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ABSTRACT 29 
 30 
Background: Advances in microbiome science are being driven in large part due to our ability to study 31 
and infer microbial ecology from genomes reconstructed from mixed microbial communities using 32 
metagenomics and single-cell genomics. Such omics-based techniques allow us to read genomic blueprints 33 
of microorganisms, decipher their functional capacities and activities, and reconstruct their roles in 34 
biogeochemical processes. Currently available tools for analyses of genomic data can annotate and depict 35 
metabolic functions to some extent, however, no standardized approaches are currently available for the 36 
comprehensive characterization of metabolic predictions, metabolite exchanges, microbial interactions, and 37 
contributions to biogeochemical cycling.  38 
 39 
Results: We present METABOLIC (METabolic And BiogeOchemistry anaLyses In miCrobes), a scalable 40 
software to advance microbial ecology and biogeochemistry using genomes at the resolution of individual 41 
organisms and/or microbial communities. The genome-scale workflow includes annotation of microbial 42 
genomes, motif validation of biochemically validated conserved protein residues, identification of 43 
metabolism markers, metabolic pathway analyses, and calculation of contributions to individual 44 
biogeochemical transformations and cycles. The community-scale workflow supplements genome-scale 45 
analyses with determination of genome abundance in the community, potential microbial metabolic 46 
handoffs and metabolite exchange, and calculation of microbial community contributions to 47 
biogeochemical cycles. METABOLIC can take input genomes from isolates, metagenome-assembled 48 
genomes, or from single-cell genomes. Results are presented in the form of tables for metabolism and a 49 
variety of visualizations including biogeochemical cycling potential, representation of sequential metabolic 50 
transformations, and community-scale metabolic networks using a newly defined metric ‘MN-score’ 51 
(metabolic network score). METABOLIC takes ~3 hours with 40 CPU threads to process ~100 genomes 52 
and metagenomic reads within which the most compute-demanding part of hmmsearch takes ~45 mins, 53 
while it takes ~5 hours to complete hmmsearch for ~3600 genomes. Tests of accuracy, robustness, and 54 
consistency suggest METABOLIC provides better performance compared to other software and online 55 
servers. To highlight the utility and versatility of METABOLIC, we demonstrate its capabilities on diverse 56 
metagenomic datasets from the marine subsurface, terrestrial subsurface, meadow soil, deep sea, freshwater 57 
lakes, wastewater, and the human gut. 58 
 59 
Conclusion: METABOLIC enables consistent and reproducible study of microbial community ecology 60 
and biogeochemistry using a foundation of genome-informed microbial metabolism, and will advance the 61 
integration of uncultivated organisms into metabolic and biogeochemical models. METABOLIC is written 62 
in Perl and R and is freely available at https://github.com/AnantharamanLab/METABOLIC under GPLv3. 63 
 64 
Keywords: functional traits, metagenome-assembled genomes, microbiome, biogeochemistry, metabolic 65 
potential, metabolic network.66 
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BACKGROUND 67 
 68 
Metagenomics and single-cell genomics have transformed the field of microbial ecology by 69 
revealing a rich diversity of microorganisms from diverse settings, including terrestrial [1-3] 70 
and marine environments [4, 5] and the human body [6]. These approaches can provide an 71 
unbiased and insightful view into microorganisms mediating and contributing to 72 
biogeochemical activities at a number of scales ranging from individual organisms to 73 
communities [2, 7-9]. Recent studies have also enabled the recovery of hundreds to thousands 74 
of genomes from a single sample or environment [2, 8, 10, 11]. However, analyses of ever-75 
increasing datasets remain a challenge. For example, scalable and reproducible bioinformatic 76 
approaches to characterize metabolism and biogeochemistry and standardize their analyses and 77 
representation for large datasets are lacking. 78 
 79 
Microbially-mediated biogeochemical processes serve as important driving forces for the 80 
transformation and cycling of elements, energy, and matter among the lithosphere, atmosphere, 81 
hydrosphere, and biosphere [12]. Microbial communities in natural environmental settings exist 82 
in the form of complex and highly connected networks that share and compete for metabolites 83 
[13, 14]. The interdependent and cross-linked metabolic and biogeochemical interactions 84 
within a community can provide a relatively high level of plasticity and flexibility [2, 15]. For 85 
instance, multiple metabolic steps within a specific pathway are often separately distributed in 86 
a number of microorganisms and they are interdependent on utilizing the substrates [2, 16, 17]. 87 
This phenomenon, referred to as ‘metabolic handoffs’, is based on sequential metabolic 88 
transformations, and provides the benefit of high resilience of metabolic activities which make 89 
both the community and function stable in the face of perturbations [2, 16, 17]. It is therefore 90 
highly valuable to obtain the information of microbial metabolic function from the perspective 91 
of individual genomes as well as the entire microbial community. Our current knowledge of 92 
microbial metabolic networks is quite limited due to the lack of quantitative approaches to 93 
interpret functional details and reconstruct metabolic relationships [2]. This requires further 94 
investigation based on advanced genomic techniques and insights provided by the ever-95 
expanding microbial genome databases.  96 
  97 
Prediction of microbial metabolism relies on the annotation of protein function for 98 
microorganisms using a number of established databases, e.g., KEGG [18], MetaCyc [19], 99 
Pfam [20], TIGRfam [21], SEED/RAST [22], and eggNOG [23]. However, these results are 100 
often highly detailed, and therefore can be overwhelming to users. Obtaining a functional 101 
profile and identifying metabolic pathways in a microbial genome can involve manual 102 
inspection of thousands of genes [24]. Organizing, interpreting, and visualizing such datasets 103 
remains a challenge and is often untenable especially with datasets larger than one microbial 104 
genome. There is a critical need for approaches and tools to identify and validate the presence 105 
of metabolic pathways, biogeochemical function, and connections in microbial communities in 106 
a user-friendly manner. Such tools addressing this gap would also allow standardization of 107 
methods and easier integration of genome-informed metabolism into biogeochemical models, 108 
which currently rely primarily on physicochemical data and treat microorganisms as black 109 
boxes [25]. A recent statistical study indicates that incorporating microbial community structure 110 
in biogeochemical modeling could significantly increase model accuracy of processes that are 111 
mediated by narrow phylogenetic guilds via functional gene data, and processes that are 112 
mediated by facultative microorganisms via community diversity metrics [26]. This highlights 113 
the importance of integrating microbial community and genomic information into the 114 
prediction and modeling of biogeochemical processes. 115 
 116 
Here we present the software METABOLIC, a toolkit to profile metabolic and biogeochemical 117 
functional traits based on microbial genomes. METABOLIC integrates annotation of proteins 118 
using KEGG [18], TIGRfam [21], Pfam [20], and custom hidden Markov model (HMM) 119 
databases [2], incorporates a motif validation step to accurately identify proteins based on prior 120 
biochemical validation, determines presence or absence of metabolic pathways based on KEGG 121 
modules, and produces user-friendly outputs in the form of tables and figures including a 122 
summary of functional profiles, biogeochemically-relevant pathways, and metabolic networks 123 
for individual genomes and at the community scale. 124 
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METHODS 125 
 126 
HMM databases used by METABOLIC 127 
To generate a broad range of metabolic gene HMM profiles, we integrated three sets of HMM-128 
based databases, which are KOfam [27] (July 2019 release, containing HMM profiles for 129 
KEGG/KO with predefined score thresholds), TIGRfam [21] (Release 15.0), Pfam [20] 130 
(Release 32.0), and custom metabolic HMM profiles [2]. In order to achieve a better HMM 131 
search result excluding non-specific hits, we have tested and manually curated cutoffs for those 132 
HMM databases listed above into the resulting HMMs: KOfam database - KOfam suggested 133 
values; TIGRfam/Pfam/Custom databases - manually curated by adjusting noise cutoffs (NC) 134 
and trusted cutoffs (TC) to avoid potential false positive hits. For the KOfam suggested cutoffs, 135 
we considered both the score type (full length or domain) and the score value to assign whether 136 
an individual protein hit is significant or not. Methods on the manual curation of these databases 137 
