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Summary 

How does information from seconds earlier affect neocortical responses to new input? Here, 

we used empirical measurements and computational modeling to study the integration and 

forgetting of prior information. We found that when two groups of participants heard the same 

sentence in a narrative, preceded by different contexts, the neural responses of each group 

were initially different, but gradually fell into alignment. We observed a hierarchical gradient: 

sensory cortices aligned most quickly, followed by mid-level regions, while higher-order cortical 

regions aligned last. In some higher order regions, responses to the same sentence took more 

than 10 seconds to align. What kinds of computations can explain this hierarchical organization 

of contextual alignment? Passive linear integration models predict that regions which are 

slower to integrate new information should also be slower to forget old information. However, 

we found that higher order regions could rapidly forget prior context.  The data were better 

captured by a model composed of hierarchical autoencoders in time (HAT). In HAT, cortical 

regions maintain a temporal context representation which is actively integrated with input at 

each moment, and this integration is gated by prediction error.  These data and models suggest 

that sequences of information are combined throughout the cortical hierarchy using an active 

and gated integration process. 
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Introduction 

Events such as gestures, melodies, speech, and actions unfold over time, so we can only 

perceive and understand information in the present by integrating it with information from the 

past (Buonomano and Maass, 2009; Fuster, 1997; Kiebel et al., 2008). This process is complex 

because the world contains meaningful structure on scales ranging from milliseconds to 

minutes (Gibson et al., 1982; Poeppel, 2003; Zacks and Tversky, 2001): a series of phonemes 

makes up a word, a series of words forms a sentence, a series of sentences expresses an idea. 

How is the human brain organized to integrate information across multiple timescales in 

parallel? 

We and others have argued that the human brain employs a distributed and hierarchical 

architecture for integrating information over time (Baldassano et al., 2017; Fuster, 1997; 

Hasson et al., 2015; Honey et al., 2012; Lerner et al., 2011; Runyan et al., 2017). The 

architecture is distributed because almost all regions of the human cerebral cortex exhibit 

temporal context dependence in their responses. The architecture is hierarchical because early 

sensory regions integrate over short timescales (milliseconds to seconds), while higher-order 

regions integrate information over longer timescales (seconds to minutes).  

The timescale hierarchy is a highly reliable phenomenon with functional implications across the 

brain (Baldassano et al., 2017; Burt et al., 2018; Chaudhuri et al., 2015; Cocchi et al., 2016; 

Demirtaş et al., 2019; Watanabe et al., 2019), yet our models of the underlying information 

processing have remained phenomenological. What are the computations that integrate past 

and present information within the hierarchical networks of our brains? How are past and 

present information represented and combined within each stage of processing? What 

information is passed on to higher processing stages? We set out to answer these questions 

using a combined empirical and modeling approach.  

To investigate how information is integrated over time, prior studies have measured the 

“processing timescales” of different brain regions. Processing timescales were quantified by  
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comparing a brain region’s response to a stimulus at time t across various contexts, where the 

stimulus properties at time (t-τ) were altered. For example, Lerner et al. (2011) used functional 

magnetic resonance imaging (fMRI) to measure the neural responses to temporally 

manipulated versions of an auditory narrative (Figure 1A). They compared the neural responses 

during the original intact clip against the neural response during versions of the stimulus in 

which the ordering of words, sentences or paragraphs was scrambled. The authors observed 

that early sensory regions exhibited similar responses to the intact and scrambled audio; these 

early regions were said to have a short processing timescale, because their responses at each 

moment were largely independent of prior context. Moving toward higher-order cortices, such 

as temporoparietal junction, precuneus, and lateral prefrontal cortex, Lerner et al. (2011) 

observed different responses to the intact and scrambled input. In these higher-order regions, 

the response at one moment could depend on stimulus properties from 30 seconds or more 

earlier (Figure 1B). Overall, higher stages of cortical processing were said to have longer 

processing timescales, because their responses at time t were affected by properties of the 

stimulus from many seconds earlier (Figure 1C). 

Our approach was to develop a set of computational models that could explain key features of 

existing data (i.e. Lerner et al., 2011) concerning the timescale hierarchy (Figures 1B, C), and 

then to empirically test predictions of these models by conducting new analyses on a new 

dataset. In the first section of this manuscript, we specify multiple models of hierarchical 

temporal integration, and test whether they can account for existing data. These computational 

models are important, because we provide a process-level specification of how information 

sequences are integrated within each stage of cortical processing and also what kind of 

information is sent between stages of processing – specifications that were lacking in prior 

descriptions of the timescale hierarchy. We also consider informal models that set out to 

explain the data using “stimulus engagement” rather than temporal context. Furthermore, we 

contrast temporal context models which employ passive integration mechanisms (temporal 

smoothing) and those with active (recurrent and gated) integration mechanisms. 
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Figure 1 

 

In the second section of this manuscript, we report empirical data that can decide between the 

models. In order to test the predictions of each model, we apply a time-resolved pattern 

analysis to fMRI recordings of brain responses to naturalistic auditory stimuli. Specifically, we 

examine how each integration model can account for moment-by-moment changes of fMRI 

responses when two groups of participants hear the same natural auditory speech segments 

preceded by different contexts. We found that the fMRI responses gradually aligned over time 

across the two groups, when each group heard the same input preceded by a different context. 

The responses aligned earliest in sensory regions, but later and later in regions at consecutive 

stages of processing. The large-scale topography of these alignment patterns suggested that 

the time for building temporal context was hierarchically organized. This “hierarchy of context 

Figure 1. Computational models of distributed and hierarchical process memory. (A) Schematic of 
the experiment and results from Lerner et al. (2011). While in the fMRI scanner, participants listened 
to an auditory narrative, including an intact version and versions scrambled at different timescales 
(the scale of words, sentences and paragraphs). (B) The inter-subject correlation results indicated 
that lower-level regions (e.g. early auditory cortex) exhibited responses that were reliable across all 
stimuli, with little dependence on prior temporal context. By contrast, higher-level regions (e.g. TPJ 
and precuneus) exhibited responses that depended at each moment on long-timescale (tens of 
seconds) of prior context in the stimuli. (C) A schematic of the “process memory hierarchy”. Each 
circle represents a neural circuit which integrates information over different timescales. Lower-level 
regions (e.g. sensory regions) exhibit shorter integration timescales, integrating over entities such 
as phonemes and words. Higher-level regions (e.g.  lateral and medial parietal regions) exhibited 
longer integration timescales, combining information on the scale of entire events (e.g. multiple 
paragraphs of text over 30-60 seconds). (D) Schematic of the predicted data when comparing the 
hidden representations of brain regions that are sensitive to temporal context on different scales. 
The dependent variable is the “intact-scramble correlation”, quantifying the similarity of neural 
response to the same input in different temporal contexts. (E) Schematic of a signal gain model for 
explaining the pattern of brain responses shown in panel D. The model posits that (i) overall 
response gain (or signal-to-noise ratio) increases for coherent stimuli, because they are more 
engaging, and that (ii) this effect is even larger in higher order regions. (F) (left) Schematic of a 
passive integrator model, TCM. The model posits that the new state of each brain region is a 
weighted sum of its old state and the new input. (right) Schematic of an active integrator model, 
HAT. Each region maintains a representation of temporal context. At each moment, representation 
of past and present information are combined to a simplified joint representation. LSS = long scale 
scramble, MSS = medium scale scramble, FSS = fine scale scramble. TCM = temporal context model. 
HAT = hierarchical autoencoders in time. 
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construction” provides direct evidence for representations of prior context across the cerebral 

cortex.   

In the third and final section of this manuscript, we set out to test a prediction of the 

hierarchical autoencoders in time (HAT) model: that there are gating mechanisms for 

“forgetting” the temporal context in the cerebral cortex. Baldassano et al. (2017) observed 

rapid transitions in brain state (possibly reflecting event boundaries) while listeners perceived 

complex movies and stories. In those data, higher-level regions switched their activity pattern 

in alignment with a small number of long events, while lower-level sensory regions appeared to 

switch state at the transitions between many short events. The existing data do not determine 

whether the rapid switches reported by Baldassano et al., (2017) were (i) driven by rapid 

changes in the features of the input or (ii) reflecting a gating mechanisms for resetting temporal 

context at the start of a new event, which can reduce interference from irrelevant prior 

information (Reynolds et al., 2007). To directly test for context gating, we compared the “rate 

of integration” and “rate of forgetting” across all brain regions responsive to the real-life 

auditory narrative. Although higher order regions integrated information more gradually than 

sensory regions, we found that they did not “forget” prior information more gradually. The 

ability to integrate slowly and yet forget more rapidly provides cortical regions with flexibility in 

temporal integration: at appropriate moments, such as the start of a new event, regions can 

generate a response that depends less on prior context.  

Altogether the models and data detail a framework for the computations implemented in the 

cortical hierarchy when humans are processing naturalistic sequences.  The empirical findings 

of hierarchical context construction and context forgetting (i.e. temporal integration and 

separation) were consistent with the predictions of the HAT model. In this active integration 

model, individual cortical regions maintain a temporal context buffer, which can be updated to 

integrate past and present information, but which can also be overwritten upon arrival of 

surprising input.   
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Results 

We developed a set of models to explain prior measurements of neural responses to intact and 

temporally scrambled stimuli (e.g. Lerner et al., 2011, also Baldassano et al., 2017; Chen et al., 

2017; Farbood et al., 2015; Hasson et al., 2008; Honey et al., 2012; Simony et al., 2016; 

Yeshurun et al., 2017). In particular, lower-level sensory regions should display context-

invariant responses to the intact and scrambled narratives: the response to a particular input 

segment (e.g. a spoken sentence) in each of the scrambled conditions should resemble the 

response to that same segment within the intact condition. By contrast, higher-level cortical 

regions that are sensitive to temporal context change should show more divergent responses to 

a given input segment when the surrounding context is more scrambled, and thus we should 

observe a larger difference between the intact and scrambled conditions. The difference 

between intact and scrambled conditions is manifest as a reduced “intact-vs-scramble 

correlation”, where the correlation measures the similarity of responses to the same stimulus 

segment presented in the intact or scrambled context (Figure 1D). In sum, for a model to 

account for the hierarchy of context dependence it should capture two key phenomena:  

(P1) lower processing stages of the model should be insensitive to context change 

(analogous to sensory cortical regions, Figure 1D, left bars); 

(P2) progressively higher processing stages of the model should be increasingly sensitive 

to temporal context extending further into the past (analogous to the higher stages of cortical 

processing, Figure 1D, right bars). 

We developed three computational models to account for these phenomena: a model based on 

engagement (signal gain model, Figure 1E), a model employing passive temporal integration 

(the temporal context model, TCM, Figure 1F, left), and a model employing active gated 

integration (HAT, Figure 1F, right). 

