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Summary 
Human lung tumors engage in substantial mitochondrial metabolism. Here, Ward et al. 

demonstrate that NNT supports oxidative metabolism in NSCLC through its mitigation of Fe-S 

cluster oxidation. 

Abstract 
 
Human lung tumors exhibit robust and complex mitochondrial metabolism, likely precipitated by 

the highly oxygenated nature of pulmonary tissue. As ROS generation is a byproduct of this 

metabolism, reducing power in the form of nicotinamide adenine dinucleotide phosphate 

(NADPH) is required to mitigate oxidative stress in response to this heightened mitochondrial 

activity. Nicotinamide nucleotide transhydrogenase (NNT) is known to sustain mitochondrial 

antioxidant capacity through the generation of NADPH, however its function in non-small cell 

lung cancer (NSCLC) has not been established. We found that NNT expression significantly 

enhances tumor formation and aggressiveness in mouse models of lung tumor initiation and 

progression. We further show that NNT loss elicits mitochondrial dysfunction independent of 

substantial increases in oxidative stress, but rather marked by the diminished activities of 

proteins dependent on resident iron-sulfur clusters. These defects were associated with both 

NADPH availability and ROS accumulation, suggesting that NNT serves a specific role in 

mitigating the oxidation of these critical protein cofactors.  

 
Introduction 
 
Metabolic rewiring facilitates the diversion of intermediate metabolites into pathways that supply 

the macromolecular determinants of the unbridled growth associated with human tumors. It is 

now appreciated that in addition to hallmark Warburg metabolism, many tumor species require 

substantial mitochondrial metabolism to thrive (Porporato et al., 2018). Indeed, non-small cell 

lung cancer (NSCLC) exhibits a simultaneous engagement of both glycolytic and oxidative 
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metabolism (Fan et al., 2009). This increase in mitochondrial oxidation is supported by enhanced 

expression of pyruvate carboxylase, which provides auxiliary entry of glucose carbon into the 

TCA cycle in addition to that via pyruvate dehydrogenase (PDH) (Sellers et al., 2015, Davidson 

et al., 2016). These activities support glucose oxidation in human lung tumors that exceeds that 

of normal adjacent lung (Hensley et al., 2016). Moreover, human lung tumors exhibit remarkable 

plasticity in oxidative fuel usage that is correlated with oxygen tension, indicating robust 

mitochondrial function (Hensley et al., 2016, Faubert et al., 2017).  

Mitochondrial redox metabolism harnesses the potential energy stored in the reducing 

equivalents nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2), 

which are generated from the catabolism of various carbon substrates (i.e. glucose, amino acids, 

fatty acids). These are then oxidized by multiprotein complexes of the electron transport chain 

(ETC), which couples the transfer of electrons to molecular oxygen with the generation of a 

proton gradient. This proton gradient is exploited by ATP synthase to generate useable energy 

for the cell in the form of ATP. Critical to ETC functionality is the maintenance of mitochondrial 

reducing power in the form of nicotinamide adenine dinucleotide phosphate (NADPH). NADPH 

is required for the detoxification of harmful ROS that are natural byproducts of oxidative 

metabolism (Navarro et al., 2017). ROS detoxification prevents the oxidation of proteins critical 

to metabolism, including the four respiratory chain protein complexes (I-IV) of the ETC, as well 

as other macromolecules such as the constituent lipid species of the inner mitochondrial 

membrane (IMM). Additionally, ROS detoxification protects against the oxidation of iron-sulfur 

(Fe-S) clusters, redox sensitive cofactors assembled within the mitochondria and incorporated 

into recipient Fe-S proteins that facilitate diverse functions such as DNA replication and repair, 

protein translation, and metabolism (Flint et al., 1993, Alhebshi et al., 2012, Rouault, 2015). 

Mitochondrial metabolism is particularly dependent on these clusters as fatty acid catabolism, 

respiration, and cofactor synthesis (e.g lipoic acid, heme) all rely on Fe-S proteins (Lill and 

Muhlenhoff, 2008).  

There are several sources of mitochondrial NADPH, including serine-dependent one-carbon 

metabolism (Ducker et al., 2016), isocitrate dehydrogenase (Jiang et al., 2016), malic enzyme 

(Ren et al., 2014) and the nicotinamide nucleotide transhydrogenase (NNT). NNT is an integral 

membrane protein associated with the IMM that harnesses the proton gradient across the 

membrane to couple the oxidation of NADH to the reduction of NADP+, yielding NADPH 

(Rydstrom, 2006, Kampjut and Sazanov, 2019). In bacteria, transhydrogenase activity accounts 
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for up to 45% of total NADPH, which has led to the assertion that NNT should be an equal or 

greater contributor to the mitochondrial pool in mammalian species (Sauer et al., 2004, 

Rydstrom, 2006). Indeed, in the liver of mice, nearly 50% of the mitochondrial NADPH pool is 

sensitive to IMM uncoupling, indicative of a significant role for NNT (Klingenberg and Slenczka, 

1959). Through subsequent studies NNT has been established as a significant contributor to the 

mitochondrial NADPH pool (Fisher-Wellman et al., 2015, Ronchi et al., 2016, Francisco et al., 

2018). The importance of NNT has also been evaluated in malignancy, where NNT is shown to 

contribute to the maintenance of redox homeostasis in several cancers (Gameiro et al., 2013, 

Ho et al., 2017, Chortis et al., 2018, Li et al., 2018).  

While the maintenance of mitochondrial NADPH has been shown to be critical to lung tumor 

growth (Ren et al., 2014, Jiang et al., 2016), the contribution of NNT to lung tumorigenesis has 

not been evaluated. Herein, we provide the first evidence that NNT is a significant contributor to 

the mitochondrial NADPH pool in NSCLC and important for lung tumorigenesis. We show that 

loss of NNT activity disrupts mitochondrial metabolism in part through diminished Fe-S protein 

function. Our data indicate a more nuanced role for NNT in NSCLC redox homeostasis through 

the prevention of Fe-S cluster oxidation rather than protecting against global mitochondrial 

oxidation. 

Results 
 
NNT Supports Lung Tumorigenesis 
 
Many common conditional lung tumor mouse models were generated from breeding strategies 

that employed C57BL6/J mice (Jackson et al., 2001, Jackson et al., 2005, Meuwissen and Berns, 

2005). Interestingly, these mice carry a homozygous in-frame deletion of exons 7-11 as well as 

a missense mutation in the mitochondrial leader sequence of the NNT gene that result in the 

expression of a non-functional protein (Toye et al., 2005). Therefore, to assess the contribution 

of NNT to lung tumorigenesis, we exploited this natural knockout allele.  

 

First, we used a lung tumor model driven by mutant Kras (LSL-KrasG12D/+) to examine the 

influence of NNT expression on lung tumor initiation. Infection of LSL-KrasG12D/+ mice with 

adenovirus encoding Cre recombinase induces the expression of KrasG12D in the lung epithelium 

and the formation of lung adenomas that rarely progress to higher grade tumors (Jackson et al., 
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2001). We found that expression of NNT in this model resulted in significantly greater tumor 

burden 3-months following Cre recombinase induction (Figs. 1 A and 1 B). Next, we used a lung 

tumor progression model that is driven by concomitant expression of mutant Kras and p53 

deletion (LSL-KrasG12D/+; Trp53flox/flox, aka KP). NNT expression did not alter the survival of KP 

mice following Cre-induction (Fig. 1 C). Interestingly, p53 deletion abrogated the effects of NNT 

expression on lung tumor formation in this model, with substantial tumor burden present at the 

experimental endpoint regardless of NNT status (Fig. 1 D). Quantification of the fraction of 

burdened lung demonstrated no difference across genotypes (Figs. 1 E and 1 F).  