are described in the next section. 138 
 139 
Curation of cutoff scores for metabolic HMMs 140 
Two curation methods for adjusting NC or TC of TIGRfam/Pfam/Custom databases were used 141 
for a specific HMM profile. First, we parsed and downloaded representative protein sequences 142 
according to either the corresponding KEGG identifier or UniProt identifier [28]. We then 143 
randomly subsampled a small portion of the sequences (10% of the whole collection if this was 144 
more than 10 sequences, or at least 10 sequences) as the query to search against the 145 
representative protein collections [29]. Subsequently, we obtained a collection of hmmsearch 146 
scores by pair-wise sequence comparisons. We plotted scores against hmmsearch hits and 147 
selected the mean value of the sharpest decreasing interval as the adjusted cutoff. Second, we 148 
downloaded a collection of proteins that belong to a specific HMM profile and pre-checked the 149 
quality and phylogeny of these proteins by constructing and manually inspecting phylogenetic 150 
trees. We applied pre-checked protein sequences as the query search against a set of training 151 
metagenomes (data not shown). We then obtained a collection of hmmsearch scores of resulting 152 
hits from the training metagenomes. By using a similar method as described above, the cutoff 153 
was selected as the mean value of the sharpest decreasing interval. 154 
 155 
The following example demonstrates how the method above was used to curate the 156 
hydrogenase enzymes. We then expanded this method to all genes using a similar method. We 157 
downloaded the individual protein collections for each hydrogenase functional group from the 158 
HydDB [30], which included [FeFe] Group A-C series, [Fe] Group, and [NiFe] Group 1-4 159 
series. The individual hydrogenase functional groups were further categorized based on the 160 
catalyzing directions, which included H2-evolution, H2-uptake, H2-sensing, electron-161 
bifurcation, and bidirection. To define the NC cutoff (‘--cut_nc’ in hmmsearch) for individual 162 
hydrogenase groups, we used the protein sequences from each hydrogenase group as the query 163 
to hmmsearch against the overall hydrogenase collections. By plotting the resulting hmmsearch 164 
hit scores against individual hmmsearch hits, we selected the mean value of the sharpest 165 
decreasing interval as the cutoff value. 166 
 167 
Motif validation 168 
To automatically validate protein hits and avoid false positives, we introduced a motif 169 
validation step by comparing protein motifs against a manually curated set of highly conserved 170 
residues in important proteins. This manually curated set of highly conserved residues is 171 
derived from either reported works or protein alignments from this study. We chose 20 proteins 172 
associated with important metabolisms (with a focus on important biogeochemical cycling 173 
steps) that are prone to being misannotated into proteins within the same protein family. Details 174 
of these proteins are provided in Additional file 8: Dataset S1. For example, DsrC (sulfite 175 
reductase subunit C) and TusE (tRNA 2-thiouridine synthesizing protein E) are similar proteins 176 
that are commonly misannotated. Both of them are assigned to the family KO:K11179 in the 177 
KEGG database. To avoid assigning TusE as a sulfite reductase, we identified a specific motif 178 
for DsrC but not TusE (GPXKXXCXXXGXPXPXXCX”, where “X” stands for any amino 179 
acid) [31]. We used these specific motifs to filter out proteins that have high sequence similarity 180 
but functionally divergent homologs. 181 
 182 
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Annotation of carbohydrate-active enzymes and peptidases 183 
For carbohydrate-active enzymes (CAZymes), dbCAN2 [32] was used to annotate proteins with 184 
default settings. The hmmscan parser and HMM database (2019-09-05 release) were 185 
downloaded from the dbCAN2 online repository (http://bcb.unl.edu/dbCAN2/download/) [32]. 186 
The non-redundant library of protein sequences which contains all the peptidase/inhibitor units 187 
from the peptidase (inhibitor) database MEROPS [33] was used as the reference database to 188 
search against putative peptidases and inhibitors using DIAMOND. The settings used for the 189 
DIAMOND BLASTP search were “-k 1 -e 1e-10 --query-cover 80 --id 50” [34]. We used the 190 
‘MEROPS pepunit’ database since it only includes the functional unit of peptidases/inhibitors 191 
[33] which can effectively avoid potential non-specific hits.  192 
 193 
Implementation of METABOLIC-G and METABOLIC-C 194 
To target specific applications in processing omics datasets, we have implemented two versions 195 
of METABOLIC – METABOLIC-G (genome version) and METABOLIC-C (community 196 
version). METABOLIC-G intakes only genome files and provides analyses for individual 197 
genome sequences. METABOLIC-C includes an option for users to include metagenomic reads 198 
for mapping to metagenome-assembled genomes (MAGs).  199 
 200 
Using Bowtie 2 (version ≥ v2.3.4.1) [35], metagenomic bam files were generated by mapping 201 
all input metagenomic reads to gene collections from input genomes. Subsequently, SAMtools 202 
(version ≥ v0.1.19) [36], BAMtools (version ≥ v2.4.0) [37], and CoverM 203 
(https://github.com/wwood/CoverM) were used to convert bam files to sorted bam files and to 204 
calculate the gene depth of read coverage. To calculate the relative abundance of a specific 205 
biogeochemical cycling step, all the coverage of genes that are responsible for this step were 206 
summed up and normalized by overall gene coverage. Reads from single-cell and isolate 207 
genomes can also be mapped in an identical manner to metagenomes. The gene coverage result 208 
generated by metagenomic read mapping was further used in downstream processing steps to 209 
conduct community-scale interaction and network analyses. 210 
 211 
Classifying microbial genomes into taxonomic groups 212 
To study community-scale interactions and networks of each microbial group within the whole 213 
community, we classified microbial genomes into individual taxonomic groups. GTDB-Tk 214 
v0.1.3 [38] was used to assign taxonomy of input genomes with default settings. GTDB-Tk can 215 
provide automated and objective taxonomic classification based on the rank-normalized 216 
Genome Taxonomy Database (GTDB) taxonomy within which the taxonomy ranks were 217 
established by a sophisticated criterion counting the relative evolutionary divergence (RED) 218 
and average nucleotide identity (ANI) [38, 39]. Subsequently, genomes were clustered into 219 
microbial groups at the phylum level, except for Proteobacteria which were replaced by its 220 
subordinate classes due to its wide coverage. Taxonomic assignment information for each 221 
genome was used in the downstream community analyses. 222 
 223 
Analyses and visualization of metabolic outputs, biogeochemical cycles, MN-scores, 224 
metabolic networks, and energy flow potential 225 
To visualize the outputted metabolic results, R script “draw_biogeochemical_cycles.R” was 226 
used to draw the corresponding metabolic pathways for individual genomes. We integrated 227 
HMM profiles that are related to biogeochemical activities and assigned HMM profiles to 31 228 
distinct biogeochemical cycling steps (See details in “METABOLIC_template_and_database” 229 
folder on the GitHub page). The script can generate figures showing biogeochemical cycles for 230 
individual genomes and the summarized biogeochemical cycle for the whole community. By 231 
using the results of metabolic profiling generated from HMM search and gene coverage from 232 
the mapping of metagenomic reads, we can depict metabolic capacities of both individual 233 
genomes and all genomes within a community as a whole. The community-level diagrams, 234 
including sequential transformations, metabolic energy flow, and metabolic network diagrams, 235 
were generated using both metabolic profiling and gene coverage results. The diagrams are 236 
made by the scripts “draw_sequential_reaction.R” (using R package “ggplot2” [40]), 237 
“draw_metabolic_energy_flow.R” (using R package “ggalluvial” [41]), and 238 
“draw_metabolic_network.R” (using R package “ggraph” [42]), respectively (For details, refer 239 
to GitHub README page).  240 
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 241 
MN-score (metabolic network score) is a metric reflecting the functional capacity and 242 
abundance of a microbial community in co-sharing metabolic networks. It was calculated at the 243 
community-scale level based on results of metabolic profiling and gene coverage from 244 
metagenomic read mapping as described above. Metabolic potential for the whole community 245 
was profiled into individual functions that either mediated specific pathways or transformed 246 
certain substrates into products; MN-score for each function indicates its distribution weight 247 
within the metabolic networks which was calculated by summing up all the coverage values of 248 
genes belonging to the function and subsequently normalizing it by overall gene coverage. For 249 
each function, the contribution percentage of each microbial phylum in the microbial 250 