The signal gain model 

It is possible to account for the empirical phenomena (P1 and P2, Figure 1D) without explicitly 

drawing on the notion of distributed temporal integration. Instead, one can offer an 
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explanation based on “signal gain”, in combination with the qualitative notion of 

“engagement”. This model makes three reasonable assumptions: (i) when participants engage 

more deeply with a stimulus, the gain of their response to that stimulus increases relative to 

the noise level, and they produce a more reliable neural responses to that stimulus (Cohen et 

al., 2018; Dmochowski et al., 2012) (ii) participants are less “engaged” with scrambled stimuli 

than with intact stimuli, and (iii) the effects of engagement on neural reliability are larger in 

higher-order cortical regions. With these assumptions, the required pattern of results can be 

explained: first, sensory neocortex would be largely unaffected by engagement (and thus 

unaffected by scrambling prior context); second, higher order regions would respond less 

reliably to scrambled stimuli, and so their intact-vs-scramble correlations would also be 

decreased (Figure 1E, STAR Methods Section 1.2). 

The signal gain model can explain data from scrambling experiment, without recourse to any 

neural representation of temporal context, and thus provides an important null model. We next 

considered models which do assume a representation of temporal context. 

The temporal context model (TCM) 

 

We employ the temporal context model (TCM) to stand in for a general class of linear 

integrator models, in which past and present information are combined as a weighted linear 

sum. In TCM, the arrival of each new stimulus generates linear “drift” of an internal context 

variable, and this “drift” during sequence encoding can account for contiguity effects in later 

recall (Howard and Kahana, 2002; Howard et al., 2011). Can a linear combination of past and 

present information (passive integration) account for the empirical data from scrambling 

experiments? 

 

Local processing in TCM: If we define the current context as CNTX(t) and the current input as 

IN(t), a simple form of the update equation for TCM is: 

 

𝑪𝑵𝑻𝑿(t + 1) = 	𝜌-𝑪𝑵𝑻𝑿(t) + 𝛽-𝑰𝑵(t) 
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where 	𝜌-  and 𝛽-  are “drift” parameters that determine the proportion of new and old 

information in the updated context variable. 

 

TCM employs a “passive” temporal integration because the drifting context, CNTX, is essentially 

an exponentially weighted running average of prior input. The external input is always linearly 

combined with the context, and so the relationship of new input and prior context (e.g. 

whether they are related or unrelated) does not affect the magnitude or form of the context 

update. Moreover, there is no mechanism for controlling (e.g. via gating) how much of the 

context is overwritten by new input at each moment – the proportional influence of the input 

depends only on the integration parameters, 𝜌 and b, which are fixed, and could be adjusted by 

the status of learning (Sederberg et al., 2011). Thus, TCM employs a passive integration scheme 

in which the context variable is a weighted average of inputs. 

 

Stages of processing in TCM: We created a hierarchical variant of TCM by testing multiple 

copies of TCM, each with different drift parameters (𝜌 and b). The drift parameters determine 

the proportion of influence of the current input.  Thus, we increased 	𝜌 (and decreased 𝛽) to 

model higher stages of processing, thereby increasing the proportion of prior information that 

is retained at higher stages of the simulated hierarchy (Figure 1F, left; STAR Methods Section 

1.1). 

 

The hierarchical autoencoders in time (HAT) model 

Finally, we developed a model of neural sequence processing in which past and present 

information are actively integrated. To this end, we were inspired by TRACX2, a recurrent 

network model which can account for diverse human sequence learning behaviors (French et 

al., 2011). This is an active form of temporal integration, because new input and prior context 

are compressed into a simplified joint representation (Mareschal and French, 2017), and the 

output of the model from this joint representation depends on learning of what inputs typically 

arrive in which temporal contexts. 
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Local processing in HAT: We modeled individual processing stage as “autoencoder in time” (AT) 

units. At each time step, each AT unit attempts to generate a simplified, or compressed, joint 

representation (HID) of its current input (IN) and its prior context (CNTX, Figure S1, STAR 

Methods Section 1.3.1). The simplified representation (HID) is compressed, because IN and 

CNTX are jointly represented in a lower dimensional space. This simplified representation then 

becomes the context for the next input. 

What happens when an unfamiliar or surprising input is presented to the HAT model? In this 

case, the network will be unable to generate a simplified joint representation of prior context 

and new input; the model overwrites its context variable (CNTX), and the current input (IN) 

instead becomes the context for the next time step. Intuitively, this should occur at boundaries 

between temporal chunks. For example, suppose we were to present the sequence of letters 

“o,c,e,a,n,v,i,e,w”, to the model, one by one. When the letter “n” is input, the model could form 

the joint representation “ocea+n” (ocean). However, when the letter “v” is input, the model 

cannot form a simplified joint representation for “ocean+v”. Because the letter “v” cannot be 

readily integrated with the prior context, the letter “v” becomes the initial context for a new 

subsequence (view). Thus, at the boundary between the two chunks, the context variable is 

“gated”, so that the letters in the new chunk (view) are separated from those in the previous 

chunk (ocean). 

Hierarchical architecture in HAT: We constructed a hierarchical temporal autoencoder in time 

(HAT) model by stacking three levels of AT units (Figure 1F, right). The information flow 

between units is globally feedforward; there is recurrent signaling within each AT unit, but 

there is no feedback from a higher AT unit to lower stages. Higher order units possess longer 

intrinsic timescale t, so their context is less readily influenced by the input from lower level 

units (Figure S2A, STAR Methods Section 1.3.2). 

Information transmission in HAT: The information transmitted from a lower AT unit (stage i) to 

a higher AT unit (stage i+1) depends on the surprise a detected in the lower stage (Figure S2B, 

STAR Methods Section 1.3.2). When the lower level of the model is less surprised, it transmits 
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more of its “compressed” representation HIDi as input INi+1 for the next stage of processing. 

When the lower level is more surprised, it transmits more of its own input INi as input INi+1 for 

the next stage of processing. This between-level gating mechanism helps the model to preserve 

the learned “chunks” from the lower levels to be processed by the higher levels. 

Testing computational models of hierarchical context dependence 

 

We tested whether the signal gain model and the temporal context models (HAT and TCM) 

could capture the previously described phenomenon of hierarchical context dependence 

(Figure 1D). To measure context dependence in each model, we first trained the model by 

exposing it to sequences of input with temporal regularities. We then tested the internal 

representations generated by the models when the same (identical) inputs were presented 

within distinct larger sequences that provided different scales of coherent context. Further 

details of the modeling and more fine-grained model analysis are presented in STAR Methods 

Section 2.1-2.3 and Figure S3 & S4. 

 

As expected, all three models – signal gain, passive integration (TCM) and active integration 

(HAT) – could account for the key empirical phenomena of hierarchical context dependence (P1 

and P2, above). In all models, the lower levels exhibited high correlation between 

representations of intact and scrambled stimuli, regardless of the scale of scrambling. This 

demonstrates that these lower levels of the model are relatively insensitive to context change. 

In contrast, the higher levels of the models showed progressively more dependence on context: 

the correlation between representations of the intact stimuli and the long-scale scrambled 

stimuli remained high, but the representation of the intact stimuli no longer resembled the 

medium scale or fine-scale representations (Figure S3). 

 

The HAT model did exhibit an important advantage over TCM, because its temporal integration 

was more selective for previously learned sequences (STAR Methods Section 2.3 and Figure S3). 

In addition, the preference of different levels for distinct timescales was more distinct, which 
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better matches empirical data. We elaborate on these differences, as well as further tests of 

the HAT architecture, in Supplemental Text. 

 

In summary, we developed three explanations for existing data concerning the cortical 

responses to intact and scrambled sequences of naturalistic input. We found that passive 

temporal integration (TCM) and active, gated integration (HAT) could all account for the basic 

empirical phenomena. However, to decide between the different forms of the temporal 

integration models, and to rule out the stimulus engagement accounts, it was necessary to 

collect more fine-grained measurements of hierarchical temporal integration. 

 

Measuring the Moment-by-Moment Construction of Temporal Context  

 

We developed a time-resolved fMRI pattern analysis approach for measuring the responses to 

naturalistic auditory narratives with different shared context. This approach, applied here to a 

new fMRI dataset, provided three benefits. First, this analysis revealed a second-by-second 

picture of context-dependent processing in the human cortical hierarchy, going beyond 

previous maps based on the average response over minutes of processing. Second, the time-

resolved data enabled us to test and rule out the “engagement” style explanations of the data.  

Third, the time-resolved data enable us to map both the timescales of information 

accumulation and the timescales of forgetting throughout the cortical hierarchy. 

 

To understand the time-resolved analysis, consider a case in which two groups of subjects are 

exposed to the same ~20 s segment of natural speech (e.g. sentence E), but this shared 

segment is preceded by different speech segments across the two groups (e.g. sentence C or 

sentence D, Figure 2A). In this setting we can ask: how similar are the neural responses within 

and across these groups, second by second, as they process the shared segment from start to 

end? At the very start of the sentence, the two groups share none of their prior context, but by 

the end of the sentence they share much greater amounts of prior context. Thus, context-based 

models (such as HAT and TCM) predict that the correlation across groups should start from zero 
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(as the groups share no context at the start of segment) and ramp upward over time as more 

and more context become shared across the groups.  At the same time, context-based models 

also predict that the correlation across participants within each of the two groups will, on 

average, be constant over  

 
 

Figure 2 
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time, because the participants in each group are hearing the same current input preceded by 

the same context. Thus, we can test the predictions of the context-based models by measuring 

the across-group and within-group similarity at each time step within each sentence.  

 

To empirically quantify the neural similarity within and across groups in a time-resolved 

manner, we calculate the inter-subject pattern correlation (ISPC, see STAR Methods Section 3).  

Three kinds of ISPC are calculated: similarity within the intact group (i.e. intact-intact 

correlation, rII), similarity within the scramble group (i.e. scramble-scramble correlation, rSS) 

and similarity across the intact and the scramble group (i.e. scramble-intact correlation, rSI) 

(Figure 2B, 2C). 