 

While there were no differences in tumor burden between genotypes, we did observe differences 

in tumor aggressiveness as defined previously for this model (Jackson et al., 2005, DuPage et 

al., 2009). We found that 51.3% of tumors from NNT+/+ mice were of grade 3 (adenocarcinoma) 

or greater, whereas only 36.5% and 38.8% of tumors from NNT+/- and NNT-/- mice were high-

grade (Fig. 1 G). This shift in tumor aggressiveness was evidenced by a significant increase in 

the frequency of grade 4 tumors in NNT+/+ mice (Fig. 1 H). Collectively, these data indicate that 

NNT promotes both lung tumor initiation and tumor aggressiveness.  

 

NNT Loss Does Not Compromise the Mitochondrial Thioredoxin Antioxidant System 
 
To further evaluate the influence of NNT on lung tumor biology, we transitioned to human NSCLC 

cell lines, which exhibit varied NNT expression (Fig. S1 A). We first assessed the effect of short 

hairpin RNA (shRNA)-mediated knockdown of NNT on the proliferative capacity of 4 NSCLC cell 

lines that express NNT (A549, H1299, H2009, PC9) as well as H441 cells, which do not express 

NNT protein and serve as a natural negative control (Fig. 2 A). We observed that shRNA-

mediated knockdown of NNT with two unique hairpins blunted the proliferative capacity of A549 

and H1299 cells, while compromising the viability of H2009 and PC9 cells 5-days after lentiviral 

infection (Fig. 2 B). Importantly, the proliferation of H441 cells was not affected by NNT 

knockdown, indicating specificity of the hairpins (Fig. 2 B). 

 

Canonically, NNT is thought to contribute the reducing power (NADPH) required to maintain the 

mitochondrial glutathione and protein antioxidant systems in a reduced state (Fig. 2 C) 

(Rydstrom, 2006). We found that NNT knockdown reduces the cellular NADPH:NADP+ ratio in 

several cell lines (H1299, H2009, PC9) cells, while having no effect on H441 cells (Fig. 2 D). 
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Consistent with the notion that NNT is important for hydrogen peroxide (H2O2) detoxification, we 

observed modest, yet statistically significant increases in mitochondrial H2O2 levels 4-days 

following lentiviral infection (Fig. 2 E). We also observed modest increases in mitochondrial 

superoxide (•O2-) following NNT-knockdown (Fig. S1 B). However, we did not observe a 

discernable effect on cytosolic ROS, indicating that the impact of NNT on ROS accumulation is 

largely confined to the mitochondria (Fig. S1 C).   

 

To determine if these increases in mitochondrial ROS species related to the mitochondrial 

antioxidant systems, we assessed the oxidation state of the mitochondrial peroxiredoxin (Prdx3) 

through redox western blotting. H2O2 detoxification by Prdx3 induces dimerization of the protein 

through a pair of cysteine disulfide bonds that must be reduced by thioredoxin in order to restore 

Prdx3 antioxidant function. Thus, accumulation of dimerized Prdx3 is an indication of Prdx3 

oxidation and a surrogate marker for mitochondrial oxidative stress (Cox et al., 2009). While we 

found that treatment with auranofin, an inhibitor of thioredoxin reductase resulted in substantial 

oxidation of Prdx3, the loss of NNT did not increase Prdx3 oxidation relative to scramble-infected 

control cells (Fig. 2 F). Furthermore, NNT knockdown did not sensitize NSCLC cells to treatment 

with tert-butyl hydroperoxide (tbHP), cumene hydroperoxide (CHP), or the mitochondrial-

targeted menadione (Figs. S1 D, E, and F). Collectively, these results indicate that NNT is 

important for the proliferative capacity of NSCLC cells but that loss of NNT activity does not 

affect the thioredoxin antioxidant system or elicit significant mitochondrial oxidative stress.  

 

NNT Loss Compromises Mitochondrial Oxidative Capacity 
 
Given the localization of NNT within the inner mitochondrial membrane and its ability to influence 

proton flux across the membrane and reducing power, we sought to interrogate whether NNT 

was important for mitochondrial oxidative metabolism. First, we employed the Seahorse 

extracellular flux analyzer to perform a MitoStress test as an assessment of the impact of NNT 

loss on general mitochondrial oxidative function. We observed that the oxygen consumption rate 

(OCR) of NNT-deficient cells was reduced relative to scramble control cells in response to the 

sequential delivery of mitochondrial inhibitors (Fig. 3 A). Notably, the maximal respiratory 

capacity of NNT-deficient cells was significantly lower independent of an effect on uncoupled 

respiration (Figs. 3 B and S2 A). This is indicative of a mitochondrial oxidative defect that is 

unrelated to NNT’s influence on the proton gradient.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 6, 2019. ; https://doi.org/10.1101/761577doi: bioRxiv preprint 

https://doi.org/10.1101/761577


 6 

 

Mitochondrial oxidative metabolism is dependent on a functional ETC, which consists of protein 

complexes with resident Fe-S clusters that mediate electron transport. Considering that NADPH 

is required for Fe-S cluster biosynthesis, we endeavored to examine if the decrease in 

mitochondrial respiratory function following NNT knockdown was linked to the Fe-S proteins 

within the ETC (Webert et al., 2014). While the MitoStress test allows for a general analysis of 

respiratory function, it does not allow for the evaluation of individual ETC complexes. Therefore, 

we performed a more specialized Seahorse-based protocol that permits the sequential analysis 

of the Fe-S cluster-dependent respiratory complexes (I, II, III) (Salabei et al., 2014). We found 

that in response to feeding with the complex I substrates, pyruvate and malate, the activity of 

complex I-III was significantly reduced following NNT knockdown (Fig. 3 C). Furthermore, NNT-

deficient cells also exhibited significantly reduced OCR in response to succinate, indicative of 

reduced complex II-III activity (Fig. 3 D). As expected, NNT knockdown did not alter the Fe-S 

cluster-dependent respiratory chain activities of H441 cells (Figs. 3 C and D).  

 

In addition to sustaining electron flux through the ETC, Fe-S clusters also suport the enzymatic 

function of other proteins critical to oxidative metabolism. To determine if NNT contributes to the 

function of other Fe-S proteins, we assessed the activity of aconitase (ACO2), a Fe-S protein of 

the TCA cycle. We found that NNT knockdown significantly reduced ACO2 activity in those 

NSCLC lines with NNT expression (Fig. 3 E). This reduction in ACO2 activity occurred 

independently from a decrease in ACO2 expression, suggesting that the change in activity was 

due to a functional deficit (Fig S2 B).  

 

Diminished ACO2 activity is likely to disrupt TCA cycling, leading to a reduced capacity to 

generate the reducing equivalents needed to drive ETC flux. To ensure that the decreased 

respiratory chain phenotypes we observed were not simply consequences of this ACO2 defect, 

we assessed respiratory chain function in response to glutamate and malate stimulation. 

Glutamate carbon can enter the TCA cycle as a-ketoglutarate, permitting us to circumvent the 

need for ACO2, which is required for the initial turn of pyruvate carbon through the cycle. 

Regardless, NNT-deficient cells exhibited equally disrupted respiratory chain function in 

response to glutamate as they did to pyruvate (Fig S2 C and D). To supplement the analyses of 

ACO2 function in out NSCLC cell lines, we also evaluated the influence of NNT expression on 

ACO2 activity in KP lung tumors. We found that ACO2 activity was significantly higher in tumors 
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from NNT+/+ mice than those of NNT+/- or NNT-/-, with tumors lacking NNT exhibiting the lowest 

activity (Fig. 3 F). Like in the human cell lines, this difference in activity was not the result of 

differential ACO2 expression (Fig. S2 E). 