community was also calculated accordingly. Detailed description for calculating MN-scores 251 
are further provided in the results section.  252 
 253 
Example of metabolic diagrams  254 
An example of community-scale analyses including element biogeochemical cycling and 255 
sequential reaction analyses, metabolic network and energy flow potential analyses, and MN-256 
score calculation were conducted using a metagenomic dataset of microbial community 257 
inhabiting deep-sea hydrothermal vent environment of Guaymas Basin in the Pacific Ocean 258 
[43]. It contains 98 MAGs and 1 set of metagenomic reads (genomes were available at NCBI 259 
BioProject PRJNA522654 and metagenomic reads were deposited to NCBI SRA with 260 
accession as SRR3577362).   261 
 262 
A recent metagenomic-based study of the microbial community from an aquifer adjacent to 263 
Colorado River, located near Rifle, has provided an accurate reconstruction of the metabolism 264 
and ecological roles of the microbial majority [2]. From underground water and sediments of 265 
the terrestrial subsurface at Rifle, 2545 reconstructed MAGs were obtained (genomes are under 266 
NCBI BioProject PRJNA288027). They were used as the in silico dataset to test 267 
METABOLIC’s performance. First, all the microbial genomes were dereplicated by dRep 268 
v2.0.5 [44] to pick the representative genomes for downstream analysis using the setting of ‘-269 
comp 85’. Then, METABOLIC-G was applied to profile the functional traits of these 270 
representative genomes using default settings. Finally, the metabolic profile chart was depicted 271 
by assigning functional traits to GTDB taxonomy-clustered genome groups.  272 
 273 
Test of software performance for different environments 274 
To benchmark and test the performance of METABOLIC in different environments, eight 275 
datasets of metagenomes and metagenomic reads from marine, terrestrial, and human 276 
environments were used. These included marine subsurface sediments [45] (Deep biosphere 277 
beneath Hydrate Ridge offshore Oregon), freshwater lake [46] (Lake Tanganyika, eastern 278 
Africa), colorectal cancer (CRC) patient gut [47], healthy human gut [47], deep-sea 279 
hydrothermal vent (Guaymas Basin, Gulf of California) [43], terrestrial subsurface sediments 280 
and water (Rifle, CO, USA) [2], meadow soils [48] (Angelo Coastal Range Reserve, CA, USA), 281 
and advanced water treatment facility [49] (Groundwater Replenishment System, Orange 282 
County, CA, USA). Default settings were used for running METABOLIC-C. 283 
 284 
Comparison of community-scale metabolism 285 
To compare the metabolic profile of two environments at the community scale, MN-score was 286 
used as the benchmarker. Two sets of environment pairs were compared, including marine 287 
subsurface sediments [45] and terrestrial subsurface sediments and water [2], and freshwater 288 
lake [46] and deep-sea hydrothermal vent [43]. To demonstrate differences between these 289 
environments to specific biogeochemical processes, we focused on the biogeochemical cycling 290 
of sulfur. The sulfur biogeochemical cycling diagrams were depicted according to the number 291 
of genomes and genome coverage of organisms that contain each biogeochemical cycling step. 292 
 293 
Metabolism in human microbiomes 294 
To inspect the metabolism of microorganisms in the human microbiome (associated with skin, 295 
oral mucosa, conjunctiva, gastrointestinal tracts, etc.), a subset of KOfam HMMs (139 HMM 296 
profiles) were used as markers to depict the human microbiome metabolism (parsed by 297 
HuMiChip targeted functional gene families [50]). They included 10 function categories as 298 
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follows: amino acid metabolism, carbohydrate metabolism, energy metabolism, glycan 299 
biosynthesis and metabolism, lipid metabolism, metabolism of cofactors and vitamins, 300 
metabolism of other amino acids, metabolism of terpenoids and polyketides, nucleotide 301 
metabolism, and translation. The CRC and healthy human gut (healthy control) sample datasets 302 
were used as the input (Accession IDs: Bioproject PRJEB7774 Sample 31874 and Sample 303 
532796). Heatmap of presence/absence of these functions were depicted by R package 304 
“pheatmap” [51] with 189 horizontal entries (there are duplications of HMM profiles among 305 
function categories; for detailed human microbiome metabolism markers refer to Additional 306 
file 9: Dataset S2). 307 
 308 
Representation of microbial cell metabolism 309 
To provide a schematic representation of the metabolism of microbial cells, two microbial 310 
genomes were used as examples, Hadesarchaea archaeon 1244-C3-H4-B1 and Nitrospirae 311 
bacteria M_DeepCast_50m_m2_151. METABOLIC-G results of these two genomes, including 312 
functional traits and KEGG modules, were used to draw the cell metabolism diagrams. 313 
 314 
Metatranscriptome analysis by METABOLIC 315 
METABOLIC-C can take metatranscriptomic reads as input into transcript coverage 316 
calculation and integrate the result to downstream community analyses. METABOLIC-C uses 317 
the same method as that of gene coverage calculation, including mapping transcriptomic reads 318 
to the gene collection from input genomes, converting bam files to sorted bam files, and 319 
calculating the transcript coverage. The raw transcript coverage was further normalized by the 320 
gene length and metatranscriptomic read number in Reads Per Kilobase of transcript, per 321 
Million mapped reads (RPKM). Hydrothermal vent and background seawater transcriptomic 322 
reads from Guaymas Basin (NCBI SRA accessions SRR452448 and SRR453184) were used to 323 
test the outcome of metatranscriptome analysis. 324 
 325 
RESULTS AND DISCUSSION 326 
 327 
Given the ever-increasing number of microbial genomes from microbiome studies, we 328 
developed METABOLIC to enable scalable analyses of metabolic pathways and enable 329 
visualization of biogeochemical cycles and community-scale metabolic networks. 330 
METABOLIC is the first software to elucidate community-scale networks of metabolic 331 
tradeoffs, energy flow, and metabolic connections based on genome composition. While 332 
METABOLIC relies on microbial genomes and metagenomic reads for underpinning its 333 
analyses, it can easily integrate transcriptomic datasets to provide an activity-based measure of 334 
community networks. 335 
 336 
Workflow to determine the presence of metabolic pathways in microbial genomes 337 
METABOLIC is written in Perl and R and is expected to run on Unix, Linux, or macOS. The 338 
prerequisites are described on METABOLIC’s GitHub page 339 
(https://github.com/AnantharamanLab/METABOLIC). The input folder requires microbial 340 
genome sequences in FASTA format and an optional set of genomic/metagenomic reads which 341 
were used to reconstruct those genomes (Figure 1). Genomic sequences are annotated by 342 
Prodigal [52], or a user can provide self-annotated proteins (with extensions of “.faa”) to 343 
facilitate incorporation into existing pipelines. We have also included an accessory Perl script 344 
which can help users to parse out the gene and protein sequences out of input genomes based 345 
on the Prodigal-generated “.gff” files. These files are used in the downstream steps involving 346 
the mapping of genomic/metagenomic reads.  347 
 348 
Proteins are queried against HMM databases (KEGG KOfam, Pfam, TIGRfam, and custom 349 
HMMs) using hmmsearch implemented within HMMER [29] which applies methods to detect 350 
remote homologs as sensitively and efficiently as possible. After the hmmsearch step, 351 
METABOLIC subsequently validates the primary outputs by a motif-checking step for a subset 352 
of protein families; only those protein hits which successfully pass this step are regarded as 353 
significant hits. 354 
 355 
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METABOLIC relies on matches to the above databases to infer the presence of specific 356 
metabolic pathways in microbial genomes. Individual KEGG annotations are inferred in the 357 
context of KEGG modules for a better interpretation of metabolic pathways. A KEGG module 358 
is comprised of multiple steps with each step representing a distinct metabolic function. We 359 
parsed the KEGG module database [53] to link the existing relationship of KO identifiers to 360 
KEGG module identifiers to project our KEGG annotation result into the metabolic network 361 
which was constructed by individual building blocks – modules – for better representation of 362 
metabolic blueprints of input genomes. In most cases, we used KOfam HMM profiles for 363 
KEGG module assignments. For a specific set of important metabolic marker proteins and 364 
commonly misannotated proteins, we also applied the TIGRfam/Pfam/custom HMM profiles 365 
and motif-validation steps. The software has customizable settings for increasing or decreasing 366 
the priority of specific databases, primarily meant to increase annotation confidence by 367 
preferentially using custom HMM databases over KEGG KOfam when targeting the same set 368 
of proteins. 369 
  370 
Since individual genomes from metagenomes and single-cell genomes can often have 371 
incomplete metabolic pathways, we provide an option to determine the completeness of a 372 