 

Signal gain (or “engagement”) models and context models generate distinct predictions for how 

the set of similarity measures will evolve over time. A simple form of the engagement model 

(“continuous engagement model”) would propose that people are generically less engaged in 

the stimuli in the scramble condition. Thus, the rSS and rSI timecourses should be lower than 

Figure 2. Gradual alignment of responses to a common stimulus preceded by different context. (A) 
For a specific sentence, inter-subject pattern correlation (ISPC) was measured by correlating the 
spatial pattern of activation at each time point across the two groups. (B) ISPC was calculated between 
one subject and the average of the rest of the subjects within the intact group (rII); or between one 
subject and the rest of the scrambled group (rSS); or across the intact and scrambled groups (rSI). (C)  
The ISPC analysis for the same sentences preceded by different contexts (DE:CE). In this example, 
sentence E followed sentence D for listeners in the Intact group, but it followed sentence C for 
listeners in the Scrambled group. (D)  Predictions of ISPC generated from candidate models: two 
variants of the signal gain model, and two models that assume a representation of temporal context. 
(E)  Average ISPC for all sentences in ROIs within an auditory (A1+) region and a right TPJ region. In 
A1+, the within-group rII and rSS curves showed similarly flat timecourses, while the cross-group 
rSIDE:CE curve began at zero and then started to increase at ~4 seconds. In the right TPJ, the within-
group rII and rSS curves were again stable during the sentence processing. Crucially, the rSIDE:CE curve 
was low at the beginning of the sentences but started to increase at around 8 seconds. Shaded area 
indicates a 95% confidence interval on individual rSI estimates. (F)  Plots of the raw rII, rSS, and rSIDE:CE 
curves for individual regions across the cerebral cortex, grouped according to their “rise time”. Curves 
for individual regions within that timescale grouping are in pale gray. The mean curve for each rise-
time grouping is shown in thick blue (rII), orange (rSS), and gray (rSIDE:CE).  The rII and rSS curves are 
stable over time, while the rSI curves consistently exhibit ramping. A1 = primary auditory cortex, rTPJ 
= right temporal-parietal junction, ISPC = inter-subject pattern correlation, rII = intact-intact ISPC, rSS 
= scramble-scramble ISPC, rSI = scramble-intact ISPC. 
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the rII timecourse, and this effect should persist from the beginning to the end of each segment 

(Figure 2D, left). Alternatively, a more sophisticated form of this model could propose that 

there are time-varying changes in engagement. This “intermittent engagement model” 

proposes that people in the scramble condition are less engaged specifically at the beginning of 

each new segment (perhaps because they are confused by non-continuity at the boundary 

between unrelated segments). Thus, under this intermittent engagement model, both the rSS 

curve and rSI curve should be lower than the rII curve at the beginning of the segments, but 

then both the rSS and rSI curves should increase gradually as subjects in the scramble condition 

come to understand more of the segment they are hearing (Figure 2D, middle). The predictions 

of the engagement models differ from those of the context models (HAT or TCM). As noted 

earlier, the context-based models predict that rII and rSS should be stable over time, while the 

rSI curve should show a ramping phenomenon (Figure 2D, right).  

 

In summary, the key prediction of the context models is that rSI should be low at the beginning 

the segment (due to the different prior contexts), and should rise later as more shared context 

is built across the two conditions, even while the rII and rSS curves are stable. Such an effect 

demonstrates that each group (intact and scrambled) is producing a reliable and stable 

response, but what is common across groups is changing, even while the input that the two 

groups receive is identical. Such an effect can only be explained by an effect of prior context on 

the neural response to the current input. 

 

Time-resolved Neural Similarity Data Match Predictions of Context Models 

 

Overall, the time-resolved pattern-analysis results were consistent with the predictions of the 

distributed context models, and inconsistent with the predictions of engagement models. To 

start, we considered the curves of rII, rSS and rSI within one lower level region (an ROI near 

A1+, Figure 2E top) and one higher order cortical region (an ROI near the TPJ, Figure 2E 

bottom).  In both of these example regions we observed that (i) the rII and rSS curves were 

essentially constant from the beginning to the end of a segment; and (ii) the rSI curve ramped 
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upward over time, as the intact and scrambled groups were exposed to more and more 

common temporal sequence within the same segment. The ramping of the rSI timecourse is 

inconsistent with the continuous engagement model. The flatness of the rII curve is 

inconsistent with the intermittent engagement model. These data patterns (flat rII; flat rSS; 

ramping rSI) are preserved across the cerebral cortex (Figure 2F, Figure S7) when we broaden 

our analysis to a cortex wide atlas or ROIs (Schaefer et al., 2018). Thus, neither intermitted 

engagement models nor continuous engagement models can account for these data, even at a 

qualitative level. 

 

We next examined how the temporal integration profile (rII, rSS and rSI) differed across regions. 

To illustrate the basic phenomenon, we examined the rII and rSS curves (within-group 

correlation) for one sensory region (A1+) and one higher-order region (right TPJ). In A1+, we 

found that rII and rSS were very similar to each other across the whole segments, suggesting 

that A1 showed highly reliable responses to the same segments in the two conditions in which 

the contexts are different (Figure 2E top).  In rTPJ, on the other hand, the rII curve was 

significantly higher than the rSS (t(21)=2.83, p=0.007, t-test of mean rII and rSS values per 

segment, Figure 2E, bottom). This effect could reflect some influence of engagement; it can also 

be explained by the fact that the patterns in the intact stimulus are more familiar than the 

scrambled stimulus (more similar to prior experience).  

 

The across-group correlation (rSI) ramped upward later in the higher order cortex (TPJ) than in 

sensory cortex (A1+). In A1+, the rSI timecourse begins to rise from zero ~3 s after the segment-

onset, while in TPJ the rSI timecourse rises from zero ~8 s post-onset (Figure 2E). Importantly, 

the fact that the rSI = 0 at the onset of the segment does not necessarily reflect a neural 

context effect – instead, this reflects an effect of hemodynamics. In particular, the 

hemodynamics introduce temporal smoothing from the previous segment, carrying information 

over into the beginning of the current segment, even if the underlying neural response is 

unaffected by context. This HRF artifact makes it difficult to use BOLD imaging to estimate the 

shortest possible time at which temporal context effects operate. However, the hemodynamics 
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cannot account for the ramping in TPJ beginning many seconds later than in A1+. Instead, the 

later rise time in TPJ points to a neural context effect, with a longer timescale in higher order 

regions. Having observed evidence of variable rise-times in these two specific regions, our next 

step was to map the timescales of context construction across the cerebral cortex.  

 

Moment-by-moment context analysis reveals a hierarchical organization 

 

As predicted by hierarchical temporal context models (HAT and TCM), we observed a 

hierarchical organization of moment-by-moment context-dependent responses in the human 

cerebral cortex. The similarity of response across the intact and scramble groups (rSI) exhibited 

an increasing pattern in almost every ROI, but the latency of this ramping was greater in higher-

order regions. Because the rSI measurement will not be meaningful when the response in the 

scrambled condition is unreliable, we restricted our analysis of the ramping to the 83 ROIs in 

which there was a reliable response to the scrambled stimulus (i.e. mean rSS > 0.06, see STAR 

Methods Section 3.7, Figure S5). We then used logistic fitting to quantify the timescale of 

ramping in each ROI. After measuring the rise time (i.e., the time that the curve reaches its half 

maximum), we excluded 4 ROIs that were not well-fit by a logistic function (Figure S6), resulting 

in 79 ROIs for further analysis. A direct visualization of the raw rSI timecourses in each ROI 

confirmed that the logistic fitting accurately captured the profile of the rSI curves (Figure S7). 

To further confirm that the latencies derived from the logistic fits accurately reflect the data, 

we grouped the ROIs based on the “rise time” (i.e. the time that the logistic fits reaching the 

half maximum, see Material and Methods Section 3): the 3-5s, 5-7s, 7-9s and 9-11s group. 

These groupings revealed a consistent rSI ramping latency within groupings and distinct rSI 

ramping latency across groupings (Figure 2F).  

 

The second-by-second analysis revealed a “hierarchy of context construction” across the lateral 

and medical cortical surface, in which early auditory regions first arrive at a shared context-

dependent response, followed by consecutive stages of the cortical hierarchy. Rise times of rSI 

curves became gradually slower from sensory cortex (with ~ 4 s rise time) up toward higher 
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order regions (rise times of 10 s or longer, Figure 3, top). The logistic curves extracted from five 

example ROIs along the auditory processing hierarchy were visualized, with ROIs drawn from  

A1, the superior temporal gyrus and the inferior parietal lobe (Figure 3, bottom). These rSI 

curves materially confirm the hierarchy of context construction within the auditory processing 

pathway: lower-level sensory regions (e.g. A1) quickly arrived at a shared response between 

intact and scrambled groups, while the inferior parietal regions (and regions in the medial 

parietal cortex) took longer to generate a response that is shared across the intact and 

scrambled groups.

 
Figure 3 

 

 

Figure 3. Hierarchical timescales of context construction across the human cerebral cortex. (top) 
Cortical map of the timescale at which neural responses align to a common input preceded by 
different contexts. Rise time is quantified as the time for each rSIDE:CE curve to reach its half 
maximum value, based on logistic fitting. (bottom) Logistic curves are shown for four representative 
ROIs along the cortical hierarchy (from A1, to middle STG, to posterior STG, to IPL). A1 = primary 
auditory cortex, IPL = inferior parietal lobe, STG = superior temporal gyrus, rSI = scramble-intact 
inter-subject pattern correlation. 
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Time-resolved analysis reveals an active context forgetting process 

 

The time-resolved pattern analysis indicates that information is temporally integrated second-

by-second throughout the cortex – but is integrating information over the past always 

desirable? For example, if the subject of a new sentence is unrelated to the verb of the previous 

sentence, then perhaps we might want to separate these pieces of information, rather than 

integrate them. Therefore, in addition to the mechanisms for integrating information over time, 

it seems desirable to be able to separate information from distinct events.  

 

Establishing a new context will often involve forgetting a prior context, and so the processes of 

construction and forgetting may be connected (Figure 4A). Consider a setting in which two 

groups of subjects listen to the same auditory input preceded by different contexts. In the 

previous section, we showed that the two groups will gradually construct a shared mental 

context and will begin to respond in the same way to common input (Figure 4A, middle). But 

what happens when the common input ends? At this moment, the two groups begin to hear 

different inputs, but these different inputs are preceded by a shared context. We expect that 

the two groups should gradually “forget” the previously shared mental context, as they are 

exposed to distinct input, but the influence of prior context may persist for some time (Figure 

4A, right). 