 

An Exogenous Source of NADPH Sustains Fe-S Protein Function Following NNT Loss 
 
To determine if the decreases in mitochondrial Fe-S protein function associated with NNT 

knockdown were related to the accompanying decrease in NADPH:NADP+, we sought to provide 

an exogenous source of mitochondrial NADPH. To achieve this, we chose the yeast 

mitochondrial NADH kinase, pos5p, which phosphorylates NADH to yield NADPH (Pain et al., 

2010). Though pos5p has been exogenously expressed in bacteria previously (Lee et al., 2013), 

it has never been introduced into a mammalian system. To monitor if we could efficiently express 

pos5p protein in the mitochondria of our human NSCLC cells, we modified the yeast protein to 

include an HA-tag. Western blot analysis of fractionated lysates revealed successful expression 

of HA-tagged pos5p in the mitochondria of H1299, H2009, and PC9 cells (Fig. 4 A). These lines 

were chosen to evaluate the ability of pos5p to rescue the Fe-S protein defects associated with 

NNT loss as they exhibited the most severe response to NNT knockdown. Importantly, we did 

not observe any adverse effects of pos5p expression on mitochondrial function in our NSCLC 

cells (Fig. S3).  

 

Expression of pos5p rescued the decrease in the cellular NADPH:NADP+ ratio elicited by NNT 

knockdown (Fig. 4 B). This corresponded with an attenuation of the decrease in respiratory chain 

complex activities following knockdown of those cells expressing pos5p (Figs. 4 C and D). 

Moreover, pos5p expression fully rescued the decrease in ACO2 activity associated with NNT 

knockdown (Fig. 4 E). Together, these data indicate that maintaining NADPH levels upon loss 

of NNT expression protects Fe-S protein function in NSCLC cells. 

 

NNT Loss Does Not Disrupt Fe-S Cluster Biosynthesis  
 
Given that an exogenous source of mitochondrial NADPH attenuated the Fe-S protein defects 

associated with NNT knockdown and that NADPH is required for efficient and sustained Fe-S 

cluster biosynthesis, we next sought to determine if NNT activity sustained this process. Fe-S 

cluster biosynthesis occurs at a multiprotein complex consisting in part of the cysteine 
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desulfurase (NFS1) and iron-sulfur scaffold protein (ISCU) (Johnson et al., 2005). Loss of either 

compromises cluster biosynthesis and is associated with mitochondrial defects (Fosset et al., 

2006, Crooks et al., 2018). Therefore, we introduced shRNAs targeting either NFS1 or ISCU 

(Alvarez et al., 2017) to establish the effects of disrupting Fe-S cluster biosynthesis on the 

respiratory chain and ACO2.  

 

NFS1 knockdown significantly diminished the activities of the respiratory chain complexes in 

response to both pyruvate/malate as well as succinate in H2009 cells, whereas only complex II-

III activity was significantly reduced in PC9 cells (Fig. 5 A and B).  Alternatively, loss of ISCU 

expression significantly blunted OCR in response to pyruvate/malate and succinate in both cell 

lines (Fig. 5 A and B). Furthermore, knockdown of either NFS1 or ISCU significantly reduced 

ACO2 activity across cell lines (Fig. 5 C). Intriguingly, the deficits elicited by NNT knockdown 

were of equal magnitude to those resultant from targeting these bona fide components of the 

Fe-S cluster biosynthetic machinery (Figs. 5 A, B, and C).  

 

To demonstrate that the Fe-S protein defects we observed have a functional impact on the 

mitochondrial metabolism of these NSCLC cells, we performed liquid chromatography-high 

resolution mass spectrometry (LC-HRMS)-based metabolomics on cells subjected to NNT or 

ISCU knockdown. Analysis of TCA cycle metabolites from these cells revealed significant 

alterations in the abundance of most intermediates across cell lines (Fig. 5 D). These are 

indicative of a severe disruption of oxidative metabolism and consistent with the described 

defects in Fe-S protein function. Specifically, we observed a depletion of pyruvate, malate and 

fumarate following disruption of both NNT and ISCU expression. While citrate levels were 

depleted in NNT-deficient cells, there was no consistent effect of ISCU knockdown. Alternatively, 

ISCU-deficient cells exhibited a striking accumulation of succinate that was absent in NNT 

knockdown cells (Fig. 5 D). 

 

Though ACO2 is the only Fe-S protein in the TCA cycle, several other TCA cycle proteins 

depend on the function of an additional mitochondrial Fe-S protein, lipoic acid synthetase (LIAS). 

LIAS is required for lipoic acid synthesis and the eventual conjugation of crucial lipoate moieties 

to components of PDH (E2) and a-ketoglutarate dehydrogenase (dihydrolipoamide S-

succinyltransferase, DLST), among others. LIAS is critically sensitive to disruptions in Fe-S 

cluster biosynthesis, as its resident Fe-S cluster is consumed during catalysis, imposing a 
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requirement for continual cluster turnover (Crooks et al., 2018). Indeed, disruption of NFS1 and 

ISCU expression resulted in a substantial reduction in PDH-E2 and DLST lipoylation in PC9 cells 

(Fig. 5 E). However, NNT knockdown had no effect on protein lipoylation (Fig. 5 E). Collectively, 

these data suggest that while NNT elicits enzymatic and metabolic defects reminiscent of those 

associated with the disruption of Fe-S cluster biosynthesis, it is unlikely that NNT directly 

influences this process. 

 

NNT Loss Disrupts Fatty Acid Metabolism 
 
In addition to the depletion of TCA cycle intermediates, LC-HRMS analysis of NNT-deficient cells 

revealed a metabolic signature indicative of dysregulated fatty acid metabolism. NNT knockdown 

promoted the accumulation of both saturated and unsaturated fatty acids relative to scramble-

infected controls (Fig 6 A). This was accompanied by a significant accumulation of the b-

oxidation substrate, palmitoylcarnitine, in NNT-deficient cells (Fig. 6 B). Given the established 

respiratory defects seen in NNT-deficient cells, we anticipated that the increase in 

palmitoylcarnitine was a result of decreased fatty acid oxidation. Consistent with this, we found 

that OCR linked to palmitate oxidation was reduced in H1299 and PC9 cells following NNT 

knockdown (Fig 6 C). To evaluate if the accumulation of fatty acids following NNT knockdown is 

a potential liability, we challenged NNT-deficient cells with the saturated fatty acid palmitate for 

24-hours. We found that NNT knockdown sensitized H1299 and H2009 cells to palmitate 

treatment (Fig. 6 D). Furthermore, NNT knockdown significantly sensitized H1299 and PC9 cells 

to treatment with the monounsaturated fatty acid, oleate (Fig. 6 E). These data suggest that NNT 

loss perturbs fatty acid metabolism in NSCLC cells that may serve as an exploitable vulnerability. 

 

Mitochondrially-Targeted Catalase Rescues Fe-S Protein Function Following NNT Loss 
 
Fe-S clusters are exquisitely sensitive to oxidation by molecular oxygen and more deleterious 

species (Flint et al., 1993, Djaman et al., 2004, Alvarez et al., 2017). Though we did not observe 

changes in the oxidation state of the mitochondrial protein antioxidant system, that does not 

preclude that the modest induction of mitochondrial ROS following NNT knockdown is sufficient 

to oxidize these sensitive cofactors. To interrogate this possibility, we employed a 

mitochondrially-targeted catalase (MitoCatalase) to enhance mitochondrial antioxidant capacity. 