metabolic pathway (or a module here). A user-defined cutoff is used to estimate the 373 
completeness of a given module (the default cutoff is the presence of 75% of metabolic 374 
steps/genes within a given module), which is then used to produce a KEGG module 375 
presence/absence table. All modules exceeding the cutoff are determined to be complete. 376 
Meanwhile, the presence/absence information for each module step is also summarized in an 377 
overall output table to facilitate further detailed investigations. 378 
 379 
Outputs consist of six different results that are reported in an Excel spreadsheet (Additional file 380 
1: Figure S1). These contain details of protein hits (Additional file 1: Figure S1A) which include 381 
both presence/absence and protein names, presence/absence of functional traits (Additional file 382 
1: Figure S1B), presence/absence of KEGG modules (Additional file 1: Figure S1C), 383 
presence/absence of KEGG module steps (Additional file 1: Figure S1D), CAZyme hits 384 
(Additional file 1: Figure S1E) and peptidase/inhibitor hits (Additional file 1: Figure S1F). For 385 
each HMM profile, the protein hits from all input genomes can be used for the construction of 386 
phylogenetic trees or further be combined with additional datasets or reference protein 387 
collections for detailed evolutionary analyses.  388 
 389 
Elemental cycling pathway analyses enable quantitative calculation of microbial 390 
contributions to biogeochemical cycles 391 
The software identifies and highlights specific pathways of importance in microbiomes 392 
associated with energy metabolism and biogeochemistry. To visualize pathways of 393 
biogeochemical importance, the software generates schematic profiles for nitrogen, carbon, 394 
sulfur, and other elemental cycles for each genome. The set of genomes used as input is 395 
considered the “community”, and each genome within is considered an “organism” when doing 396 
these calculations. A summary schematic diagram at the community level integrates results 397 
from all individual genomes within a given dataset (Figure 2) and includes computed 398 
abundances for each step in a biogeochemical cycle if the genomic/metagenomic read datasets 399 
are provided. The genome number labeled in the figure indicates the number/quantity of 400 
genomes that contain the specific gene components of a biogeochemical cycling step (Figure 401 
2) [2]. In other words, it represents the number of organisms within a given community inferred 402 
to be able to perform a given metabolic or biogeochemical transformation. The abundance 403 
percentage indicates the relative abundance of microbial genomes that contain the specific gene 404 
components of a biogeochemical cycling step among all microbial genomes in a given 405 
community (Figure 2) [2]. 406 
 407 
Elucidating sequential reactions involving inorganic and organic compounds 408 
Microorganisms in nature often do not encode pathways for the complete transformation of 409 
compounds. For example, microorganisms possess partial pathways for denitrification that can 410 
release intermediate compounds like nitrite, nitric oxide, and nitrous oxide in lieu of nitrogen 411 
gas which is produced by complete denitrification [54]. A greater energy yield could be 412 
achieved if one microorganism conducts all steps associated with a pathway (such as 413 
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denitrification) [2] since it could fully use all available energy from the reaction. However, in 414 
reality, few organisms in microbial communities carry out multiple steps in complex pathways; 415 
organisms commonly rely on other members of microbial communities to conduct sequential 416 
reactions in pathways [2, 55, 56]. METABOLIC summarizes and enables visualization of the 417 
genome number and coverage (relative abundance) of microorganisms that are putatively 418 
involved in the sequential transformation of both important inorganic and organic compounds 419 
(Figure 3). This provides a qualitative and quantitative calculation of microbial interactions and 420 
connections using shared metabolites associated with inorganic and organic transformations. 421 
 422 
Construction of metabolic networks to infer connections between microbial metabolism 423 
and biogeochemical cycles 424 
Given the abundance of microbial pathway information generated by METABOLIC, we 425 
identified co-existing metabolisms in microbial genomes as a measure of connections between 426 
different metabolic functions and biogeochemical steps. In the context of biogeochemistry, this 427 
approach allows the evaluation of relatedness among biogeochemical steps and the connection 428 
contribution by microorganisms. This is enabled at the resolution of individual genomes using 429 
the phylogenetic classification (Figure 4) assigned by GTDB-tk [38]. As an example, we have 430 
demonstrated this approach on a microbial community inhabiting deep-sea hydrothermal vents. 431 
We divided the microbial community of deep-sea hydrothermal vents into 18 phylum-level 432 
groups (except for Proteobacteria which were divided into their subordinate classes). The 433 
metabolic connection network diagrams were depicted at the resolution of both individual phyla 434 
and the entire community level (Additional file 10: Dataset S3). Figure 4 demonstrates 435 
metabolic connections that were represented with individual metabolic/biogeochemical cycling 436 
steps depicted as nodes, and the connections between two given nodes depicted as edges. The 437 
size of a given node is proportional to the gene coverage associated with the 438 
metabolic/biogeochemical cycling step. The thickness of a given edge was depicted based on 439 
the average of gene coverage values of these two biogeochemical cycling steps (the connected 440 
nodes). More edges connecting two nodes represent more connections between these two steps. 441 
The thickness of edges represents gene coverages (measured as the average of these two steps). 442 
The color of the edge corresponds to the taxonomic group, and at the whole community level, 443 
more abundant microbial groups were more represented in the diagram (Figure 4). Overall, 444 
METABOLIC provides a comprehensive approach to construct and visualize metabolic 445 
networks associated with important pathways in energy metabolism and biogeochemical 446 
cycling in microbial communities and ecosystems. 447 
 448 
Calculating MN-scores to represent function weights and microbial group contribution 449 
in metabolic networks 450 
To address the lack of quantitative and reproducible measures to represent potential metabolic 451 
exchange and interactions in microbial communities, we developed a new metric that we termed 452 
MN-score (metabolic networking scores). MN-scores quantitatively measure “function 453 
weights” within a microbial community as reflected by the metabolic profile and gene coverage. 454 
As metabolic potential for the whole community was profiled into individual functions that 455 
either mediated specific pathways or transformed certain substrates into products, a function 456 
weight that reflects the abundance fraction for each function can be used to represent the overall 457 
metabolic potential of the community. MN-scores resolved the functional capacity and 458 
abundance in the co-sharing metabolic networks as studied and visualized in the above section. 459 
Towards this (Figure 5), we divided metabolic/biogeochemical cycling steps (31 in total) into 460 
a finer level – function (51 functions in total) – for better resolution on reflecting metabolic 461 
networks. By using similar methods for determining metabolic interactions (as in the above 462 
section), we selected functions that are shared among genomes and summarized their weights 463 
within the whole community by adding up their abundances. More frequently shared functions 464 
and their higher abundances lead to higher MN-scores, which quantitively reflects the function 465 
weights in metabolic networks (Figure 5). MN-score reflects the same metabolic networking 466 
pattern with the above description on the edges (networking lines) connecting the nodes 467 
(metabolic steps) that – more edges connecting two nodes indicates two steps are more co-468 
shared, thicker edges indicate higher gene abundance for the metabolic steps. The MN-scores 469 
can integratively represent these two networking patterns and serve as metrics to measure these 470 
function weights. At the same time, we also calculated each microbial group’s (phylum in this 471 
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case) contribution to the MN-score of a specific function within the community (Figure 5). A 472 
higher microbial group contribution percentage value indicates that one function is more 473 
represented by the microbial group (for both gene presence and abundance) in the metabolic 474 
networks. MN-scores provide a quantitive measure on comparing function weights and 475 
microbial group contributions within metabolic networks. 476 
 477 
Visualizing energy flow potential of metabolic reactions driven by microbial groups 478 
To understand the contributions of microbial groups towards energy flow potential associated 479 