 

How quickly can individual brain regions forget the previous shared context and start to build 

the new, different contexts?  In the HAT model, it is possible to block the integration of prior 

information with new information using an active forgetting mechanism. Specifically, because 

of the surprise-driven gating in the HAT model (Figure 1E, Figure S2), the influence of prior 

context is reduced at moments of higher surprise. Conversely, in the TCM model, there is no 

active forgetting mechanism: temporal integration is passive, and the influence of past 

information on present responses depends only on the recency of the past information. More 
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generally, higher-order regions are known to exhibit slower dynamics than sensory regions 

(Chaudhuri et al., 2015; Demirtaş et al., 2019; Honey et al., 2012; Murray et al., 2014; Ogawa 

and Komatsu, 2010; Stephens et al., 2013) and the presence of intrinsically slower dynamics 

provides a passive form of integration. It is therefore critical to test for evidence of a 

mechanism for individual regions to actively and flexibly adapt the integration timescale. 
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Figure 4 

For the construction of temporal context, both the hierarchical TCM and HAT model predict the 

basic empirical results (Figure 4E) in which higher-level regions construct new context (ramp up 

in rSIDE:CE or rSICONSTRUCT) more slowly than sensory regions (Figure 4C & 4D). Indeed, such 

predictions can even be generated by variants of the HAT model with modified or eliminated 

“context gating” mechanisms (see Figure S8A-S8C). However, in models such as TCM, in which 

information is integrated with a fixed time constant, the rate of accumulating new information 

must be directly proportional to the rate of forgetting old information. This leads to a testable 

prediction: if temporal integration within each brain region only relies on a fixed time constant, 

then regions which integrate information more slowly (i.e. higher order regions) should also 

forget prior information more slowly. 

 

To test this prediction, we designed an analysis which examines how rapidly each brain region 

“forgets” shared context. We quantified the “rate of forgetting” by measuring the similarity of 

neural responses as participants were processing different input preceded by a shared prior 

context (i.e., rSIFORGET or rSICD:CE, Figure 4B). The TCM model predicts that regions which slowly 

Figure 4. Distinct timescales of context construction and context forgetting. (A) Conceptual schematic 
of how mental states fall into and out of alignment as common and distinct input sequences are 
presented over time. Two groups of participants gradually construct a shared context when they listen 
to the same auditory input preceded by different contexts. As they construct the shared context their 
mental states (reflected in their neural responses) fall into alignment. Then, when the common input 
ends, they begin to process a distinct input preceded by a common context. As the distinct input is 
processed over time, participants forget their shared context. (B) Schematic of the inter-subject pattern 
correlation (ISPC) analysis for the different speech segments preceded by the same context (CD:CE). 
For example, in this diagram, segment D in the intact group and segment E in the scramble group were 
both preceded by segment C. (C) TCM simulation of rSIDE:CE predicts a hierarchy of context construction. 
(D) HAT simulation of rSIDE:CE predicts a hierarchy of context construction. (E) Empirical rSIDE:CE results 
grouped by rise time, indicating a hierarchy of context construction, consistent with predictions of both 
TCM and HAT.  (F) TCM simulation of rSICD:CE predicts that regions that construct context slowly will also 
forget context slowly, as temporal updating has a fixed time constant. (G) HAT simulation predicts that 
the timescale of context forgetting (rSICD:CE) need not be slower in levels of the model that have longer 
timescales of context construction (rSIDE:CE). (H) Empirical rSICD:CE results grouped by rise time showed 
that regions in different levels of cortical hierarchy can forget context at a similar rate. This observation 
is inconsistent with the predictions of the TCM model, and more consistent with gated models such as 
HAT. TCM = temporal context model, HAT = hierarchical autoencoders in time, rSI = scramble-intact 
inter-subject pattern correlation. 
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integrate information would also slowly forget prior context (Figure 4F). In contrast, the HAT 

model predicts that although higher-level regions integrate information over longer timescales 

than lower-level regions, they do not necessarily forget prior context at a slower rate, because 

they have access to an active gating mechanism (Figure 4G). The three HAT variants with 

limited context gating mechanism generated predictions that were more similar to the TCM 

model: higher-level regions forgot context more slowly than lower-level regions (Supplemental 

Text, Figure S8D-S8F). 

 

Finally, to test the different predictions regarding the rate of context forgetting, we grouped 

brain regions according to their rise time in accumulating new information (rSICONSTRUCT or 

rSIDE:CE) and then visualized the rate at which they forget prior information (rSIFORGET or rSICD:CE). 

Crucially, we observed that the rSIFORGET  curves decreased at a similar rate, regardless of 

whether the corresponding rSICONSTRUCT curve had a fast or a slow rise time (Figure 4H). 

Furthermore, we observed no reliable correlation between rise time and fall time in individual 

ROIs (r = -0.1, p=0.5, Figure S9, fall time defined analogously to rise time of the logistic curve).   

 

The analysis of forgetting rates results rules out models which employ a fixed time constant for 

temporal integration. Instead, the results are more consistent with models such as HAT, which 

possess an active mechanism for overwriting prior context at the transition to an unexpected 

input. Gating has been employed in single-module memory context models (e.g. CMR, Polyn et 

al., 2009) and in machine learning theory (e.g. LSTMs, Hochreiter and Schmidhuber, 1997), but 

these results suggest that gating may be employed in a distributed and hierarchical manner in 

the brain.  

 

An active gating mechanism, acting in a distributed manner across the cortex, could provide an 

explanation for the observation of rapid shifts in brain state (“event segmentation”) occurring 

in a hierarchical fashion across the cortex (Baldassano et al., 2017). More generally, the data 

indicate that the temporal integration of information in the neocortex is an active and gated 
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process, which cannot be explained solely by variation of a fixed time constant across regions 

(Chaudhuri et al., 2015; Honey et al., 2012; Murray et al., 2014; Stephens et al., 2013).  

 

Discussion 

 

This study investigated how the human cerebral cortex flexibly integrates information over 

time. We implemented models of both passive and active temporal integration processes, and 

showed how they could account for existing data on temporal processing. These models 

predicted a “hierarchical context construction” phenomenon, which we then tested using a 

time-resolved inter-subject pattern correlation (ISPC) analysis. We observed the predicted 

phenomenon across the later cerebral cortex of the human brain: when two listeners heard the 

same sentence preceded by different contexts, their neural responses were initially different, 

but gradually fell into alignment. Sensory cortices aligned most quickly, followed by mid-level 

regions. Higher-order cortical regions aligned last, sometimes requiring more than 10 seconds 

of common input before the responses aligned across contexts. Our ISPC approach also enabled 

us to measure the rate at which prior context was “forgotten”. These forgetting analyses 

showed that, despite their long integration timescales, higher order cortical regions could 

sometimes rapidly forget prior context. These data are incompatible with passive integration 

models in which past and present information are linearly mixed. Instead, the data point to an 

active integration process in which past and present information are compressed into a 

simplified joint representation. Moreover,  the influence of past information appears to be 

gated, as it does not have a fixed timescale, and our modeling suggests that such gating can be 

controlled by a local prediction error. 

 

The theory of hierarchical timescales in the cerebral cortex is increasingly influential across 

cognitive, systems and clinical neuroscience (Baldassano et al., 2017; Burt et al., 2018; 

Chaudhuri et al., 2015; Cocchi et al., 2016; Demirtaş et al., 2019; Fuster, 1997; Hasson et al., 

2015; Kiebel et al., 2008; Murray et al., 2014; Runyan et al., 2017; Scott et al., 2017; Watanabe 

et al., 2019). Studies have measured both “integration timescales” and “dynamical timescales” 
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of brain regions. The “integration timescale” measures the timescale on which prior 

information affects the response to new input. By contrast, the “dynamical timescale” is a 

measure of how quickly or slowly population dynamics vary in a given brain region. Both ECoG 

data (Honey et al., 2012) and fMRI data (Stephens et al., 2013) have demonstrated a direct 

correlation between integration timescales and dynamical timescales. Moreover, single unit 

data in macaques (Murray et al., 2014; Ogawa and Komatsu, 2010) and optical imaging in mice 

(Runyan et al., 2017) revealed that dynamical timescales are longer in higher order areas. Thus, 

consecutive stages of cortical processing are expected to exhibit both (i) slower population 

dynamics and (ii) a longer window for integrating past information with new input.  

 

There have been advances in mapping and modeling fast and slow cortical dynamics, but it 

remains uncertain how these dynamics relate to the functional and computational principles of 

hierarchical temporal integration remain. Accounting for differences in dynamical timescales 

improves models of large-scale brain dynamics at the individual subject level (Chaudhuri et al., 

2015; Demirtaş et al., 2019). Strikingly, the gradients of timescales in brain dynamics correlate 

with gradients of myelin density (Glasser and Van Essen, 2011), gene transcription (Burt et al., 

2018) and anatomical connectivity (Margulies et al., 2016). Moreover, dynamical timescales are 

altered in autism, and are correlated with core symptoms of the disorder (Watanabe et al., 

2019). Thus, variations in timescales are a major feature of large-scale brain dynamics, but it 

remains unclear how they relate to the functional processing of information arriving from the 

world. This motivated us to ask: what computations are employed to combine past and present 

information at each stage of cortical processing? And how does this computational process 

relate to the gradient of dynamical timescales? 

 

We developed both passive and active models of temporal integration, and tested whether 

they could account for the empirical phenomena described above. Both the TCM model (which 

passively and linearly mixes past and present) and the HAT model (which actively compresses 

and gates past and present information) could successfully account for the key phenomenon of 

hierarchical temporal integration (Lerner et al., 2011): in both models, the representations at 
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higher stages were more affected by a longer window of input history. However, it was also 

possible to account for aspects of the empirical data via variations in stimulus engagement, 

rather than timescales of processing (Figure 1E). Therefore, we used the TCM and HAT models 

to predict a more precise and time-resolved data pattern (“hierarchical context construction”) 

that could not be explained by engagement effects. 

 

We empirically verified the prediction of hierarchical context construction, using a new method 

for parametrically mapping context effects in cortical responses on the scale of seconds. Prior 

studies inferred processing timescales by comparing the responses of a brain region across 

different temporal permutation of a stimulus: e.g. comparing the responses across word-

scrambled or sentence-scrambled stimuli, one might conclude that a region was integrating 

information at the scale of words or sentences. Here, by combining inter-subject pattern 

correlation approach and curve fitting, we measured the second-by-second influences of new 

input and prior context on the neural responses produced to natural spoken sentence. This 

analysis confirmed the predicted phenomenon of hierarchical context construction (rSI curves, 

Figure 2F, Figure 3, Figure S7): when two participants heard the same sentence preceded by 

different contexts, their early sensory cortices aligned earliest, followed by secondary cortices, 

while some higher order regions did not align until participants shared 10 seconds of 

continuous common input.  

 

Hierarchical context construction (Figure 3) cannot be explained by differences in stimulus 

engagement or attention. Because scrambled stimuli are expected to be less engaging than 

intact stimuli, there was some ambiguity in the interpretation of prior evidence for distributed 

and hierarchical temporal integration (e.g. Lerner et al., 2011). In particular, higher order 

regions might provide an unreliable response to scrambled stimuli simply because the 

scrambled stimulus is less engaging. This engagement effect could lead to differences in 

representation of the intact and scrambled stimuli, which might be taken as evidence for a 

distributed context representation, when in fact the scrambled stimulus was not being 

represented reliably at all. The time-resolved ISPC approach (Figure 2B, C) showed that the 
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correlation across groups (rSI, intact vs. scrambled) ramped upward as the two groups were 

exposed to the same stimulus (Figure 2F, rSI), and this occurred even while the correlation 

within each group (rII, rSS) did not change (Figure 2F, rII and rSS). In other words, higher order 

regions produced reliable responses to both the intact and scrambled stimuli, stably from the 

start to the end of a sentence. For that same sentence, as the two groups heard more common 

input, second-by-second, their responses to the identical input gradually became more similar. 