We successfully overexpressed MitoCatalase in H1299, H2009, and PC9 cells (Fig. 7 A). These 
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cells exhibited an enhanced capacity to clear mitochondrial H2O2 upon challenge with 100µM of 

exogenous H2O2, (Fig. S4 A). Furthermore, these MitoCatalase expressing cells were more 

resistant to menadione treatment, indicating functionality within the mitochondria (Fig. S4 B).  

 

The expression of MitoCatalase also partially attenuated the modest induction of mitochondrial 

H2O2 associated with NNT knockdown. This corresponded with an attenuation of the reduction 

in respiratory chain complex activities following NNT knockdown (Fig. 7 C and D). Moreover, 

MitoCatalase expression rescued ACO2 activity in response to NNT knockdown (Fig. 7 E). This 

rescue of ACO2 activity was specific to NNT, as NFS1 deficient cells exhibited reduced ACO2 

activity even in the presence of MitoCatalase (Fig. S4 C). Collectively, these data indicate that 

enhancing the mitochondrial capacity to detoxify H2O2 protects against the Fe-S protein deficits 

associated with NNT knockdown, further arguing against a connection between NNT and Fe-S 

cluster biosynthesis.  

 

 

Discussion 
 
We demonstrate here for the first time that NNT expression supports lung tumorigenesis in two 

genetically engineered mouse models (GEMM) of NSCLC. These GEMMs were crossed with 

the natural deletion variant of NNT from a C57BL/6J background (Toye et al., 2005). Intriguingly, 

C57BL/6J mice are largely resistant to tumor formation (Law et al., 1967), which in light of our 

findings, suggests a potential role for NNT-deficiency in this phenotype. Our observation that 

NNT expression significantly enhances KrasG12D-driven lung tumor formation (Figs. 1A and B) is 

consistent with previous work with this GEMM demonstrating a need for proteins involved in 

mitochondrial redox metabolism (Weinberg et al., 2010, DeNicola et al., 2011, Davidson et al., 

2016, Mayers et al., 2016, Padanad et al., 2016, Rao et al., 2019). A requirement for 

mitochondrial function in this model aligns with the robust mitochondrial metabolism exhibited 

by human lung tumors (Hensley et al., 2016). 

 

The oxidation of carbon within the mitochondria stimulates ETC flux, which precipitates the 

formation of superoxide and its subsequent conversion to other ROS species. This necessitates 

a functional antioxidant system to prevent an unsustainable accumulation of macromolecular 

oxidation that can compromise ETC function and mitochondrial integrity. Indeed, activation of 
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nuclear factor erythroid 2-related factor 2 (Nrf2), the master regulator of cellular antioxidant 

capacity, is a common feature of NSCLC (Singh et al., 2006) and enhances lung tumorigenesis 

(DeNicola et al., 2011, Romero et al., 2017). Yet, in order to sustain this increased antioxidant 

capacity, cells must maintain a reduced NADPH:NADP+ ratio, especially in the mitochondria 

(Klingenberg and Slenczka, 1959). Given the established function of NNT in sustaining 

mitochondrial antioxidant capacity through regulation of the NADPH:NADP+ ratio (Lopert and 

Patel, 2014, Ronchi et al., 2016), we anticipated that NNT would serve a similar role in 

contributing to mitochondrial function in NSCLC. Surprisingly, while we did determine that NNT 

contributes to the NADPH:NADP+ ratio in NSCLC cells, the accompanying increase in 

mitochondrial ROS was not sufficient to compromise the mitochondrial protein antioxidant 

system, nor sensitize NNT-deficient cells to treatment with oxidants (Figs. 2 and S1). This is in 

direct contrast to what was observed in a model of adrenal adenocarcinoma (Chortis et al., 

2018). Though, it was previously established that NNT regulation of global oxidation is critical to 

adrenal physiology and NNT deficiency manifests with adrenal insufficiency in patients 

(Roucher-Boulez et al., 2016, Meimaridou et al., 2018). This indicates that while NNT serves to 

supplement the NADPH pool across tissue types (Lopert and Patel, 2014, Fisher-Wellman et 

al., 2015, Ronchi et al., 2016, Meimaridou et al., 2018), its functional contribution to redox 

homoeostasis may vary, especially with regards to malignancy (Gameiro et al., 2013, Ho et al., 

2017, Chortis et al., 2018, Li et al., 2018). 

 

It has been shown in disparate cancer cell lines that disruption of redox homeostasis following 

the loss of NNT expression induces metabolic rewiring, marked by changes in fuel utility 

(Gameiro et al., 2013, Ho et al., 2017). In an endothelial cell line derived from the ascitic fluid of 

a patient with liver adenocarcinoma, NNT knockdown was associated with reduced flux of both 

glucose and glutamine carbon through the TCA cycle coupled with a shift towards reductive 

glutamine metabolism (Ho et al., 2017). This is in contrast to melanoma cells, which exhibit 

increased glucose flux through the TCA cycle at the expense of reductive glutamine metabolism 

(Gameiro et al., 2013). This finding aligns with a study by Mullen et al., which demonstrated a 

connection between NNT-derived NADPH and reductive glutamine metabolism (Mullen et al., 

2014). Though we did not assess carbon flux through the TCA cycle, our data indicate a reduced 

capacity to oxidize either glucose or glutamine carbon in NSCLC cells following NNT knockdown 

(Figs. 3 and S2). The divergence in metabolic consequences following disruption of NNT 

expression in various cancers further suggests a context dependency to its function.   
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Through our LC/MS-based assessment of the impact of NNT loss on NSCLC metabolism, we 

revealed a dysregulation of mitochondrial metabolism marked by a severe depletion of most 

TCA cycle intermediates (Fig. 5 D). This corroborated our earlier findings that NNT knockdown 

diminished the function of Fe-S proteins critical to mitochondrial oxidative metabolism. While the 

impact of NNT loss on Fe-S protein function was strikingly similar to that of disrupting the Fe-S 

cluster biosynthetic machinery, there were distinct effects on the TCA cycle that distinguished 

NNT loss from ISCU knockdown (Fig. 5). This deviation is potentially attributable to the influence 

of ISCU but not NNT on protein lipoylation. Unlike the clusters associated with ACO2 or the 

respiratory chain, the 4Fe-4S cluster that mediates LIAS catalysis is consumed in the process 

to contribute sulfur for synthesis of lipoic acid (Parry and Trainor, 1978, Miller et al., 2000, Crooks 

et al., 2018).  This activity permits lipoylation of components of PDH and a-ketoglutarate 

dehydrogenase, which are required for TCA cycling. The lack of a discernable effect on the 

lipoylation status of PDH and DLST following NNT knockdown indicates that NNT does not 

influence these proteins in the same manner as ISCU (Fig. 5 E). Still, the metabolic effects of 

NNT loss were very reminiscent of those elicited by the acute loss of Fe-S clusters, which 

included an accumulation of fatty acids (Crooks et al., 2018). In that context, an ISCU deficiency 

promoted de novo fatty acid synthesis from citrate carbon that could not be efficiently oxidized 

in the TCA cycle due to the corresponding loss of Fe-S protein function. It is unlikely that NNT 

loss promotes fatty acid synthesis in NSCLC cells due to the significant demand for NADPH in 

the generation of fatty acids and the observed decrease in NADPH availability associated with 

NNT knockdown (Fig 2 D). Rather, this is likely a result of increased uptake, which occurs in 

NSCLC cells incapable of de novo synthesis (Migita et al., 2008). This blockade of fatty acid 

synthesis elicited an enhanced sensitivity to exogenous palmitate treatment, which we also 

observed in our NNT-deficient cells (Fig. 6 D). Regardless, fatty acid accumulation is a shared 

response to the disruption of either NNT or ISCU expression.   

