
 1 

Regulatory non-coding small RNAs are diverse and abundant in an 
extremophilic microbial community 

 

Diego R. Gelsinger*, Gherman Uritskiy*, Rahul Reddy, Adam Munn, Katie Farney, and 

Jocelyne DiRuggiero# 

Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA 

*Equal contributions 

 

Running Head: Metatranscriptomic identification of sRNAs in extremohile microbiome 

Key words: non-coding, sRNA, metatranscriptomics, metagenomics, gene regulation, 

extremophile, microbiome, microbial communities 

 

# Corresponding author 

Jocelyne DiRuggiero 

Johns Hopkins University 

Department of Biology 

3400 N. Charles Street, Mudd Hall 235 

Baltimore MD 21218, USA 

jdiruggiero@jhu.edu 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/761684doi: bioRxiv preprint 

https://doi.org/10.1101/761684


 1 

ABSTRACT  1 

Regulatory small RNAs (sRNAs) represent a major class of regulatory molecules that 2 

play large-scale and essential roles in many cellular processes across all domains of 3 

life. Microbial sRNAs have been primarily investigated in a few model organisms and 4 

little is known about the dynamics of sRNA synthesis in natural environments, and the 5 

roles of these short transcripts at the community level. Analyzing the metatranscriptome 6 

of a model extremophilic community inhabiting halite nodules (salt rocks) from the 7 

Atacama Desert with SnapT – a new sRNA annotation pipeline – we discovered 8 

hundreds of intergenic (itsRNAs) and antisense (asRNAs) sRNAs. The halite sRNAs 9 

were taxonomically diverse with the majority expressed by members of the 10 

Halobacteria. We found asRNAs with expression levels negatively correlated with that 11 

of their putative overlapping target, suggesting a potential gene regulatory mechanism. 12 

A number of itsRNAs were conserved and significantly differentially expressed (FDR 13 

<5%) between 2 sampling time points allowing for stable secondary structure modeling 14 

and target prediction. This work demonstrates that metatranscriptomic field experiments 15 

link environmental variation with changes in RNA pools and have the potential to 16 

provide new insights into environmental sensing and responses in natural microbial 17 

communities through non-coding RNA mediated gene regulation.  18 
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INTRODUCTION 19 

Non-coding RNAs (ncRNAs) are untranslated short transcripts that are found in the 20 

three domains of life where they play essential roles in many cellular processes 21 

(Gelsinger and DiRuggiero 2018b, Cech and Steitz 2014). In prokaryotes, a subset of 22 

these ncRNAs, thereby called small RNAs (sRNAs), are specifically involved in gene 23 

regulation through RNA-RNA mediated interactions, modulating core metabolic 24 

functions and stress related responses (Gottesman and Storz 2011). These sRNAs 25 

range from 50 to 500 nucleotides in size and can be of two types: trans-encoded 26 

sRNAs, also called intergenic sRNAs (itsRNAs), which bind their mRNA targets via 27 

imperfect base-pairing and can target multiple genes, including key transcription factors 28 

and regulators (Wagner and Romby 2015). itsRNAs can activate or inhibit translation 29 

initiation by interacting with the ribosome binding site (RBS) and/or modulating mRNA 30 

stability (Wagner and Romby 2015). In contrast, cis-encoded antisense RNAs (asRNAs) 31 

are transcribed on the DNA strand opposite their target gene and thus can act via 32 

extensive base pairing; they have been found to repress transposons and toxic protein 33 

synthesis (Wagner and Romby 2015). 34 

The functional roles of microbial sRNAs have been extensively studied in a few model 35 

organisms and very little is known about the dynamics of sRNA synthesis in natural 36 

environments and the roles of these short transcripts at the community level (Carrier, 37 

Lalaouna, and Massé 2018, Gelsinger and DiRuggiero 2018b). To our knowledge, only 38 

two studies have reported the discovery of sRNAs in natural microbial communities 39 

(Shi, Tyson, and DeLong 2009, Bao et al. 2015). This paucity of knowledge suggests 40 

that an abundance of sRNAs remain to be discovered, in particular in extreme 41 

environments where they likely play essential roles in stress response (Clouet-d'Orval et 42 

al. 2018), inter-species communication, and/or cross-species RNA interference 43 

(Toyofuku, Nomura, and Eberl 2019, Cai et al. 2018, Tsatsaronis et al. 2018).  44 