This pattern of results cannot be explained by engagement effects. Instead, these patterns 

suggest the existence of a distributed and multi-scale representation of prior context, which 

affects the neural response to input at the moment. 

 

Although different cortical regions build temporal context at different rates, corresponding to 

the cortical hierarchy, those regions do not “forget” the context at the same rate as they build 

the context (Figure 4E, H). This implies the existence of a mechanism for flexibly altering how 

the past influences present responses. Linear integrator models (such as TCM) lack such 

flexibility: the rate of constructing context and the rate of forgetting context are both inversely 

related to a fixed parameter, r, and so the past and present information are linearly mixed in 

the same way regardless of their content. By contrast, gated context models such as HAT can 

account for different rates of forgetting and constructing context. This is primarily due to how 

the local context is "gated” by prediction error. In HAT, if prior context can be successfully 

compressed with new input, then the context is preserved, but if prior context and new input 

are incompatible (prediction error), then the context is overwritten. This surprise-driven gating 

mechanism is consistent with evidence for pattern violations being signaled independently at 

multiple levels of cortical processing (Bekinschtein et al., 2009; Himberger et al., 2018; 

Wacongne et al., 2011). 

 

A context gating mechanism is important for clearing out irrelevant context at the boundaries 

between chunks or events (DuBrow et al., 2017; Reynolds et al., 2007). Sequences of 

information cannot be integrated indiscriminately: the subject of a new sentence is not 

necessarily related to the verb of the previous sentence. Indeed, recent data suggest that 
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almost all stages of cortical processing are sensitive to event structure, with sensory regions 

changing rapidly at the boundaries between shorter events (e.g. eating a piece of food) and 

higher order regions changing at the boundaries between longer events (e.g. having an entire 

meal) (Baldassano et al., 2017). The data from Baldassano et al. (2017) revealed that cortical 

states could change rapidly at multiple levels of processing, but they did not determine whether 

this effect was due to gating of a context representation. Because the immediate stimulus and 

its preceding context always covaried, it was uncertain whether rapid cortical state changes 

reflected rapid changes in input, rapid changes in context representations, or both. Here, by 

separately controlling current input and prior context, we demonstrated that with the sharp 

event boundaries introduced in our stimuli, the local context could be actively overwritten at 

those boundaries. Additionally, we showed that such context gating can occur even at the 

highest stages of cortical processing. Our data suggest that when neural state shifts rapidly at 

event boundaries, this effect is not simply due to changes in the current input, but is due to a 

change in the influence of a context representation. The gating of context may operate via an 

immediate prediction error, as in the HAT model, or via a more diffuse breakdown of temporal 

associations (Schapiro et al., 2013)  

 

 

At a computational level, gating of context is useful not only for representing information, but 

also for learning sequential structure. Gated neural networks have been widely applied in 

sequence learning models to capture long-range temporal dependencies (Hochreiter and 

Schmidhuber, 1997). Combining both the gated neural network approach and probabilistic 

inference to model human ability in event segmentation and generalization, the structured 

event memory (SEM) model successfully produces human-like event segmentation and 

identifies event schemata in naturalistic video data (Franklin et al., 2019).   

Moreover, gating is a broadly useful process in biological models of working memory, not only 

for maintenance of information but also for flexible updating and integration (Heeger and 

Mackey, 2018). The gating in the HAT model is less flexible than in machine learning 

architectures (e.g. long-short-term-memory networks, LSTM). This is because while gates in 
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neural networks (such as forget gates in LSTMs or update gates in GRUs) can be triggered by 

arbitrary states anywhere else in the network, the gating in HAT is determined entirely by a 

local prediction error. However, the gating in the HAT model is sufficient to enable higher 

stages of processing to maintain stable context over long periods, while also being able to 

quickly update at the boundary of a new “chunk”.  

 

What is the functional difference between “passive” versus “active” temporal integration? Here 

we define passive integration as occurring when the combination of new and old information is 

a linear mixture (or weighted sum) of past and present activity. For example, in perceptual 

decision making, a vector of new evidence is thought to be linearly combined with prior 

evidence at each time step (Mazurek et al., 2003; Townsend and Ashby, 1983). By contrast, an 

active integration mechanism is one in which the integrated representation (A and B) depends 

on priors concerning the co-occurrence of A and B (Carpenter and Grossberg, 1987). For 

example, when we hear the sounds “basket” and “ball”, the ability to generate the chunk 

“basketball” depends on our knowledge and experience with language. In the HAT model, 

learning to generate such chunks occurs via the training of a temporal autoencoder. Thus, the 

learning of sequential structure in HAT is a process of learning to combine prior context and 

new input into a compressed (lower dimensional) representation (Mareschal and French, 

2017).  The compression of the past and present is only possible if sequential regularities can be 

identified (e.g. the regular sequence of “ball” following “basket”). Thus, the HAT model had 

difficulty integrating random, unfamiliar sequences of information because it did not contain 

the appropriate knowledge to compress past and present, and was continually surprised by 

novel combinations (Figure S4). This content-specific impairment in HAT may be analogous to 

the difficulty a person experiences when trying to integrate sequences of words in an unfamiliar 

language. 

 

Our computational approach was inspired by the multilevel neurocognitive models of Botvinick, 

(2007) and Kiebel et al. (2008). In both of these models, higher stages of cortical processing 

learned or controlled temporal structure at longer timescales. More generally, in machine 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/761593doi: bioRxiv preprint 

https://doi.org/10.1101/761593
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

learning, multi-scale architectures have been proposed for reducing the complexity of the 

learning problem at each scale, and for usefully representing a multi-scale environment (Chung 

et al., 2016; Jaderberg et al., 2019; Mozer, 1992; Schmidhuber, 1992). In neuroscience, multiple 

timescale representations have been proposed for learning value functions (Sutton, 1995), for 

tracking reward (Bernacchia et al., 2011), and for perceiving and controlling action (Botvinick, 

2007; Paine and Tani, 2005). Moreover, the concept of temporal “grain” is influential in 

theories of hippocampal organization (Brunec et al., 2018; Momennejad and Howard, 2018; 

Poppenk et al., 2013; Shankar et al., 2016) and cortical organization (Baldassano et al., 2017; 

Fuster, 1997; Hasson et al., 2015; Lü et al., 1992; Wacongne et al., 2011). Consistent with 

hierarchical timescale models, we find that more temporally extended representations are 

learned in higher stages of processing, where dynamics change more slowly. We provide 

additional empirical constraint on future models by revealing the moment-by-moment time-

course of context construction across the lateral cerebral cortex (Figure 3, 4E), and by 

demonstrating that even slowly-evolving context representations at higher levels can be rapidly 

updated at event boundaries (Figure 4H).  

 

Our results are consistent with the finding that recurrent neural networks can provide a better 

prediction of neural responses than feedforward models (Shi et al., 2018), especially for the 

later component of the neural response beyond the feedforward sweep (Kar et al., 2019). Most 

relevant to the present work, Shi et al., (2018) showed that adding recurrence to a 

convolutional neural network improved its performance as an encoding model for visual 

pathway responses to a movie stimulus. Only neural responses to the intact stimulus were 

modeled in that study: however, higher stages of the model learned more context-dependent 

representations, and these produced a better model of neural response at higher stages of 

visual processing, providing a computational account of process memory (Hasson et al., 2015). 

More generally, many recurrent neural networks may be able to instantiate the empirical 

properties of hierarchical context construction (Figure 3, 4E) as well as gating (forgetting) of 

context (Figure 4H). In ongoing work, we are comparing neurobiologically plausible 
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architectures that are consistent with the construction and forgetting phenomena we have 

described. 

 

Methodologically, the pattern-correlation method used here provides several practical 

advantages for measuring integration timescales. First, we showed that it can be used to 

measure timescales of context forgetting in addition to context construction (Figure 4B). 

Second, the method is efficient: if reference data exists for the responses to the intact stimulus, 

then an rSI curve can be computed in a single participant using one presentation of one 

scrambled stimulus. Third, the rSI curve provides a profile of how context influence varies over 

time; we focused on rise-times in this study, but the asymptote and slope of the rSI curve can 

also constrain quantitative models of temporal integration. 

 

Limitation and Future Directions 

For reasons of parsimony, we chose to model temporal integration using only within-layer 

recurrent connections (i.e. without inter-regional feedback). Of course, there is rich anatomical 

and functional reciprocity in the brain (Bastos et al., 2012; Markov et al., 2013; Sporns et al., 

2007) and many models of cortical function emphasize the important of feedback and 

prediction (Friston and Kiebel, 2009; Heeger, 2017; Heeger and Mackey, 2018; Rao and Ballard, 

1999). It is not clear which expectation effects in sequential processing rely on top-down 

predictions from high-level representations, as opposed to more local recurrent integration or 

facilitation mechanisms (e.g. Ferreira and Chantavarin, 2018). Although long-range feedback 

connections are undeniably essential for some brain functions (e.g. attentional control and 

imagery), and models with (weak) long-range feedback connections could also account for our 

data, the local recurrence of the HAT model was sufficient to account for the temporal 

integration processes we measured here during narrative comprehension.  

 

In future of extensions of this work, we will train HAT variants on linguistic corpora, and use 

these to generate context-aware encoding models of the neural response to complex language 

(e.g. Jain and Huth, 2018). Two other important questions for future work will be (i) whether 
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gating of past context is a binary or graded, depending on the magnitude of local prediction 

error; and (ii) whether context gating can occur entirely independently across distinct levels of 

processing. 