The differential effects of NNT loss on mitochondrial Fe-S proteins with respect to the catalytic 

function of the resident cluster(s) suggested that NNT may influence cluster integrity rather than 

availability. Fe-S clusters are exquisitely sensitive to oxidation, including by molecular oxygen 

(Crack et al., 2014, Alvarez et al., 2017). Cluster oxidation is associated with dislocation of an 

iron atom that renders the cluster inactive (Djaman et al., 2004). The highly oxygenated 

pulmonary environment likely dictates the substantial mitochondrial oxidation exhibited by 
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human lung tumors (Hensley et al., 2016), as oxidative phosphorylation exploits the 

detoxification of molecular oxygen for an energetic benefit. Interestingly, NFS1 is positively 

selected for in NSCLC and is shown to support sustained Fe-S cluster biosynthesis to protect 

against the excessive oxygen challenge associated with residency in the lung (Alvarez et al., 

2017). These clusters are also subject to oxidation by the reactive products of the same 

metabolism that protects against the accumulation of molecular oxygen (Flint et al., 1993, 

Djaman et al., 2004). Though we do not observe a substantial induction of ROS associated with 

NNT knockdown (Figs. 2 E and S1 B), we are able to rescue the effects of NNT loss on Fe-S 

protein function with MitoCatalase (Fig. 7). Moreover, the differential effect of NNT and ISCU 

loss on LIAS function may further reflect the importance of NNT to cluster integrity rather than 

synthesis. Given that the cluster associated with LIAS must be consistently turned over due to 

its consumption during catalysis, it is likely less prone to oxidation.  

Considering our similar ability to rescue Fe-S protein function with pos5p (Fig. 5), our collective 

data indicate a potential role for NNT-derived NADPH in the mitigation of Fe-S cluster oxidation. 

This is intuitive considering that NNT is localized to the same membrane as the respiratory chain, 

which is a significant source of mitochondrial ROS. Thus, NNT may provide a regionalized 

source of reducing power to protect the integrity of the ETC. With regards to the potential impact 

of NNT activity on the soluble ACO2, there is substantial evidence that ACO2 physically 

associates with TCA cycle enzymes to form dynamic assemblies to enhance substrate 

channeling (Porpaczy et al., 1987, Morgunov and Srere, 1998, Fernie et al., 2018). Moreover, 

several of the NADH yielding dehydrogenases associate with the IMM, likely enhancing 

oxidation by complex (D'Souza and Srere, 1983, Sumegi and Srere, 1984a, Sumegi and Srere, 

1984b). Together, this suggests a likely spatial association between the TCA cycle machinery 

and the IMM permitting regulation by NNT. Indeed, there is existing evidence that NNT 

contributes to a redox cycle with PDH (Fisher-Wellman et al., 2015). As described, NNT 

consumes the NADH yielded by PDH to generate the NADPH required to support the 

detoxification of H2O2 that is also produced as a byproduct of PDH catalysis (Fisher-Wellman et 

al., 2013). This NNT-dependent redox circuit was linked to respiratory capacity and energy 

expenditure in mice (Fisher-Wellman et al., 2015).  

Altogether, our study demonstrates that NNT is of significance to lung tumor biology, in part 

through the regulation of Fe-S proteins that facilitate mitochondrial metabolism. In contrast to 

previous studies evaluating NNT function, we describe a nuanced influence on mitochondrial 
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redox homeostasis in NSCLC, where NNT activity likely mitigates regionalized oxidative stress 

stemming from the substantial oxidative metabolism exhibited by lung tumors. Our findings 

further indicate a necessity for mitochondrial metabolism in lung tumorigenesis, underscoring 

the therapeutic potential of augmenting mitochondrial function (Weinberg and Chandel, 2015). 

Materials and Methods 

Mice 

LSL-KrasG12D mice (Jackson et al., 2001) were crossed with NNT-deficient C57BL/6J mice and 
interbred to generate LSL-KrasG12D; NNT-/- and KrasG12D; NNT+/+ mice for lung tumor studies. 
LSL-KrasG12D and Trp53flox mice (Jackson et al., 2005) on a C57BL/6J and 129 mixed 
background were interbred to generate LSL-KrasG12D; Trp53flox/flox; NNT-/-, LSL-KrasG12D; 
Trp53flox/flox; NNT+/-, and LSL-KrasG12D; Trp53flox/flox; NNT+/+ mice for lung tumor studies. To 
induce lung tumor formation, mice under isofluorane anesthesia were infected intranasally with 
107 PFU of adenoviral-Cre (University of Iowa) as previously described (Jackson et al., 2001). 
All mice studies were approved by and conducted in accordance to the ethical standards 
established by the University of South Florida IACUC (protocol # R IS00003893).  

Tumor Analysis 

For analyses of KrasG12D; NNT-/- and KrasG12D; NNT+/+ tumors, mice were euthanized 3 months 
following tumor induction with adenoviral-Cre. Lungs were collected and fixed in 10% formalin 
overnight and then embedded in paraffin for subsequent sectioning. Sections were deparafinized 
in xylene and then rehydrated in a graded series of ethanol solutions. Slides were then 
sequentially stained with hematoxylin and eosin, dehydrated in ethanol and xylene, coverslipped 
and then dried overnight. Slides were scanned with the Aperio imager (Leica Biosystems) and 
each lung specimen was analyzed with ImageScope (Aperio). For analyses of KrasG12D; p53Δ/Δ; 
NNT-/-, KrasG12D; p53Δ/Δ; NNT+/-, and KrasG12D; p53Δ/Δ; NNT+/+ tumors, mice were enrolled in a 
survival study and allowed to reach an experimental endpoint in agreement with ethical 
standards. Lung specimens were collected, H&E slides were generated, and histopathology 
analysis was performed to grade lesions on a (1-5) scale based on criteria previously established 
for this model (Jackson et al., 2005, DuPage et al., 2009). 

Lentiviral Generation and Infection 

Lenti-X 293 T cells (Clontech) at 90% confluency were co-transfected with the plasmid of interest 
and the packaging plasmids pCMV-dR8.2 dvpr (addgene #8455) and pCMV-VSV-G (addgene 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 6, 2019. ; https://doi.org/10.1101/761577doi: bioRxiv preprint 

https://doi.org/10.1101/761577


 15 

#8454) in the presence of JetPRIME (Polyplus). Cells were infected with lentivirus and 8µg/mL 
polybrene for 6-hours at an optimized dilution established with the Lenti-Xä GoStixä Plus 
system (Takara). 

Cell Lines and Culture 

Human lung adenocarcinoma cell lines (DeNicola et al., 2015) were maintained in RPMI 1640 
medium (Hyclone or Gibco) supplemented with 10% FBS and in the absence of antibiotics at 
37°C in a humidified incubator containing 95% air and 5% CO2. Cell lines were routinely tested 
for mycoplasma contamination with the MycoAlert Assay (Lonza). ISCU (addgene #102972), 
NFS1 (addgene #102963, 102964), and NNT (Open Biosystems TRCN0000028507, 
TRCN0000028512) knockdown was achieved using validated short hairpin sequences targeting 
these transcripts in a pLKO.1 vector. Cells were infected with shRNA or scramble lentivirus and 
then selected with 1 µg/mL puromycin for 3 days prior to each experiment. All experiments were 
conducted 4-days post lentiviral infection except for analyses of proliferation or viability. The 
Pos5p nucleotide sequence was purchased as a gBlock from Integrated DNA Technologiesâ. 
Pos5p was modified to include flanking 3X HA-tags and cloned into the pLenti-CMV-Blast vector 
(addgene #17445). Cells were infected with either pos5p or GFP control lentivirus and then 
selected with 10 µg/mL blasticidin for 5 days. Similar to the strategy used to generate a 
mitochondrially-targeted catalase expressing mouse (Schriner et al., 2005), the initiating 
methionine codon of human catalase cDNA was replaced with the sequence for the first 25 
amino acids of the ornithine transcarbamylase leader sequence to target exogenous catalase 
protein to the mitochondria. The MitoCatalase sequence was cloned into the pPHAGE C-TAP 
vector (Huttlin et al., 2015). Cells were infected with either MitoCatalase or luciferase (Luc) 
control lentivirus and then selected with 1 µg/mL puromycin for 5 days. 