with specific metabolic and biogeochemical transformations, we developed an approach to 480 
visualize energy flow potential in communities at multiple scales including specific taxonomic 481 
groups, associated with a specific metabolic transformation, and entire biogeochemical cycles 482 
such as for carbon, nitrogen, or sulfur. Our approach involves the use of Sankey diagrams (also 483 
called ‘Alluvial’ plots) to represent the fractions of metabolic functions that are contributed by 484 
various microbial groups in a given community (Figure 6). This is referred to as an ‘energy 485 
flow potential’ diagram and allows visualization of metabolic reactions as the link between 486 
microbial contributors clustered as taxonomic groups and biogeochemical cycles at a 487 
community level (Figure 6 and Additional file 10: Dataset S3). The function fraction was 488 
calculated by accumulating the genome coverage values of genomes from a specific microbial 489 
group that possesses a given functional trait. The width of curved lines from a specific microbial 490 
group to a given functional trait indicates their corresponding proportional contribution to a 491 
specific metabolism (Figure 6). Alternatively, the genomic/metagenomic datasets which are 492 
used in constructing the above two diagrams: metabolic network diagram (Figure 4) and 493 
metabolic energy flow potential diagram (Figure 6), can be replaced by 494 
transcriptomic/metatranscriptomic datasets, and correspondingly, the gene coverage values will 495 
be replaced by gene expression values, and therefore, they will be representing the 496 
transcriptional activity patterns of metabolic network and metabolic energy flow potential at 497 
the community level (Additional file 2, 3, 4, and 5: Figure S2, S3, S4, and S5).  498 
 499 
The microbial community dataset of 98 MAGs from a deep-sea hydrothermal vent was used as 500 
a test to demonstrate this workflow. After running the bioinformatic analyses described above, 501 
resulting tables and diagrams were compiled and visualized accordingly (Additional file 10: 502 
Dataset S3). Results for metabolic networks and MN-scores of the deep-sea hydrothermal vent 503 
environment indicate that the microbial community depends on mixotrophy and sulfur 504 
oxidation for energy conservation and involves in arsenate reduction potentially responsible for 505 
detoxification/arsenate resistance [57]. MN-scores indicate that amino acid utilization, complex 506 
carbon degradation, acetate oxidation, and fermentation are the major heterotrophic 507 
metabolisms for this environment; CO2-fixation and sulfur oxidation also occupy a 508 
considerable functional fraction, which indicates heterotrophy and autotrophy both contribute 509 
to energy conservation (Figure 5). Gammaproteobacteria are the most numerically abundant 510 
group in the community and they occupy significant functional fractions amongst both 511 
heterotrophic and autotrophic metabolisms (MN-score contribution ranging from 59-100%) 512 
(Figure 5, 6), which is consistent with previous findings in the Guaymas Basin hydrothermal 513 
environment. Meanwhile, MN-scores also explicitly reflect the involvement of other minor 514 
electron donors in energy conservation which are mainly contributed by Gammaproteobacteria, 515 
such as hydrogen and methane (Figure 5). This is also consistent with previous findings [43, 516 
58] and indicates the accuracy and sensitivity of MN-scores to reflect metabolic potentials. 517 
 518 
METABOLIC is scalable, fast, and accurate  519 
To test METABOLIC’s performance, we applied the software to analyze the metagenomic 520 
dataset which includes 98 MAGs from a deep-sea hydrothermal vent, and two sets of 521 
metagenomic reads (that are subsets of original reads with 10 million reads for each pair 522 
comprising ~10% of the total reads). The total run time was ~3 hours using 40 CPU threads in 523 
a Linux version 4.15.0-48-generic server (Ubuntu v5.4.0). The most compute-demanding part 524 
is hmmsearch, which took ~45 mins. When tested on another dataset comprising ~3600 525 
microbial genomes (data not shown), METABOLIC could complete hmmsearch in ~5 hours 526 
by using 40 CPU threads. 527 
 528 
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In order to test the accuracy of the results predicted by METABOLIC, we picked 15 bacterial 529 
and archaeal genomes from Chloroflexi, Thaumarchaeota, and Crenarchaeota which are 530 
reported to have 3 Hydroxypropionate cycle (3HP) and/or 3-hydroxypropionate/4-531 
hydroxybutyrate cycle (3HP/4HB) for carbon fixation. METABOLIC predicted results in line 532 
with annotations from the KEGG genome database which can be visualized in KEGG Mapper 533 
(Table 1). Our predictions are also in accord with biochemical evidence of the existence of 534 
corresponding carbon fixation pathways in each microbial group: 1) 3 out of 5 Chloroflexi 535 
genomes are predicted by both METABOLIC and KEGG to possess the 3HP pathway and none 536 
of all these Chloroflexi genomes are predicted to possess the 3HP/4HB pathway. This is 537 
consistent with current reports based on biochemical and molecular experiments that only 538 
organisms from the phylum Chloroflexi are known to possess the 3HP pathway [59] (Table 1). 539 
2) All 5 Thaumarchaeota genomes and 2 out of 5 Crenarchaeota genomes are predicted by 540 
both METABOLIC and KEGG to possess the 3HP/4HB pathway and none of these 541 
Thaumarchaeota and Crenarchaeota genomes are predicted to possess the 3HP pathway. This 542 
is consistent with current reports that only the 3HP/4HB pathway could be detected in 543 
Crenarchaeota and Thaumarchaeota [60, 61] (Table 1). We have also applied METABOLIC 544 
on a large well-studied dataset comprising 2545 metagenome-assembled genomes from 545 
terrestrial subsurface sediments and groundwater [2]. The annotation results of METABOLIC 546 
are consistent with previously described reports (Additional file 6, 10: Figure S6, Dataset S3). 547 
These results suggest that METABOLIC can provide accurate annotations and genomic profiles 548 
and perform well as a functional predictor for microbial genomes and communities. 549 
 550 
METABOLIC provides robust performance and consistent metabolic analyses 551 
Currently, several software packages and online servers are available for genome annotation 552 
and metabolic profiling. However, METABOLIC is unique in its ability to integrate multi-omic 553 
information towards elucidating metabolic connections, energy flow, and contribution of 554 
microorganisms to biogeochemical cycles. We compared the performance of METABOLIC 555 
(Figure 7A) to other software including GhostKOALA [62], BlastKOALA [62], KAAS [63], 556 
and RAST/SEED [22]. 557 
 558 
To compare the prediction performance (Figure 7B), we used two representative bacterial 559 
genomes as the test datasets. We randomly picked 100 protein sequences from individual 560 
genomes and submitted them to annotation by these five software/online servers. Predicted 561 
protein annotations by individual software and online servers were compared to their original 562 
annotations that were provided by the NCBI database (Additional file 11, 12: Dataset S4, S5). 563 
According to statistical methods of binary classification [64], the following parameters were 564 
used to make the comparison: 1) recall (also referred to as the sensitivity) as the true positive 565 
rate, 2) precision (also referred to as the positive predictive value) which indicates the 566 
reproducibility and repeatability of a measurement system, 3) accuracy which indicates the 567 
closeness of measurements to their true values, and 4) F1 value which is the harmonic mean of 568 
precision and recall, and reflects both these two parameters. Among the tested software/servers, 569 
the performance parameters of METABOLIC consistently placed it in the top 2 programs for 570 
recall and F1 and as the best for precision and accuracy. These results demonstrate that 571 
METABOLIC (Figure 7B) provides robust performance and consistent metabolic prediction 572 
for genomes that offer wide applicability of use for the downstream visualization and 573 
community-level analysis.  574 
 575 
Metabolic and biogeochemical comparisons at the community scale in diverse 576 
environments 577 
To demonstrate the application and performance of METABOLIC in different samples, we 578 
tested eight distinct environments (marine subsurface, terrestrial subsurface, deep-sea 579 
hydrothermal vent, freshwater lake, gut microbiome from patients with colorectal cancer, gut 580 
microbiome from healthy control, meadow soil, wastewater treatment facility). Overall, we 581 
found METABOLIC to perform well across all the environments to profile microbial genomes 582 
with functional traits and biogeochemical cycles (Additional file 10: Dataset S3). Within these 583 
tested environments, we also performed community-scale metabolic comparisons based on the 584 
MN-score (Figure 8). MN-score fraction at the community scale reflects the overall metabolic 585 
profile distribution. Specifically, we compared samples from terrestrial and marine subsurface 586 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2020. ; https://doi.org/10.1101/761643doi: bioRxiv preprint 