 

To recap, the results of this manuscript derive from a combined modeling and empirical 

approach. First, we developed computational models of hierarchical temporal integration. We 

then tested the predictions of these models using new methods for mapping the timescales of 

integration and forgetting across the human cerebral cortex. We showed that brain regions 

align, second-by-second, in a hierarchical gradient, when they are exposed to a common input 

preceded by distinct contexts. We ruled out alternative explanations based on engagement, 

and empirically established that cortical regions maintain a distributed representation of prior 

context. Finally, by analyzing the forgetting timescales of cortical regions, we ruled out 

temporal integration models with fixed time constants. Our models and data provide concrete 

constraints for models of brain function in which memory is inherent across perceptual and 

cognitive function (Buonomano and Maass, 2009; Frost et al., 2015; Fuster, 1997; Hasson et al., 

2015; McClelland and Rumelhart, 1985; Shi et al., 2018), and our computational modeling 

points to general principles – active integration and gating – that are used in temporal 

information processing across the cortical hierarchy. 
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STAR Methods 

1. Computational Models of Hierarchical Temporal Integration. 

1.1 The Temporal Context Model (TCM) 

TCM can successfully account for human sequence encoding and retrieval behavior, using the 

concept of a drifting internal context (Howard and Kahana, 2002). TCM employs a feature 

buffer which contains a vector of features of item processed in the sequence stream, and it 

employs a context buffer (CNTX) composed of a “temporal context vector”. A matrix MFT maps 

stimulus features to their corresponding representation in the context space, thus generating 

an “input vector” 𝐼𝑁 which is used to update the internal context. The temporal context 

updated by adding the mapped input 𝑰𝑵(𝑡)	to the prior context 𝑪𝑵𝑻𝑿(t) (equation 1). 

 

𝑪𝑵𝑻𝑿(t + 1) = 	𝜌-𝑪𝑵𝑻𝑿(t) + 𝛽-𝑰𝑵(t)         (1)                                           

𝜌- ≈ 41 − 𝛽-
6 

 

Note that we are focusing here on how TCM functions during encoding, and do not consider the 

“retrieved context” mechanisms that are fundamental to the model’s original purpose. In this 

sense, our main concern is with linear integrator models (e.g. Estes, 1955; Mensink and 

Raaijmakers, 1989; Murdock, 1997), and TCM is presented as a well-known example of this 

class. There are semantic variants (Polyn et al., 2009) and predictive variants (Howard et al., 

2011) of TCM which should have a greater capacity to distinguish natural and unnatural 

sequence continuations during encoding.  

 

1.2 The Signal Gain Model  

We implemented a simple signal gain model by using the same training and testing procedure 

as the temporal context model (See Section 2.1), while eliminating any effect of temporal 

context on the internal representation. In particular, we set 𝜌- = 0 in Equation (1). To simulate 

scrambling effects across regions, we decreased the signal-to-noise ratio in the model for 

higher processing stages or finer scrambling conditions. In particular, the noise amplitude, s, 

was re-scaled in the following simple model: 
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Internal	representation	at	time	𝑡 = 		𝐼𝑁(𝑡) +	𝜎DEFGH × 𝜎JKHELMDGNKOPQ-R-OP (2) 

 

where we set 𝜎DEFGH = 0 in Layer 1, 𝜎DEFGH = 0.05 in Layer 2, and 𝜎DEFGH = 0 in Layer 3; and 

where we set  𝜎JKHELMDGNKOPQ-R-OP = 0.1, 0.5 or 0.9 for the paragraph-level, sentence-level,  and 

word-level scrambling conditions.  

 

1.3 The HAT Model 

1.3.1 Local processing unit: the autoencoder in time (AT) module 

Each local processing stage in HAT is an autoencoder in time (AT) module. This AT module was 

adapted from the influential TRACX2 model for modeling human statistical learning and 

sequence learning behavior (Mareschal and French, 2017). Each AT module has three layers. 

There is an input layer (consisting of a concatenated input unit, IN, and a context unit, CNTX); 

there is a hidden layer (HID) which stores the compressed representation of the input layer; 

and there is an output layer storing the reconstruction of the input layer from the compressed 

HID representation (Figure S1). During training, the model will learn good internal (i.e. HID) 

representations of the [CNTX, IN] pairings that frequently co-occur. At the end of training, it 

should be able to accurately reconstruct “chunks” of input-and-context from a compressed 

internal (HID) representation. 

 

In the AT module, information from the world is presented as a stream of symbols, one symbol 

at a time. For every time step of the model, the current input symbol, St, from the sensory 

environment is represented as a 1-by-N one-hot vector, where one scalar value is 1 and all 

others are -1. This new input vector is mapped to the IN bank at each time step. The prior 

context stored in the model is represented as another 1-by-N vector, which is stored in the 

CNTX bank.  

 

A single time-step of the model proceeds as follows (please refer to Figure S1):  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/761593doi: bioRxiv preprint 

https://doi.org/10.1101/761593
http://creativecommons.org/licenses/by-nc-nd/4.0/


 43 

 

A. The model is initialized with two consecutive stimuli (St-1, St) in the CNTX and IN banks (CNTXt 

= St-1, INt = St).  

B. Activity is propagated forward from the input and context banks (jointly of length 1-by-2N) to 

the hidden bank (1-by-N) via an affine transformation followed by a hyperbolic nonlinearity.  

 

𝐻𝐼𝐷W×X = 𝑡𝑎𝑛ℎ	([𝐶𝑁𝑇𝑋, 𝐼𝑁]W×6X × 𝑉6X×X)                                  (3) 

 

This results in the activation of the hidden units in the model, and, following another linear-

nonlinear transformation, the output nodes. Specifically, the auto-associative component of the 

model is implemented via the compressive transformation from the input and context (1-by-2N) 

to the hidden units, HIDt (1-by-N). A weight matrix V (of size 2N x N) contains the synaptic 

weights that transform the input layer to the hidden layer in the compression stage.  A second 

weight matrix, W (of size N x 2N), is then right-multiplied with the hidden layer vector, HIDt, to 

approximately reconstruct the CNTX and IN banks of output units: 

[𝐶𝑁𝑇𝑋′, 𝐼𝑁′]W×6X = 𝑡𝑎𝑛ℎ	(𝐻𝐼𝐷W×X ×𝑊X×6X)	                               (4) 

C. . The objective is to make the reconstructed [𝐶𝑁𝑇𝑋′, 𝐼𝑁′] as similar as possible to the input 

[𝐶𝑁𝑇𝑋, 𝐼𝑁]. Therefore, an auto-associative error D is generated as the absolute difference of 

the input and output layer (the difference of the veridical and reconstructed representations):  

∆	 = |[𝐶𝑁𝑇𝑋ʹ, 	𝐼𝑁ʹ] − [𝐶𝑁𝑇𝑋, 	𝐼𝑁]|                                           (5) 

D. The “surprise” parameter, a, is calculated as the maximum value of D, multiplicatively scaled 

by a parameter k: 

𝛼 = 𝑡𝑎𝑛ℎ	(𝑘 × 𝑚𝑎𝑥(∆))                                                       (6) 

a is taken to indicate the “surprise” or “familiarity” that the model experiences in response to 

the combination of the current context, CNTX, and the current input, IN. When k is larger, the 

average amount of surprise (magnitude of a) is increased, and IN makes a larger contribution to 

the CNTX variable at the next time step.  
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The CNTX bank is updated as a linear mixture of IN(t) and HID(t), weighted by the surprise 

parameter, a: 

𝐶𝑁𝑇𝑋(𝑡 + 1) = (1 − 𝛼) × 	𝐻𝐼𝐷(𝑡) + 	𝛼	 × 	𝐼𝑁(𝑡)		                                      (7) 

If a is large, the model has not learned a good HID representation for accurately reconstructing 

INt and CNTXt, and so the CNTXt+1 bank will be overwritten input INt. If a is small, the model has 

learned a good compressed joint representation, HIDt, and this compressed representation 

becomes the context for associating with the next sequential input INt+1.  

 

This completes one update of the model. The process continues from A, and INt+1 is set equal to 

the next element in the sequence, St+1.  

 

Within each local processing unit, the transformation matrices (matrix V mapping from input 

layer to hidden layer, and matrix W mapping from hidden to output layer, Figure S1) are then 

adjusted via backpropagation to minimize the norm of the auto-associative error vector D. The 

backpropagation weight updates are performed incrementally, one training exemplar at a time. 

Backpropagation is entirely local to each processing unit (it is not performed end-to-end across 

the entire network, even when AT units are stacked).  

 

As the auto-associative error gradually decreases, the model learns to capture the sequential 

structure of the input stream, by learning good internal representations of [CNTX, IN] 

sequences. The model can also detect the event boundaries occuring in the sequence. At event 

boundaries, the model will be unable to generate an accurate compressed representation of 

[CNTX, IN], and will generate a large error 𝛼 . This large error will then bias the model to 

overwrite its prior context (from the old event) with its current input (from the new event).  

 

In summary, the AT module exhibits three important features: (1) prior context is preserved in 

the CNTX bank; (2) the updating / overwriting of prior context is gated by an auto-associative 

error D which is summarized in the “surprise” parameter, a ; and (3) the model minimizes its 

auto-associative error D by learning the statistical relationships between prior context and new 
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input. We hypothesize that each stage of processing in the cortical hierarchy exhibits these 

three functional properties. The HAT model is thus composed of a stack of AT modules, each 

with these functional properties.  

 

1.3.2 Stacking the AT modules: Hierarchy of Autoencoders in Time 

We employed a HAT model with three levels (Figure 1E). Each level is an AT module. The 

information flow in HAT is globally feedforward with local feedback: there is no backward 

information flow from AT module i+1 to AT module i, but each AT module has recurrent 

feedback from its own past state.  

 

Information processing in the HAT architecture possess two key features: 

Local context is updated by level-specific constant t and local surprise a  

Figure 2B illustrates the structure of each AT module in HAT. As described in section 1.1, the AT 

module transforms the input and context [CNTX, IN] into a compressed internal representation, 

HID, and the model then attempts to reconstruct the [CNTX, IN] pairing from this lower-

dimensional internal representation. The local context in each level unit is updated by a 

combination of HID and IN, modulated by a level-specific time constant t and local surprise a, 

respectively (Figure S2A). If t is larger than a, the model tends to preserve more context from 

HID; if a is larger than t, the model tends to overwrite the context using the current input IN, as 

the equation illustrates: 

𝐶𝑁𝑇𝑋-(𝑡 + 1) =
lm

lmnom
× 𝐻𝐼𝐷-(𝑡) +

om
lmnom

× 𝐼𝑁-(𝑡)                                  (8) 

 

Note that in the full HAT model implementation reported in our simulations, we employed 

Equation (8) rather than the simpler Equation (7) which describes a single AT module. 

 

To capture the assumption that higher-level regions process information over longer timescales 

while lower-level regions process information over shorter timescales, we set t equal to 0.8 for 

the top level, 0.4 for the middle level and 0 for the bottom level of the 3-level HAT model. The 

model thus changes the CNTX variable more slowly at the higher levels compared to the lower 
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levels. Of course, in addition to this fixed parameter t which determines how much context is 

typically preserved in each level, the context updating is additionally influences by the surprise 

parameter, a, which can transiently increase the overwriting of prior context. 