Analyses of Cell Proliferation and Viability 

For proliferation assays, cells were seeded in triplicate on four 96-well plates at a density of 
2,500-5,000 cells/well in 100µL. The next day, cells were infected with scramble or shNNT 
lentivirus in a final volume of 50µL, then overlaid with 100µL of medium and allowed to 
proliferate. On day 1 post-infection, one of the plates was collected and the cells fixed with 4% 
paraformaldehyde. This was repeated on days 3, 5, and 7 post-infection. Fixed cells were then 
stained with crystal violet, washed, and dried overnight. Crystal violet was solubilized with 100µL 
of 10% acetic acid and the OD600 was measured with a spectrophotometer (Promega). For 
viability assays, cells were plated on 96-well plates at a density of 10,000 cells/well in 100µL. 
On the next day, cells were incubated with 100µL of media containing tert-butyl hydroperoxide 
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(tbHP; Sigma-Aldrich), cumene hydroperoxide (CHP; Invitrogen), menadione (Fisher Scientific), 
oleate (Fisher Scientific), or palmitate (Sigma-Aldrich) at the indicated concentrations for 24 
hours. Cells were then fixed with 4% paraformaldehyde, stained with crystal violet, washed, and 
dried overnight. Crystal violet was solubilized with 100µL of 10% acetic acid and the OD600 
determined. For experiments evaluating the effect of NNT knockdown, cells were seeded on day 
2 post-infection. Relative viability was determined following normalization to scramble or DMSO 
treated cells.  

Immunoblotting 

Cell lysates were generated in ice cold RIPA buffer (20mM Tris-HCl [pH 7.5; VWR], 150mM 
NaCl [Fisher Scientific], 1mM EGTA [VWR], 1mM EDTA [Sigma-Aldrich], 1% sodium 
deoxycholate [Sigma-Aldrich], 1% NP-40 [Sigma-Aldrich]) supplemented with protease inhibitors 
(Roche). Protein concentrations were determined by DC Protein Assay (Bio-Rad) prior to mixing 
with a 6X reducing sample buffer containing b-mercaptoethanol (VWR). Proteins were separated 
by SDS-PAGE using NuPAGE 4-12% Bis-Tris precast gels (Invitrogen), then transferred to 
0.45µM nitrocellulose membranes (GE Healthcare). For analysis of the Prdx3 oxidation state, a 
previously published protocol was followed (Cox et al., 2009). These redox western samples 
were mixed with a 4X non-reducing buffer prior to separation by SDS-Page. Membranes were 
blocked with 5% non-fat milk in TBST and then incubated with the following primary antibodies: 
ACO2 (GeneTex, GTX109736), Actin (ThermoFisher, AC-15), Catalase (Cell Signaling 
Technologies, D4P7B), DLST (Cell Signaling Technologies, D22B1), HA-Tag (Cell Signaling 
Technologies, C29F4), HSP90 (Cell Signaling Technologies, 4874S), ISCU (Santa Cruz 
Biotechnology, sc-373694), Lipoic acid (Millipore Sigma, 437695), NFS1 (Santa Cruz 
Biotechnology, sc-365308), NNT for cell lysates (Abcam, ab110352), NNT for mouse tissue 
lysates (GeneTex, GTX103015), PDH-E2 (Abcam, ab126224), Prdx3 (Abcam, ab73349), a-
Tubulin (Santa Crux Biotechnology, sc-8035). HRP-conjugated secondary antibodies and 
enhanced chemiluminescence were used for all immunoblotting. 

Flow Cytometry Analyses of ROS 

For all analyses of ROS, 105 cells were seeded overnight in triplicate wells of a 6-well plate. 
Mitochondrial H2O2 levels were determined using the fluorescent dye, MitoPy1 (Tocris), 
according to an established protocol (Dickinson et al., 2013). Briefly, cells were incubated in 
fresh media for 4 hours, washed with PBS (Hyclone or Sigma-Aldrich), and incubated in 1mL of 
10µM MitoPY1 for 30 minutes. Depending on the experiment, cells were either collected 
immediately for analysis or challenged with H2O2 for an additional 30 minutes prior to collection. 
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Mitochondrial •O2- levels were determined with the fluorescent dye, MitoSox Red (Invitrogen), 
according to an established protocol (Kauffman et al., 2016). Briefly, cells were incubated in 
fresh media for 4 hours, washed with PBS, and incubated in 1mL of 5µM MitoSOX Red in HBSS 
(Gibco) for 20 minutes. Cells were then collected immediately for analysis. Cytosolic ROS levels 
were determined with the fluorescent dye, CellRox Green (Invitrogen), according to the 
manufacturer’s protocol. Briefly, cells were incubated in 1mL of fresh media for 4 hours, at which 
point 2µL of 2.5mM CellROX Green was added to each well for a final concentration of 5µM. 
Cells were incubated with CellROX green for 30 minutes and then collected for analysis. The 
fluorescence of dye-loaded cells was determined by flow cytometry with a BD Biosciences 2 
Laser 4 Color FacsCalibur Flow Cytometer (Marshall Scientific). The FL1 channel was used for 
analyses of MitoPY1 and CellROX Green fluorescence, whereas the FL3 channel was used for 
analyses of MitoSOX Red fluorescence. The mean fluorescence intensity of 10,000 discrete 
events were calculated for each sample.  

NADPH:NADP+ Assay 

25,000 cells were seeded in 500µL of medium overnight in triplicate on 12-well plates. Cells 
were then incubated in fresh media for 4 hours, collected, and extracted to determine the 
NADPH/NADP+ ratio according to the NADP/NADPH-Glo Assay Kit (Promega) protocol. 

Seahorse Analyses of Mitochondrial Function 

All measures of oxygen consumption were determined with a Seahorse XFe96 Analyzer 
(Agilent). General mitochondrial function was assessed according to the Seahorse XF Cell Mito 
Stress Kit protocol (Agilent). Assessments of individual respiratory chain activities were 
performed according to a previously established protocol (Salabei et al., 2014). Briefly, 40,000 
cells were plated in quadruplicate on an XFe96 microplate and allowed to seed overnight. 
Immediately prior to assay, cells were overlaid with 175µL of mitochondrial assay solution 
(220mM mannitol [Sigma-Aldrich], 70mM sucrose [Sigma-Aldrich], 10mM KH2PO4 [VWR], 5mM 
MgCl2 [VWR], 2mM HEPES [Fisher Scientific], 1mM EGTA [VWR]) supplemented with the 
Seahorse Plasma Membrane Permeabilizer (Agilent), 4mM ADP (Sigma-Aldrich), and either 
10mM sodium pyruvate (Sigma-Aldrich) and 1mM malate (Sigma-Aldrich) or 10mM glutamate 
(Sigma-Aldrich) and 1mM malate. Cells were then sequentially subjected to 2µM rotenone 
(Sigma-Aldrich), 10mM succinate (Sigma-Aldrich), 2µM antimycin A (Sigma-Aldrich), and 10mM 
ascorbate (Sigma-Aldrich) with 100µM N,N,N’,N’-tetramethyl-r-phenylene diamine (Sigma-
Aldrich). Lastly, palmitate oxidation was determined using the XF Fatty Acid Oxidation Assay Kit 
(Agilent) protocol.   
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Aconitase Assay 