In hyper-arid deserts, microbial communities find refuge inside rocks as a survival 45 

strategy against the extreme conditions of their environment (Pointing and Belnap 46 

2012). Such community inhabits halite (salt) nodules in Salars of the Atacama Desert, 47 

Chile, which is one of the oldest and driest deserts on Earth (Crits-Christoph et al. 2016, 48 

Finstad et al. 2017). The halite endolithic (within rock) community harbors mostly 49 
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members of the Archaea (Halobacteria), unique Cyanobacteria, diverse heterotrophic 50 

bacteria, and a novel type of algae (Crits-Christoph et al. 2016, Finstad et al. 2017). The 51 

main source of liquid water for this community is from salt deliquescence (Davila et al. 52 

2008) and it is sustained by CO2 fixed via photosynthesis (Crits-Christoph et al. 2016, 53 

Davila et al. 2015). While previous studies have demonstrated the role of sRNAs in the 54 

stress response of one of the members of this community, the halophilic archaeon 55 

Haloferax volcanii (Gelsinger and DiRuggiero 2018a, Kliemt, Jaschinski, and Soppa 56 

2019), there is no information on any of the other members.  57 

Here we used a combination of genome-resolved metagenomics and 58 

metatranscriptomics to investigate the role of sRNAs in the adaptive response of 59 

microorganisms inhabiting halite nodules. We developed an analytical pipeline, SnapT, 60 

built on our previous work on sRNAs with model organisms (Gelsinger and DiRuggiero 61 

2018a), to enable the discovery of sRNAs at the community level. We found hundreds 62 

of sRNAs (both itsRNAs and asRNAs) in the halite community, including conserved 63 

sRNAs, validating our experimental approach. A number of itsRNAs were significantly 64 

differentially regulated between 2 sampling time points and, for a subset of these, we 65 

were able to perform structure and target prediction, deciphering their potential 66 

regulatory roles. Coupling metagenomics and metatranscriptomics with SnapT allows 67 

for the potential to uncover the complex regulatory networks that govern the state of a 68 

microbial community. 69 

 70 

MATERIAL AND METHODS 71 

Sample and weather data collection and nucleic acid extraction 72 

Halite nodules were harvested in Salar Grande, an ancient evaporated lake in the 73 

Northern part of the Atacama Desert (Robinson et al. 2015) in February 2016 and 2017, 74 

3 and 15 months after a major rain event (Uritskiy et al. 2019). All nodules were 75 

harvested within a 50m2 area as previously described (Robinson et al. 2015). The 76 

colonization zone of each nodule was grounded into a powder, pooling from 1-3 nodules 77 

until sufficient material was collected, and stored in the dark in dry conditions until DNA 78 

extraction in the lab. Samples used for RNA were stored in RNAlater at 4°C until RNA 79 

extraction in the lab. Genomic DNA was extracted as previously described (Robinson et 80 
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al. 2015, Crits-Christoph et al. 2016) with the DNAeasy PowerSoil DNA extraction kit 81 

(QIAGEN). Total RNA was extracted from the fixed samples by first isolating the cells 82 

through gradual dissolving of the salt particles as previously described (Robinson et al. 83 

2015, Crits-Christoph et al. 2016) and lysing them through mechanical bead beating 84 

with the RNAeasy PowerSoil RNA extraction kit (QIAGEN). Total RNA was then 85 

extracted from the lysate with a Quick-RNA miniprep kit (Zymo Research). RT-PCR was 86 

used to validate the absence of contaminating DNA in the total RNA used for RNA-seq 87 

libraries (Fig. S11). 88 

 89 

Library preparation 90 

Whole genome sequencing libraries were prepared using the KAPA HyperPlus kit 91 

(Roche) as previously described (Uritskiy et al. 2019) and sequenced with paired 150bp 92 

reads on the HiSeq 2000 platform at the Johns Hopkins Genetic Resources Core 93 

Facility (GRCF). Total RNA-seq libraries were prepared with the SMARTer Stranded 94 