 

Information flow between levels of HAT is gated by surprise 

We designed the feedforward information flow in HAT based on the notion that temporal 

integration is a distributed process, assuming that higher-level circuit perform a similar 

operation as lower-level circuits (i.e. linking input to prior context) but the higher levels may 

learn to associate chunks instead of single elements in the sequence. Our goal was that, for a 

multi-level compound like the word airplane, the first level of the model might learn to chunk 

the phonemes within air and plane, and the second level might learn to chunk air and plane to 

represent the larger word airplane. Thus, the input to the higher levels of the HAT model should 

be the compressed (chunked) representations from the lower levels. However, this process 

should also be modulated by surprise, as higher levels should only accept “successful” chunks 

from the layer below. 

 

Therefore, the input to the higher levels of HAT is a linear mixture of HID and IN from the level 

below, modulated by the surprise a:   

𝐼𝑁-nW(𝑡) = (1 − 𝛼-) × 𝐻𝐼𝐷-(𝑡) + 𝛼- × 𝐼𝑁-(𝑡)                                  (9) 

If the lower-level unit detects a large surprise (i.e. large a ), more of the input from the lower 

level would be sent to the upper level as input.  On the other hand, if the lower-level unit 

detects a small surprise (i.e. small a ), more prior context or the “chunk” representation from 

the lower level would be preserved and sent to the upper level as input (Figure S2B).  

 

 

2. Model Simulations and Predictions of Empirical Phenomena 

2.1 General Logic of Model Simulations  

To demonstrate hierarchical context dependence in our models, we employ a strategy that is 

analogous to the original human experiments. We present the model with intact and scrambled 
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versions of a time-varying stream of input. We then measure the context effects by comparing 

the model responses (internal representations) of the same input preceded by different 

contexts. 

 

Training Procedure: We approximately simulated the experimental paradigm in Lerner et al. 

(2011) in order to examine whether each of our models exhibit a hierarchy of context 

dependence. We trained HAT, HAT-NR and TCM with a 30-element long “intact” sequence. The 

intact sequence was presented 600 times. Each element of the input was encoded as a one-hot 

vector of length 30. We also added uniformly distributed noise to each scalar value of each 

input sequence. The noise samples were independently drawn from a uniform distribution on [-

0.3, 0.3]. The purpose of the noise was to improve the model’s generalizability, and to 

approximate the fact that real-world sequence learning occurs in the presence of noise. To 

prevent the model from learning a spurious relationship between the end of the intact 

sequence and the beginning of the next presentation of the intact sequence, , we added 

“random filler” sequences (length=5 symbols) between intact segments. Each of the random 

filler symbols was an independently generated random vector, with elements uniformly 

distributed in the range [-1, 1] (Figure S3A, depicted as an ‘x’ between intact segments).  

 

Testing Procedure: After training, the weights in the model were frozen (no further weight 

change was allowed during test). We then compared the models’ representations of intact and 

scrambled sequences. The three scrambled sequences were designed to preserve the intact 

structure at three different scales: the long-scale (6 element subsequences were preserved), 

medium-scale (3 element subsequences were preserved) and fine-scale (2 element 

subsequences were preserved). Each testing ensemble (e.g. “medium scale scramble”) was 

composed of 10 “test sequences”. Each test sequence was a length-30 sequence which was a 

randomly scrambled version of the intact sequence. All test sequences within an ensemble 

were scrambled at the same scale, but with different permutations. Therefore, each test 

sequence exhibited preserved structure on the relevant scale. As during training, fillers were 
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again inserted between each of the 10 sequences that composed a testing ensemble (Figure 

S3A, the ‘x’ between test sequences).  

 

Quantifying Context Effects: We measured the similarity of the representations generated by 

different levels of the model as a function of the amount of shared context. To quantify 

similarity, we correlated the hidden representation that was generated when the models were 

processing the intact and the scrambled sequences (Figure S3A). Specifically, we correlated the 

hidden representations of the last elements of the subsequences (e.g. the “r” in “qr”) in each 

scrambled sequence with the hidden representations of the same elements (the “r” in “qr”) in 

the intact sequences (see red symbols in Figure S3A). In this way, we measured how the 

representation of the identical stimulus was altered as a function of the context change.   

 

To assess whether the models really captured the temporal structure of the intact sequences 

due to sequence-specific learning (rather than due to an intrinsic ability to maintain prior 

context of any kind of sequence), we trained the models with random sequences generated by 

shuffling the intact structured sequences. We then tested the random-trained model with the 

same (non-random) testing sequences. We then quantified the context effects in the models in 

the same way as before, and could compare the context effects for the models trained with 

structured sequences against models trained with randomly shuffled sequences. 

 

2.2 Comparing the context dependence effects across model variants 

 

We defined the “context dependence” (CD) effect as the difference in intact-scramble 

correlation across the long-scramble and short-scramble conditions: CD = corr(intact, LSS) – 

corr(intact, FSS). 

 

To compare the CD in two models, we computed the distribution of CD values for each network 

and computed: (i) a t-test of the difference in means and (ii) a d-prime measurement of the 

separation of the distributions. 
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Training the HAT model on shuffled sequences produced a large and highly statistically 

significant decrease in sensitivity to temporal context. Comparing the original HAT model 

against the shuffle-trained variant, we obtained mean CD original = 0.25, mean CD shuffle-

trained = 0.041, t(198) = 35, p < 0.001. In parallel, to characterize the effect size of this 

difference, we computed the Cohen’s d of the difference in distributions as d = 4.97.  

 

2.3 Model Performance in Generating Hierarchy of Context Dependence 

As described in the main text, for a model to account for the hierarchy of context dependence it 

should capture two key phenomena:  

(P1) lower processing stages of the model should be insensitive to context change 

(analogous to sensory cortical regions, Figure 1D, yellow bars); 

(P2) increasingly higher processing stages of the model should be increasingly sensitive 

to temporal context further in the past (analogous to the higher stages of cortical processing, 

Figure 1D, blue bars). 

 

Performance of Signal Gain Model: The signal gain model was able to account for both of the 

key empirical phenomena of hierarchical context dependence (P1 and P2, above). By 

manipulating the noise added to the internal representation which dependent on different 

levels of the processing stage and different levels of scrambled stimuli, the signal gain model 

generated the pattern of hierarchy of context dependence: the higher “stages” of the signal 

gain model generated lower correlation between intact and scrambled stimuli (Figure S3C, left). 

However, because the pattern was due to the noise added to the internal representation during 

testing, we observed a similar pattern when testing the model on temporal structures that it 

was not trained on (Figure S3C, right). In summary, signal gain model could account for the 

empirical data without preserving any temporal context. 

 

Performance of TCM: Our passive integration model (hierarchical TCM) was able to account for 

both of the key empirical phenomena of hierarchical context dependence (P1 and P2, above). 
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As expected, higher “stages” of the TCM model (lower b values) generated internal 

representations with greater temporal context dependence: this was manifest as a lower 

correlation between intact and scrambled stimuli (Figure S3D, left). TCM (and other linear 

integrator models) do exhibit an important failing, however: their context dependence was not 

selective for the temporal regularities that were presented during training. We observed a 

similar pattern of results when testing TCM on temporal structures that it was not trained on 

(Figure S3D, right). Thus, a “passive” form of temporal integration (exponential smoothing) as in 

the TCM model can account for much of the empirical data, although with some non-specificity 

for the kind of information that is being integrated. 

 

Performance of HAT Model: Our active and gated integration hierarchical model (HAT) was able 

to account for both of the key empirical phenomena of hierarchical context dependence (P1 

and P2, above). The lower levels of the model exhibited high correlation between 

representations of intact and scrambled stimuli, regardless of the scale of scrambling. This 

suggests that the lower level of the model is less sensitive to the change of the context. In 

contrast, the higher level of the model showed progressively more dependence on context: the 

correlation between the intact stimuli and the long-scale scrambled stimuli remained high, but 

the representation of the intact stimuli no longer resembles the medium scale or fine-scale 

representations (Figure S3E, left). Thus, the internal representations generated by the higher 

level of the model are sensitive to longer scales of temporal context.  

 

The context dependence in the HAT model is not a generic property of its architecture, but 

depends on it having previously learned about the temporal regularities in the stimulus. 

Compared to the standard HAT model, a variant trained with shuffled sequences showed a 

context dependence effect that was less than 1/3 of the context dependence effect in the 

intact model (Figure S3E, right, see also Methods Section 2.2). There is still context dependence 

in this shuffle-trained variant, but this dependence likely arises mostly from the timescale 

parameters, t, which are larger in higher order regions. Thus, the context dependence in this 
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shuffle-trained model reflects the intrinsic rate of model updating, rather than the prior 

learning of temporal regularities. 

 

Performance of HAT Variants: In order to test which ingredients of the HAT architecture are 

necessary for its functional properties, we tested a second variant of the HAT model which 

lacked a context gating procedure and also lacked a gradient of t values. In this variant, HAT-NR 

(Methods Section 1.4), we observed lower intact-scramble correlation across all levels of the 

model, indicating that it has an inferior ability to represent the sequential structure of the 

stream of stimuli. Moreover, the lowest processing stage of this model already exhibited 

context dependence. In other words, the correlation between intact and long-scale scrambled 

stimuli was higher than the correlation between intact and fine-scale scrambled stimuli, even in 

the earliest stages of the HAT-NR model (Figure S3F, left). This is inconsistent with the empirical 

data (e.g. Figure 3A in Hasson et al., 2008; Figure 5 in Lerner et al., 2011). Thus, without the 

gating mechanism, the context dependence that we observed seemed to reflect the stage-by-

stage hierarchical architecture of the model, rather than reflecting learning of the sequential 

structure in the data. Consistent with this interpretation, the HAT-NR model also exhibited 

similar results when it was trained with shuffled sequences (Figure S3C, right). This indicates 

that (as in the hierarchical TCM model) the temporal integration occurring in HAT-NR was 

arising from the dynamical timescales of each layer, and did not reflect the learning of temporal 

regularities on different scales. 

 
2.4 Modeling the construction and forgetting of temporal context 

We set out to model the ISPC results using the HAT model and the TCM model. The training 

sequences and procedure were the same as for modeling of the Lerner et al. (2011) data. For 

testing, we only tested the models with the intact and the paragraph-level scrambled 

sequences (corresponding to the intact and scramble group of the empirical data). We added 

random noise sampled from a normal distribution ~𝒩(0, 3) to these two test models to 

generate the 100 simulated “subjects” for the intact and the scramble group, respectively.  To 

better approximate the real neural data, we also included the effect of “hemodynamics” in our 

model, by convolving the timecourse of the hidden representations with a temporal smoothing 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/761593doi: bioRxiv preprint 

https://doi.org/10.1101/761593
http://creativecommons.org/licenses/by-nc-nd/4.0/


 52 

function. The temporal smoothing function in the model consisted of two gamma functions to 

approximate the hemodynamic response, with peak value equal to 1 at t=1 and slowly 

decreasing to 0 at t=4.  