Aconitase activity was determined based on a modified version of a protocol previously 
described (Francisco et al., 2018). Cells were collected and resuspended in 250µL of 50mM 
Tris-HCl, 150mM NaCl, pH 7.4. The cell suspension was homogenized with a dounce 
homogenizer and the homogenate spun down for 10 minutes at 10,000xg at 4°C. The pellet was 
then washed twice and resuspended in 100µL of 1% triton (Sigma-Aldrich) in 50mM Tris-HCl, 
pH 7.4 to lyse the mitochondrial membrane. This fraction was then spun down for 15 minutes at 
17,000xg at 4°C. The protein concentration was then determined by DC Protein Assay (Bio-Rad) 
and 175µL of 100-500ug/mL protein solution was generated with assay buffer (50mM Tris-HCl, 
pH 7.4). 50µL of this solution was transferred to triplicate wells of a black-walled 96-well 
fluorescence microplate already containing 55µL of assay buffer. Next, 50µL of a 4mM NADP+ 
(Sigma-Aldrich), 20U/mL IDH1 (Sigma-Aldrich) solution was added to each well. Finally, 50µL 
of 10mM sodium citrate (Sigma-Aldrich) was added to each well to initiate the assay. The plate 
was transferred to a fluorescence-compatible plate reader (Promega) to measure NADPH 
autofluorescence every minute over a period of an hour. This change in fluorescence over time 
is indicative of aconitase activity, where ACO2 present in the mitochondrial protein fraction 
converts the supplied citrate to isocitrate, which the supplied IDH1 then metabolizes in a reaction 
that generates NADPH. For the analysis of tumor tissue, tumors were homogenized in 500µL of 
mitochondrial isolation buffer (200mM mannitol, 10mM sucrose, 1mM EGTA, 10mM HEPES, pH 
7.4). Homogenates were spun down for 10 minutes at 800xg at 4°C. The supernatant was 
subjected to an additional spin of 10,000xg at 4°C. The pellet was then processed for analysis 
as described. 

LC-HRMS Metabolomics 

NSCLC cells seeded in triplicate wells of a 6-well plate were rapidly washed in ice cold PBS and 
extracted in 0.5mL of 80% methanol overnight at -80°C. Extracts were then cleared by 
centrifugation (17,000xg for 30 minutes at 4°C), and the supernatant analyzed by liquid 
chromatography-high resolution mass spectrometry (LC-HRMS). We performed this LC-HRMS 
analysis under the conditions for non-targeted metabolomics that we have established 
previously (Kang et al., 2019). Briefly, we utilized a Vanquish UPLC system coupled to a Q 
Exactive HF mass spectrometer equipped with heated electrospray ionization (Thermo Fisher 
Scientific). A SeQuant ZIC-pHILIC LC column, 5µm, 150 x 4.6mm (Millipore Sigma) with a 
SeQuant ZIC-pHILIC guard column, 20 x 4.6mm (Millipore Sigma) was used for 
chromatographic separation. The mobile phase A consisted of 10mM ammonium carbonate and 
0.05% ammonium hydroxide in water, while mobile phase B was 100% acetonitrile. The MS1 
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scan was operated in both positive and negative mode for data acquisition and data was 
analyzed with El Maven v0.3.1 (Clasquin et al., 2012). Metabolite identification was based on a 
comparison of both the m/z value and retention time of sample peaks to an internal MSMLS 
library (Sigma-Aldrich). 

Statistical Analysis 

Data were analyzed for statistical significance with GraphPad Prism 8 software. Values of p<0.05 

were considered significant (n.s., not significant; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). 

Differences between survival curves were determined by the Log-rank test. Comparisons of two 

groups were performed with a two-sided unpaired Student’s t test. A one-way ANOVA with a 

post-hoc Brown-Forsythe test was performed for comparisons of 3 or more groups, as similar 

variances between groups were observed. Data reported as mean ± SD of at least three 

technical replicates and representative of at least three experimental replicates unless noted 

otherwise. In assessing the effects of NNT knockdown in GFP/pos5p and Luc/MitoCatalase cells 

a two-way ANOVA with a Sidak’s multiple comparisons test was performed. 

 

Supplemental material 
 
Fig. S1 shows analyses of ROS levels and the response to exogenous oxidant treatment in 

NSCLC cells subject to NNT knockdown. Fig. S2 shows additional measures of mitochondrial 

function in NNT-deficient NSCLC cells in addition to immunoblot analyses of ACO2 expression 

in NNT-deficient NSCLC cells and KP tumors with differential NNT expression. Fig. S3 shows 

analyses of basal mitochondrial function in pos5p expressing NSCLC cells. Fig. S4 