RNA-seq kit (Takara and Bell), using 25ng of RNA input and 12 cycles for library 95 

amplification. We sequenced 22 libraries from replicate samples from 2016 and 24 96 

libraries from replicate samples from 2017. 97 

  98 

WMG sequence processing 99 

The de-multiplexed WMG sequencing reads were processed with the complete 100 

metaWRAP v0.8.2 pipeline (Uritskiy, DiRuggiero, and Taylor 2018) with recommended 101 

databases on a UNIX cluster with 48 cores and 1024GB of RAM available. Detailed 102 

scripts for the entire analysis pipeline can be found at 103 

https://github.com/ursky/timeline_paper.   104 

 105 

SnapT for sRNA community identification  106 

An analytic pipeline, SnapT for Small ncRNA Annotation Pipeline for 107 

(meta)Transcriptomic data, was adapted and developed from our previous work 108 

(Gelsinger and DiRuggiero 2018a) to find, annotate, and quantify intergenic and 109 

antisense sRNA transcripts from transcriptomic or metatranscriptomic data. Detailed 110 

scripts for the pipeline can be found at https://github.com/ursky/SnapT and search 111 
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criteria were as follows: intergenic transcripts were at least 30 nt away from any gene or 112 

ORF on both strands; antisense transcripts were 30 nt away from any gene on their 113 

strand, but overlapped with a gene on the opposite strand by at least 10 nt; small 114 

peptides (<100 nt) were not counted as genes if they were encoded in a transcript that 115 

was more than 3 times their length; non-coding transcripts could not contain any 116 

reading frame greater than 1/3 of their lengths; predicted non-coding transcripts near 117 

contig edges were discarded and the minimum distance to the edge of a contig was 118 

dynamically computed such that the tips of contigs were not statistically enriched in 119 

annotated ncRNAs; small ncRNAs were between 50 nt and 500 nt in length; sRNA 120 

transcripts could not have significant homology with any protein in the NCBI_nr 121 

database (query cover>30%, Bitscore>50, evalue<0.0001, and identity>30%) and with 122 

any tRNA, RNase P, or signal recognition particle (SRP) model in the Rfam non-coding 123 

RNA database. 124 

 125 

Taxonomic assignment and distribution of sRNAs 126 

The taxonomic origin of each annotated sRNA was taken to be as that of the contig on 127 

which it lay. The taxonomy of each contig was estimated by taking the weighted 128 

average of the taxonomic assignment of the genes encoded on it, as determined 129 

through the JGI IMG functional and taxonomic annotation service.  130 

 131 

Metatranscriptomic Correlation and Differential Expression Analysis 132 

We used a read count-based differential expression analysis to identify differentially 133 

expressed sRNA and mRNA transcripts. The program featureCounts (Liao, Smyth, and 134 

Shi 2014) was used to rapidly count reads that map to the assembled RNA transcripts 135 

(described above) as previously described (Gelsinger and DiRuggiero 2018a). In order 136 

to account for organism abundance changes (as opposed to true transcript changes), 137 

we normalized the transcript read counts to the total read counts from the contig on 138 

which the transcript lies on. The read counts were then used in the R differential 139 

expression software package DESeq2 (Love, Huber, and Anders 2014) to calculate 140 

differential expression by determining the difference in read counts between 2016 141 

normalized read counts from 2017 normalized read counts. The differentially expressed 142 
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RNAs were filtered based on the statistical parameter of False Discovery Rate (FDR) 143 

and those that were equal to or under a FDR of 5% were classified as true differentially 144 

expressed transcripts. We carried out differential expression analysis using a pairwise 145 

Wald test to find any possible differences between years (Love, Huber, and Anders 146 

2014). In parallel, normalized expression values were calculated using stringtie in 147 

transcripts per million (TPM). TPM of transcripts were normalized in the same way as 148 

read counts, except using contig TPM. TPM of transcripts was used for ranking of 149 

expression within samples as opposed to differential expression analysis. 150 

 151 

Regulatory element motif identification of sRNAs, structure and target prediction 152 

50 nucleotides upstream from the sRNA transcript start coordinates were searched for 153 

transcription motifs (BRE and TATA-box for archaea and -35 and -10 consensus 154 

sequences for bacteria) using both multiple sequence alignments and visualization with 155 

WebLogo and motif searching with MEME (Gelsinger and DiRuggiero 2018a). 156 

Conserved sRNAs were identified using blastn against the NCBI nt database. 157 

Secondary structures of conserved sRNAs were predicted using sRNAs that had an e-158 

value maximum of 1E-3, a sequence similarity of 70% or more, and 50% or more 159 

coverage with a NCBI nt database blastn hit; a minimum of 14 alignments were used in 160 

the program LocARNA using global alignment settings (Will et al. 2012). Lastly, putative 161 

targets were predicted for itsRNAs by searching for optimal sRNA-mRNA hybridization 162 

using the IntaRNA program with the no seed parameter (Mann, Wright, and Backofen 163 