 

Temporal context construction and forgetting were analyzed in the model in an analogous 

manner to how they were assessed in the empirical data. For clarity, we introduce notation that 

discriminates the cross-group similarity measure rSI for the context construction and context 

forgetting analyses. Specifically, we use rSIACCUMULATE = rSIDE:CE for the rSI in the context 

construction analysis, and rSIFORGET = rSICD:CE for the rSI in the context forgetting analysis. The 

context construction curve, rSIDE:CE , was estimated by computing ISPC on the internal 

representations of each model. Internal representations were measures as the same six-

element segments were presented as input, preceded by different segments in the intact and 

scramble group. Similarly, for the forgetting curve, rSICD:CE , the correlations were measured in 

the model simulation by performing ISPC on the hidden representations across two different 

“groups” of model runs. Each model run was treated in the same way as the neural response of 

a single participant. Thus, we measured the responses across two groups of model runs, where 

responses were correlated across different segments (e.g. segment D in Group 1 and segment E 

in Group 2) which were preceded by the same segment (e.g. segment C was the preceding 

segment in both Group 1 and Group 2). 

 

3. Empirical Measurements: Constructing and Forgetting Temporal Context 

3.1 Subjects 

Forty-four subjects (all native English speakers) were recruited from the Princeton community 

(20 male, 24 female, ages 18-29) and nine subjects (all native English speakers) were recruited 

from the Johns Hopkins community (5 male, 4 female, ages 19-41). Conditions in which the 

head motion were >1 mm or where the signal was corrupted were discarded from the analysis. 

Overall, 31 subjects were participated in the intact condition, and 31 subjects were participated 

in the scramble condition. All subjects had normal hearing and provided written informed 

consent. 
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3.2 Stimuli and Experimental Design 

Stimuli for the experiment were generated from the 9 min real-life story (“It’s not the fall that 

gets you,” told by Andy Christie) recorded at a live storytelling performance (“The Moth” 

storytelling event, New York City). Subjects listened to the whole story from beginning to end 

(intact forward story), as well as to the scrambled stimuli, which were created by randomly 

shuffling segments of the intact story. More specifically, the story was segmented manually by 

identifying the end points of the 25 segments, and was randomly scrambled by these segments 

(21.9 ± 4.29s). The two conditions both started with a 25 seconds intro music, which were 

discarded from all analyses. For the subjects who listened to both conditions, the scrambled 

condition was played first before the intact condition, to reduce the influence of prior 

knowledge of the story.  

3.3 Preprocessing of Neuroimaging Data 

Imaging data were acquired on a 3T full-body scanner (Siemens Skyra for data from Princeton; 

Phillips Elition for data from Johns Hopkins University) with a 20-channel head coil using a T2*-

weighted echo planar imaging (EPI) pulse sequence (TR 1500 ms, TE 28 ms, flip angle 64, whole-

brain coverage 27 slices of 4 mm thickness, in-plane resolution 3 by 3 mm, FOV 192 by 192 

mm). Preprocessing was performed in FSL, including slice time correction, motion correction, 

linear detrending, high-pass filtering (140 s cutoff), and coregistration and affine transformation 

of the functional volumes to a template brain (MNI). Functional images were resampled to 3 

mm isotropic voxels for all analyses. 

 

3.4 Inter-subject pattern correlation (ISPC) analysis 

The ISPC analysis quantifies the similarity of spatial patterns of neural responses at a moment in 

time. We quantify the similarity by correlating the pattern of voxel activation at each time point 

(Figure 2A). Similar to the inter-subject correlation (ISC) analysis which provides a measure of 

the temporal reliability of the responses to complex stimuli (Hasson et al. 2009), the ISPC 

analysis provides a measure of the spatial reliability of the response to the stimuli at each time 

point. The ISPC method differs from conventional fMRI data analysis methods in that it 

circumvents the need to specify a model for the neuronal processes in any given brain region 
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during story listening. Instead, the ISPC method uses one subject’s neural responses to a 

stimulus as a model to predict the neural responses within other subjects.  

 

Using ISPC, quantified the changes in the neural responses over time within each segment of 

the auditory stimulus. We computed similarity within the group of subjects listening to the 

intact story (the intact condition, rII), similarity within the group listening to the scrambled 

story (the scramble condition, rSS), and similarity across the intact and scrambled groups (rSI) 

(Figure 2B). The rII and rSS analyses provide an indication of how reliably a given region is 

responding to the stimulus (Intact or Scrambled) at a particular moment. Conversely, the rSI 

analysis across the two groups indicates the similarity across two groups, which may be 

experiencing the same input (but different contexts) or experiencing different input (but with 

the same prior context). For example, the main analysis (Figure 2C) examines the similarity 

across intact and scrambled groups when subjects process the same segments preceded by 

different contexts: we correlated responses to segment E, which was preceded by segment D in 

the intact group but preceded by segment C in the scrambled group). That is, when the context 

is disrupted in the scramble group, we measure how subjects re-construct the temporal context 

in order to align with the intact group.  

3.5 Procedure for calculating similarity within groups (rII and rSS) and between groups (rSI) 

To calculate rII, we segmented the neural response according to the segments used to make 

the scrambled stimuli. For each segmentation, we analyzed the neural response of the first 16 

seconds. We performed ISPC by correlating the neural response pattern of one subject in the 

intact group to the average neural responses of the remaining subjects in the intact group for 

each time point. This calculation of spatial patterns was performed separately for each 

timepoint in each segment. We generated an ISPC time course within each long segment for 

each subject. The rII was calculated by averaging the ISPC time course across all segments and 

subjects. The rSS was calculated using the same method, within the scramble group. To 

calculate rSI, for each long segment, we performed ISPC by correlating the neural response 

pattern of one subject in the scramble group to the average neural response of all subjects in 
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the intact group. The rSI time-course was calculated by averaging the ISPC time-course across 

all segments and all subjects.  

 

3.6 Regional pattern analysis: construction of temporal context 

To discriminate the three possible models (See Result section), we first analyzed ISPC in the 

primary auditory cortex (A1) and the right temporal parietal junction (rTPJ). To more precisely 

partition the neural responses into distinct segments, we up-sampled the neural response to 

50Hz. Furthermore, the neural response time courses of all ROIs were aligned across all 

subjects based on the signal of A1, and then aligned with the audio waveform of the stimuli 

(r=0.31). After the alignment of the signal, we divided the story into segments and performed 

the ISPC analysis as described in the previous paragraph.  

 

To further examine whether there is a hierarchy of context construction along the cortical 

hierarchy, we conducted the ISPC analysis for 400 ROIs across the whole brain, based on the 

parcellation of the cerebral cortex provided by Schaefer et al., (2018). We only analyzed ROIs 

that showed reliable responses across subjects listening to the scrambled stimuli. For selecting 

ROIs, we chose an arbitrary threshold of mean(rSS) > 0.06 over all time points, which produces 

a set of ROIs which corresponds to prior ISC maps (See Methods Section 3.7, Figure S5). To 

quantify the rise time of different regions, we fit the rSIDE:CE curves with the logistic function 

𝑦 =
𝑎

1 + 𝑒NM(RNK)
+ 𝑑 

by using least-square regression to minimize error. Here, y is the dependent variable which is 

the rSI value and t is the time in seconds since the segment onset. The fitted parameter a is the 

curve’s maximum value, b is the steepness of the curve, c is the time when the logistic curve 

reaches its half maximum value, and d is an offset term to adjust the initial value of the curve. 

Among the 83 ROIs which exhibited reliable responses to the scrambled stimuli, 4 ROIs were 

excluded because the parameter of the logistic function could not be recovered with 

confidence after fitting the rSI curves (Figure S6) and 79 ROIs were proceeded to final rise time 

analysis (Figure S7). The rise time for the intact-scramble alignment was defined as the time 

when the logistic curve reaches its half maximum value (i.e. parameter c). The rise time of the 
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individual ROIs were mapped from MNI space to a cortical space, and visualized on a cortical 

surface map using Workbench Viewer 

(https://www.humanconnectome.org/software/connectome-workbench). 

 

3.7 Validating the reliability of neural responses when subjects are listening to the scrambled 

stimuli 

To determine the ROIs that showed reliable responses when people were processing the 

naturalistic narratives, we first chose an arbitrary threshold for rSS = 0.06 which produced a set 

of ROIs which corresponds to prior ISC maps showed in Lerner et al. (2011). We further 

validated the threshold by conducting a permutation test of the rII in primary auditory cortex, 

in which we compared the true rII with the “shuffled rII” calculated after shuffling the order of 

the segments: We first generated 10000 shuffled orders of the segments. For each of these 

shuffled orders, we reordered the neural responses of one subject according to the shuffled 

order, and calculate the rII between the shuffled neural response of this one subjects with the 

mean neural responses of the rest of the subjects in the intact group (For the other subjects, 

the order was preserved). We repeated this procedure to all the 31 subjects in the intact group 

using the same 10000 shuffled orders, and calculated the average rII for each shuffled order, 

generating a null distribution of the rII. We found that 0.06 is significantly higher than the null 

distribution (p<0.0001, Figure S5), confirming that this is a valid threshold for determining ROIs 

showing reliable responses when people are processing naturalistic stimuli. Furthermore, the 

raw curves of rII and rSS showed that the ROIs showed reliable responses from the beginning to 

the end of the segments (Figure 2F). This indicates that the ROIs determined by rSS=0.06 

showed meaningful responses when people were processing the intact and the scrambled 

stimuli. 

 

3.8 Regional pattern analysis: forgetting of temporal context 

To test the predictions of the HAT and TCM models (See Modeling the temporal context 

construction and forgetting), we performed another ISPC analysis to examine the temporal 

context forgetting. To do so, we examined the similarity of neural responses over time across 
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two groups of subjects processing the different segments preceded by the same context. For 

example, in the rSIFORGET (= rSICD:CE ) analysis, we correlated the responses between segment D in 

the intact group and segment E in the scramble group, when both were preceded by segment C 

(Figure 4B). The procedure for calculating procedure of rSIFORGET (= rSICD:CE ) was directly 

analogous to the calculation of rSICONSTRUCT (as illustrated in Figure 2) except that we paired non-

matching segments with matching contexts (CD:CE), rather than pairing matching segments 

with non-matching contexts (DE:CE). 

 

The HAT model exhibited variable rSIFORGET curves across simulation runs, because network 

weight initialization and the randomization order for scrambling affect the hidden 

representations that are learned, and how these drive context gating. Therefore, we plot a 

representative rSIFORGET simulation in Figure 4G. Despite this variability, the HAT model’s 

behavior was consistently different from the TCM model, which predicts that regions with 

slower changes in rSICONSTRUCT will also exhibit slower changes in rSIFORGET . 
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