demonstrates the functionality of MitoCatalase in MitoCatalase expressing NSCLC cells. 
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Figure 1. NNT supports lung tumorigenesis. (A) Representative hematoxylin-eosin stained lung 
sections of LSL-KrasG12D/+; NNT-/- and LSL-KrasG12D/+; NNT+/+ mice 3 months after Cre induction. Bars, 
20µm. (B) Average tumor # per lung area in LSL-KrasG12D/+; NNT-/- (n=16) and LSL-KrasG12D/+; NNT+/+ 
(n=17) specimens collected at 3 months (Student’s t test). (C) Survival rates of LSL-KrasG12D/+; 
Trp53flox/flox; NNT+/+ (n=11), LSL-KrasG12D/+; Trp53flox/flox; NNT+/- (n=19), and LSL-KrasG12D/+; Trp53flox/flox; 
NNT-/- (n=17) following Cre induction (Log-rank test). (D) Representative hematoxylin-eosin stained lung 
sections of LSLKrasG12D/+; Trp53flox/flox; NNT+/+ (Left), LSL-KrasG12D/+; Trp53flox/flox; NNT+/- (Middle), and 
LSL-KrasG12D/+; Trp53flox/flox; NNT-/- (Right) mice at experimental endpoint. Bars, 5mm. (E) Average tumor 
# per each lung specimen (one-way ANOVA). (F) Fraction of total lung that was burdened by tumor (one-
way ANOVA). (G) Distribution of tumor grades across all tumors for KrasG12D/+; p53Δ/Δ; NNT+/+ (n=530 
tumors), KrasG12D/+; p53Δ/Δ; NNT+/- (n=1269 tumors), and KrasG12D/+; p53Δ/Δ; NNT-/- (n=943 tumors). (H) 
Average frequency of each tumor grade per mouse (two-way ANOVA). For E, F, and H, LSL-KrasG12D/+; 
Trp53flox/flox; NNT+/+ (n=7), LSL-KrasG12D/+; Trp53flox/flox; NNT+/- (n=13), and LSL-KrasG12D/+; Trp53flox/flox; 
NNT-/- (n=11). For B, E, F, and H, data represented as mean ± SD. n.s., not significant; *, p<0.05; **, 
p<0.01.  
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Figure 2. NNT loss does not compromise the mitochondrial thioredoxin antioxidant system. (A) 
Immunoblot analysis of NNT and actin (loading control) expression in NSCLC cells 3 days post-infection 
with scramble or shNNT lentivirus. (B) Plots of cell proliferation over 7 days for NSCLC cells subject to 
scramble or shNNT lentiviral infection. (C) Schematic representation of NNT’s canonical function, where 
NNT supplies NADPH to maintain mitochondrial antioxidant capacity. Glutathione, reduced (GSH), 
glutathione peroxidase (GPX), glutathione reductase (GR), glutathione, oxidized (GSSG), water (H2O), 
thioredoxin, oxidized (TRXo), thioredoxin, reduced (Trxr), thioredoxin reductase (TrxR).  (D) 
NADPH:NADP+ ratio in NSCLC cells following NNT knockdown, relative to scramble infected control 
cells (Student’s t test). (E) Fluorescence of the mitochondrial H2O2 sensitive dye, MitoPY1, in NSCLC 
cells following NNT knockdown, relative to scramble infected control cells (one-way ANOVA). (F) Redox 
immunoblot analysis of actin (loading control) and the oxidation state of Prdx3 in parental NSCLC cells 
following 1-hour treatment with (1.) DMSO or (2.) 6µM auranofin or 4 days post-infection with (3.) 
scramble or (4.) shNNT lentivirus. Data are representative of one experiment of three experimental 
replicates. For B, D, and E, data are represented as mean ± SD of three technical replicates. n.s., not 
significant; *, p<0.05; ***, p<0.001; ****, p<0.0001. 
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Figure 3. NNT loss compromises mitochondrial oxidative capacity. (A) Plots of OCR in A549 and 
PC9 cells subject to NNT knockdown. Cells were supplemented with 10mM glucose and 1mM glutamine 
and then sequentially challenged with 1µM oligomycin (Olig), 1µM (A549) or 0.5µM (PC9) of carbonyl 
cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), and 1µM each of antimycin A (A) and rotenone 
(R). (B) Average maximal respiratory capacity of A549 and PC9 cells following infection with either 
scramble or shNNT lentivirus (Student’s t test). (C) Average complex I-III activity following stimulation 
with 10mM pyruvate and 1mM malate in NSCLC cells subject to NNT knockdown (one-way ANOVA). (D) 
Average complex II-III activity following stimulation with 10mM succinate in NSCLC cells subject to NNT 
knockdown (one-way ANOVA). (E) Average ACO2 activity in mitochondrial lysates of NSCLC cells 
following NNT knockdown (one-way ANOVA). (F) Average ACO2 activity in mitochondrial lysates of lung 
tumors collected from LSL-KrasG12D/+; Trp53flox/flox; NNT+/+ (n=13 tumors from 5 mice), LSL-KrasG12D/+; 
Trp53flox/flox; NNT+/- (n=20 tumors from 5 mice), and LSL-KrasG12D/+; Trp53flox/flox; NNT-/- (n=18 tumors from 
4 mice) mice (one-way ANOVA). For A-E, data are representative of one experiment of three 
experimental replicates. For A-E, data are represented as mean ± SD of at least three technical 
replicates. n.s., not significant; *, p<0.05; **, p<0.01; ***, p<0.001. 
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Figure 4. An exogenous source of NADPH sustains Fe-S protein function following NNT loss. (A) 
Immunoblot analysis of HA-tag and NNT (mitochondrial control) expression in cytosolic and mitochondrial 
lysates taken from GFP or pos5p expressing NSCLC cells. (B) NADPH:NADP+ ratio in GFP or pos5p 
expressing NSCLC cells following NNT knockdown, relative to scramble infected control cells (two-way 
ANOVA). (C) Average complex I-III activity following stimulation with 10mM pyruvate and 1mM malate in 
GFP or pos5p expressing NSCLC cells subject to NNT knockdown (two-way ANOVA). (D) Average 
complex II-III activity following stimulation with 10mM succinate in GFP or pos5p expressing NSCLC cells 
subject to NNT knockdown (two-way ANOVA). (E) Average ACO2 activity in mitochondrial lysates of GFP 
or pos5p expressing NSCLC cells following NNT knockdown (two-way ANOVA). Data are representative 
of one experiment of three experimental replicates. For B-E, data are represented as mean ± SD of at 
least three technical replicates. n.s., not significant; *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001.  
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Figure 5. NNT loss does not disrupt Fe-S cluster biosynthesis. (A) Average complex I-III activity 
following stimulation with 10mM pyruvate and 1mM malate in H2009 and PC9 cells subject to NNT, 
NFS1, or ISCU knockdown (one-way ANOVA). (B) Average complex II-III activity following stimulation 
with 10mM pyruvate and 1mM malate in H2009 and PC9 cells subject to NNT, NFS1, or ISCU knockdown 
(one-way ANOVA). (C) Average ACO2 activity in mitochondrial lysates of NSCLC cells following NNT, 
NFS1, or ISCU knockdown (one-way ANOVA). (D) Relative abundance of TCA cycle intermediates in 
extracts of NSCLC cells subject to NNT or ISCU knockdown (one-way ANOVA). (E) Immunoblot analysis 
of NNT, lipoic acid, PDH-E2, DLST, NFS1, ISCU, and actin (loading control) expression in PC9 cells 
following infection with (1) scramble, (2) shNNT-507, (3) shNNT-512, (4) shNFS1_1, (5) shNFS1_2, or 
(6) ISCU lentivirus. For A-C, data are representative of one experiment of three experimental replicates. 
For A-C, data are represented as mean ± SD of at least three technical replicates. For D, data are 
represented as mean ± SD of three biological replicates. n.s., not significant; *, p<0.05; **, p<0.01; ***, 
p<0.001. 
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Figure 6. NNT loss disrupts fatty acid metabolism. (A) Heat map representation of the relative 
abundances of saturated (decanoate, lauric acid, palmitate, stearate) and unsaturated (palmitoleic acid, 
elaidic acid, linoleate) fatty acids in extracts of NSCLC cells following NNT knockdown. (B) Relative 
abundance of palmitoylcarnitine in extracts of NSCLC cells subject to NNT knockdown (one-way 
ANOVA). (C) Measures of OCR coupled to the oxidation of exogenous palmitate-BSA in NSCLC cells 
subject to NNT knockdown (Student’s t test). (D-E) Viability of NSCLC cells subject to scramble or shNNT 
lentiviral infection following 24-hour treatment with (D) 200µM of palmitate or (E) 400µM of oleate 
(Student’s t test). Cell viability was determined relative to BSA treated controls. For C-E, data are 
representative of one experiment of three experimental replicates. For A, data are represented as the 
mean fold increase relative to scramble of three biological replicates. For B, data are represented as 
mean ± SD of three biological replicates. For C-E, data are represented as mean ± SD of at least three 
technical replicates. n.s., not significant; *, p<0.05; **, p<0.01; ***, p<0.001. 
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Figure 7. Mitochondrially targeted catalase rescues Fe-S protein function following NNT loss. (A) 
Immunoblot analysis of catalase and tubulin (loading control) expression in (1) Luciferase (Luc) or (2) 
MitoCatalase expressing NSCLC cells. (B) Fold inductions of MitoPY1 fluorescence in shNNT-infected 
Luc or MitoCatalase expressing NSCLC cells. (C) Average complex I-III activity following stimulation with 
10mM pyruvate and 1mM malate in Luc or MitoCatalase expressing NSCLC cells subject to NNT 
knockdown (two-way ANOVA). (D) Average complex II-III activity following stimulation with 10mM 
succinate in Luc or MitoCatalase expressing NSCLC cells subject to NNT knockdown (two-way ANOVA). 
(E) Average ACO2 activity in mitochondrial lysates of Luc or MitoCatalase expressing NSCLC cells 
following NNT knockdown (two-way ANOVA). Data are representative of one experiment of three 
experimental replicates. For B-E, data are represented as mean ± SD of at least three technical 
replicates. n.s., not significant; *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001. 
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