increasing number of transcription units; here n and Tmax represent the
pool size and the number of iterations, respectively.
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Figure 4: Evaluation of the design quality obtained using MOODA and using the
archive system. We report the normalized hypervolume values, NVk, for different pa-
rameters settings for the design problems a) P1 (GC content, block number), b) P2 (GC
content, block variance), c) P3 (GC content, block variance and block number) and d) P4
(GC content, codon usage, block number).
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Figure 5: Comparison of design quality between standard MOODA and using the
archive system. We report the difference in normalized hypervolume, ∆NVk, between
standard MOODA and the MOODA with the archive system for the 4 design problems a) P1
(GC content, block number), b) P2 (GC content, block variance), c) P3 (GC content, block
variance and block number) and d) P4 (GC content, codon usage, block number). Posi-
tive values of ∆NVk are associated with better quality of the standard MOODA solutions
compared to the archive version.
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Figure 6: Comparison of the running time between standard MOODA and using the
archive system. We report the difference in running time, measured in seconds, between
standard MOODA and MOODA with the archive system for the 4 design problems a) P1
(GC content, block number), b) P3 (GC content, block variance and block number) and c)
P4 (GC content, codon usage, block number). Positive values of ∆Time is associated with
MOODA archive system being faster than the standard implementation.
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