https://doi.org/10.1101/761643
http://creativecommons.org/licenses/by-nc/4.0/


 12 

and samples from hydrothermal vent and freshwater lake. We observed that terrestrial 587 
subsurface contains more abundant metabolic functions related to nitrogen cycling compared 588 
to the marine subsurface (Figure 8A), consistent with the previous characterization of these two 589 
environments [2, 65]. Deep-sea hydrothermal vent samples had a considerably high 590 
concentration of methane and hydrogen [43] as compared to Lake Tanganyika (freshwater 591 
lake); the deep-sea hydrothermal vent microbial community has more abundant metabolic 592 
functions associated with methanotrophy and hydrogen oxidation (Figure 8B). To focus on a 593 
specific biogeochemical cycle, we applied METABOLIC to compare sulfur related 594 
metabolisms at the community scale for these two environment pairs (Additional file 7: Figure 595 
S7). Terrestrial subsurface contains genomes covering more sulfur cycling steps compared to 596 
marine subsurface (7 steps vs 3 steps) (Additional file 7: Figure S7A). Freshwater lake contains 597 
genomes involving almost all the sulfur cycling steps except for sulfur reduction, while deep-598 
sea hydrothermal vent contains less sulfur cycling steps (8 steps vs 6 steps) (Additional file 7: 599 
Figure S7B). Nevertheless, deep-sea hydrothermal vent has a higher fraction of genomes 600 
(59/98) and a higher relative abundance (73%) of these genomes involving sulfur oxidation 601 
compared to the freshwater lake (Additional file 7: Figure S7B). This indicates that the deep-602 
sea hydrothermal vent microbial community has a more biased sulfur metabolism towards 603 
sulfur oxidation, which is consistent with previous metabolic characterization on the 604 
dependency of elemental sulfur in this environment [43, 66-68]. Collectively, by characterizing 605 
community-scale metabolism, METABOLIC can facilitate the comparison of overall 606 
functional profiles as well as functional profiles for a particular elemental cycle.  607 
 608 
METABOLIC enables accurate reconstruction of cell metabolism 609 
To demonstrate applications of reconstructing and depicting cell metabolism based on 610 
METABOLIC results, two microbial genomes were used as an example (Figure 9). As 611 
illustrated in Figure 9A, Hadesarchaea archaeon 1244-C3-H4-B1 has no TCA cycling gene 612 
components, which is consistent with previous findings in archaea within this class [69]. 613 
Gluconeogenesis/glycolysis pathways are also lacking in the genome; since gluconeogenesis is 614 
the central carbon metabolism responsible for generating sugar monomers which will be further 615 
biosynthesized to polysaccharides as important cell structural components [70], the lack of this 616 
pathway could be due to genome incompleteness. As an enigmatic archaeal class newly 617 
discovered in the recent decade, Hadesarchaea have distinctive metabolisms that separate them 618 
from conventional euryarchaeotal groups. They almost lost all TCA cycle gene components for 619 
the production of acetyl-CoA; while they could metabolize amino acids in a heterotrophic 620 
lifestyle [69]. It is posited that the Hadesarchaea genome has been subjected to streamline 621 
processing possibly due to nutrient limitations in their surrounding environment [69]. Due to 622 
their metabolic novelty and limited available genomes in the current time, there are still 623 
uncertainties on unknown/hypothetical genes and pathways and unclassified metabolic 624 
potential across the whole class. The previous metabolic characterization on four Hadesarchaea 625 
genomes indicates Hadesarchaea members could anaerobically oxidize CO and H2 was 626 
produced as the side product [69]. In the Hadesarchaea archaeon 1244-C3-H4-B1 genome, 627 
METABOLIC results indicate the loss of all anaerobic carbon-monoxide dehydrogenase gene 628 
components, which suggests the distinctive metabolism of this Hadesarchaea archaeon from 629 
others and highlights the accuracy of METABOLIC in reflecting functional details.  630 
 631 
We also reconstructed the metabolism for Nitrospirae bacteria M_DeepCast_50m_m2_151, a 632 
member of the Nitrospirae phylum reconstructed from Lake Tanganyika [46] (Figure 9B), it 633 
contains the full pathway for the TCA cycle and gluconeogenesis/glycolysis. Furthermore, it 634 
also has the full set of oxidative phosphorylation complexes for energy conservation and 635 
functional genes for nitrite oxidation to nitrate. Other nitrogen cycling metabolisms identified 636 
in this genome include ammonium oxidation, urea utilization, and nitrite reduction to nitric 637 
oxide. The Reverse TCA cycle pathway was identified for carbon fixation. The metabolic 638 
profiling result is in accord with the fact that Nitrospirae is a well-known nitrifying bacterial 639 
class capable of nitrite oxidation and living an autotrophic lifestyle [70]. Additionally, their 640 
more abundant distribution in nature compared to other nitrite-oxidizing bacteria such as 641 
Nitrobacter indicates a significant contribution to nitrogen cycling in the environment [70]. 642 
This highlights the ability of METABOLIC in reflecting functional details of more common 643 
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and prevalent microorganisms compared to the Hadesarchaea archaeon. Notably as discovered 644 
from METABOLIC analyses, this bacterial genome also contains a wide range of transporter 645 
enzymes on the cell membrane, including mineral and organic ion transporters, sugar and lipid 646 
transporters, phosphate and amino acid transporters, heme and urea transporters, 647 
lipopolysaccharide and lipoprotein releasing system, bacterial secretion system, etc., which 648 
indicates its metabolic versatility and potential interactive activities with other organisms and 649 
the ambient environment. Collectively, METABOLIC result of functional profiling provides 650 
an intuitively-represented summary of a single microbial genome which enables depicting cell 651 
metabolism for better visualization of the functional capacity. 652 
 653 
METABOLIC accurately represents metabolism in the human microbiome 654 
In addition to resolving microbial metabolism and biogeochemistry in environmental 655 
microbiomes, METABOLIC also accurately identifies metabolic traits associated with human 656 
microbiomes. The human microbiome contributes to normal human development, human 657 
physiology, and disease pathology. Study of human microbiomes are an advancing field and 658 
has been accelerated by the NIH’s implementation of Human Microbiome Project [71]. While 659 
healthy and disease state human microbiome samples continue to be collected and sequenced 660 
at a rapid pace, the implications of microbial metabolism on human health largely remain a 661 
black box, much like microbial contributions to biogeochemical cycling. We demonstrate the 662 
utility of METABOLIC in highlighting metabolism in human microbiomes using publicly 663 
available samples from a study of human microbiome in colorectal cancer using stool samples 664 
collected from patients with colorectal cancer and healthy individuals. From the study, we 665 
selected one colorectal cancer (CRC) and an age and sex matched control (healthy human) gut 666 
metagenomes from stool samples to conduct the comparison (Figure 10). The heatmap indicates 667 
the human microbiome functional profiles of both samples based on the marker gene 668 
presence/absence patterns (Figure 10). As an example of METABOLIC’s application, we 669 
demonstrate that there were 28 makers with variations > 10% in terms of the marker-containing 670 
genome numbers between these two states (Figure 10). These 28 markers involved all the ten 671 
metabolic categories except for lipid metabolism and translation, suggesting the broad 672 
functional differences between these two states. In addition to analyzing the human microbiome 673 
specific-functional markers, METABOLIC can be used as described in previous sections on 674 
human microbiome samples to visualize elemental nutrient cycling and analyze metabolic 675 
nutrient interaction. METABOLIC results provide a comprehensive functional profile that 676 
could be to represent human-microbial interactions; overall it enables systematic 677 
characterization of the composition, structure, function, and dynamics of microbial 678 
metabolisms in the human microbiome and facilitates omics-based studies of microbial 679 
community on human health [50]. 680 
 681 
Conclusions 682 
In the recent decade, the rapidly growing number of sequenced microbial genomes, including 683 
pure isolates, metagenome-assembled genomes, and single-cell genomes, have significantly 684 
contributed to the growth of microbial genome databases, which has made large-scale microbial 685 
genome analyses more tractable. Metabolic functional profile of microbial genomes at the scale 686 
of individual organisms and communities is essential for microbial ecologists and 687 
biogeochemists to have a comprehensive understanding of ecosystem processes and 688 
biogeochemistry, and as a conduit for enabling trait-based models of biogeochemistry. We have 689 
developed METABOLIC as a metabolic functional profiler that goes above and beyond current 690 
frameworks of genome/protein annotation platforms in providing protein annotations and 691 
metabolic pathway analyses that are used for inferring contribution of microorganisms, 692 
metabolism, interactions, activity, and biogeochemistry at the community-scale. METABOLIC 693 
is the first software to enable community-scale visualization of microbial metabolic handoffs, 694 
interactions, and contributions to biogeochemical cycles. We anticipate that METABOLIC will 695 
enable easier interpretation of microbial metabolism and biogeochemistry from metagenomes 696 
and genomes and enable microbiome research in diverse fields. Finally, METABOLIC will 697 
facilitate standardization and integration of genome-informed metabolism into metabolic and 698 
biogeochemical models.  699 
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Figure 1. An outline of the workflow of METABOLIC. Detailed instructions are available 1006 
at https://github.com/AnantharamanLab/METABOLIC. METABOLIC-G workflow was 1007 
specifically shown in the blue square and METABOLC-C workflow was shown in the green 1008 
square. 1009 
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Figure 2. Summary scheme of biogeochemical cycling processes at the community scale. 1058 
Each arrow represents a single transformation/step within a cycle. Labels above each arrow are 1059 
(from top to bottom): step number and reaction, number of genomes that can conduct these 1060 
reactions, metagenomic coverage of genomes (represented as a percentage within the 1061 
community) that can conduct these reactions. 1062 
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Figure 3. Schematic figure of sequential metabolic transformations. (A) the sequential 1127 
transformation of inorganic compounds; (B) the sequential transformation of organic 1128 
compounds. X-axes describe individual sequential transformations indicated by letters. The two 1129 
panels describe the number of genomes and genome coverage (represented as a percentage 1130 
within the community) of organisms that are involved in certain sequential metabolic 1131 
transformations. The deep-sea hydrothermal vent dataset was used for these analyses.   1132 
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Figure 4. Metabolic network showing connections between different metabolisms in the 1173 
microbial community. Nodes represent individual steps in biogeochemical cycles; edges 1174 
connecting two given nodes represent the metabolic connections between nodes, which is 1175 
enabled by organisms that can conduct both biogeochemical processes/steps. The thickness of 1176 
the edge was depicted according to the average of gene coverage values of the two connected 1177 
biogeochemical cycling steps – for example, thiosulfate oxidation and organic carbon 1178 
oxidation.. The color of the edges was assigned based on the taxonomy of the represented 1179 
genome. The deep-sea hydrothermal vent dataset was used for these analyses.   1180 
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Figure 5. The calculation and result table of MN-score. (A) The calculation method for the 1217 
MN-score within a community based on a given metagenomic dataset. Each circle stands for a 1218 
genome within the community, and the adjacent bar stands for its genome coverage within the 1219 
community. The coverage values of encoded genes for individual functions were summed up 1220 
as the denominator, and the coverage value of encoded genes for each function was used as the 1221 
numerator, and the MN-score was calculated accordingly for each function. (B) The resulted 1222 
table of MN-score for the deep-sea hydrothermal vent metagenomic dataset. MN-score for each 1223 
function was given in a separated column, and the rest part of the table indicates the contribution 1224 
percentage to each MN-score of the genomes within the community as grouped by each 1225 
phylum.  1226 
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Figure 6. Metabolic energy flow potential diagram representing the contributions of 1288 
microbial genomes to individual metabolic and biogeochemical processes, and at the scale 1289 
of entire elemental cycles. Microbial genomes are represented at the phylum-level resolution. 1290 
The three columns from left to right represent taxonomic groups scaled by the number of 1291 
genomes, the contribution to each metabolic function by microbial groups calculated based on 1292 
genome coverage, and the function category/biogeochemical cycle. The colors were assigned 1293 
based on the taxonomy of the microbial groups. The deep-sea hydrothermal vent dataset was 1294 
used for these analyses.   1295 
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Figure 7. Comparison of METABOLIC with other software packages and online servers. 1345 
(A) Comparison of the workflows and services, (B) Comparison of performance of protein 1346 
prediction for two representative genomes, Pseudomonas aeruginosa PAO1, and Escherichia 1347 
coli O157H7 str. sakai. 1348 
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Figure 8. Community metabolism comparison based on MN-scores. (A) Comparison 1412 
between marine subsurface and terrestrial subsurface. (B) Comparison between freshwater lake 1413 
and deep-sea hydrothermal vent. MN-scores were calculated as gene coverage fractions for 1414 
individual metabolic functions. Functions with MN-scores in both environments as zero were 1415 
removed from each panel, e.g., N-S-02:Ammonia oxidation, N-S-09:Anammox, S-S-02:Sulfur 1416 
reduction, and S-S-06:Sulfite reduction in Panel (A), and C-S-07:Methanogenesis, N-S-01:N2 1417 
fixation, N-S-09:Anammox, S-S-02:Sulfur reduction, and S-S-06:Sulfite reduction in Panel 1418 
(B). Details for MN-score and each microbial group contribution refer to Supplementary 1419 
Dataset S3. 1420 
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Figure 9. Cell metabolism diagrams of two microbial genomes. (A) cell metabolism diagram 1454 
of Hadesarchaea archaeon 1244-C3-H4-B1 (B) cell metabolism diagram of Nitrospirae bacteria 1455 
M_DeepCast_50m_m2_151. The absent functional pathways/complexes were labeled with 1456 
dash lines. 1457 
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Figure 10. Presence/Absence map of human microbiome metabolisms of a colorectal 1548 
cancer patient (CRC) and a healthy control gut samples. The heatmap has summarized 189 1549 
horizontal entries (189 lines) from 139 key functional gene families that covered 10 function 1550 
categories. Detailed KEGG KO identifier IDs and protein information for each function 1551 
category were described in Supplementary Dataset S2. 1552 
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Table 1. The carbon fixation metabolic traits of 15 tested bacterial and archaeal genomes 
predicted by both METABOLIC and KEGG genome database 
 

   

METABOLIC result KEGG genome pathway 

Carbon fixation Carbon fixation 

Accession ID Organism KEGG 

Organism 

Code 

Group 3 HP 
cycle 

3HP/4HB 
cycle 

3 HP cycle  
3HP/4HB 
cycle 

GCA_000011905.1 Dehalococcoides mccartyi 195 det Chloroflexi Absent Absent Absent Absent 

GCA_000017805.1 Roseiflexus castenholzii DSM 13941 rca Chloroflexi Present Absent Present Absent 

GCA_000018865.1 Chloroflexus aurantiacus J-10-fl cau Chloroflexi Present Absent Present Absent 

GCA_000021685.1 Thermomicrobium roseum DSM 5159 tro Chloroflexi Absent Absent Absent Absent 

GCA_000021945.1 Chloroflexus aggregans DSM 9485 cag Chloroflexi Present Absent Present Absent 

GCA_000299395.1 Nitrosopumilus sediminis AR2 nir Thaumarchaeota Absent Present Absent Present 

GCA_000698785.1 Nitrososphaera viennensis EN76 nvn Thaumarchaeota Absent Present Absent Present 

GCA_000875775.1 Nitrosopumilus piranensis D3C nid Thaumarchaeota Absent Present Absent Present 

GCA_000812185.1 Nitrosopelagicus brevis CN25 nbv Thaumarchaeota Absent Present Absent Present 

GCA_900696045.1 Nitrosocosmicus franklandus NFRAN1 nfn Thaumarchaeota Absent Present Absent Present 

GCA_000015145.1 Hyperthermus butylicus DSM 5456 hbu Crenarchaeota Absent Absent Absent Absent 

GCA_000017945.1 Caldisphaera lagunensis DSM 15908 clg Crenarchaeota Absent Present Absent Present 

GCA_000148385.1 Vulcanisaeta distributa DSM 14429 vdi Crenarchaeota Absent Absent Absent Absent 

GCA_000193375.1 Thermoproteus uzoniensis 768-20 tuz Crenarchaeota Absent Present Absent Present 

GCA_003431325.1 Acidilobus sp. 7A acia Crenarchaeota Absent Absent Absent Absent 
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