2017) and the reference genes for each respective MAG. Targets were ranked by 164 

lowest p-value. Expression levels for putative targets of antisense sRNAs were obtained 165 

from co-expression analysis of transcripts (Gelsinger and DiRuggiero 2018a). The 166 

sRNA and putative target mRNA TPM expression values were tracked across the 167 

replicates, and the Pearson correlation was computed. 168 

 169 

Enrichment cultures 170 

Three types of culture medium were inoculated in triplicate with ~2 g of grounded halite 171 

colonization zones and incubated at 42°C with shaking at 220 rpm (Amerex Gyromax 172 

737) for 1 to 2 weeks. Cells were harvested by centrifugation and nucleic acids 173 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/761684doi: bioRxiv preprint 

https://doi.org/10.1101/761684


 7 

extracted as described above. Media were: GN101 medium (Kish et al. 2009) 174 

containing 250 g of salt per L and 10 g of peptone as carbon source; Hv-YPC medium 175 

(Dyall-Smith 2009) containing 250 g of salt per L and 8.5 g of yeast extract, 1.7 g of 176 

peptone, and 1.7 of casamino acids as carbon sources; and IO containing 250 g of salt  177 

and the same carbon sources as the Hv-YPC medium. The taxonomic distribution of the 178 

cultures was obtained with 16S rRNA gene sequencing as previously described 179 

(Uritskiy et al. 2019). 180 

  181 

sRNA validation 182 

Total RNA extracted from environmental samples and enrichment cultures was 183 

converted into cDNA using the SuperScript III First-Strand Synthesis System 184 

(ThermoFisher). The cDNA was then amplified using primers designed for sRNAs 185 

identified in the halite community (Table S1), as previously described (Meslier et al. 186 

2018). Amplicons were sequenced using Sanger sequencing (GENEWIZ, South 187 

Plainfield, NJ).  188 

 189 

Data availability 190 

Raw sequencing data are available from the National Centre for Biotechnology 191 

Information under NCBI project ID PRJNA484015. The metagenome co-assembly and 192 

functional annotation are available from the JGI Genome Portal under IMG taxon OID 193 

3300027982. Metatranscriptome data GEO # in process. Scripts for functional 194 

annotation, statistical analyses, differential expression, and figures are available at 195 

https://github.com/ursky/srna_metatranscriptome_paper. 196 

 197 

RESULTS  198 

Landscape of predicted sRNAs in the halite community and validation 199 

We discovered hundreds of ncRNAs in an extremophilic community inhabiting halite 200 

nodules (salt rocks) in the Atacama Desert by using SnapT 201 

(https://github.com/ursky/SnapT), a pipeline adapted from our previous work on a model 202 

haloarchaeon present in the halite community (Table 1; data S1) (Gelsinger and 203 

DiRuggiero 2018a). We used metatranscriptomics data from multiple replicate samples 204 
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collected in the field in 2016 and 2017  (21 and 24 replicates for 2016 and 2017, 205 

respectively; Fig. S1). Using SnapT, we aligned reads from stranded RNA-seq libraries 206 

to our reference co-assembled metagenome from a previous study (Uritskiy et al. 2019) 207 

and assembled the reads into transcripts (Fig S2). The transcripts were then intersected 208 

with the metagenome annotation as well as open reading frames to select for either 209 

novel transcripts on the opposite strand of coding transcripts (asRNAs) or for novel 210 

transcripts that fell into intergenic regions (itsRNAs). Putative ncRNA transcripts were 211 

then further enriched (Fig. S2) using a threshold at 5x and 10x assembly coverage in 212 

order to identify intergenic and antisense ncRNAs, respectively. (Fig. S3; Table 1). The 213 

size of these ncRNAs was then filtered from 50 to 500 nucleotides to produce a final set 214 

of non-coding sRNAs. The size distribution of these sRNAs was primarily between 50 215 

and 200 nt for itsRNAs and above 200 nt for asRNAs. (Fig. S4). 216 

The halite ncRNAs were taxonomically assigned to diverse members of the community; 217 

their distribution between Archaea (54%) and Bacteria (46%) (Table 1) was similar to  218 

that of the total metatranscriptomic reads for the community (Fig. 1B and C). In 219 

contrast, the taxonomic profile of the metagenome showed a larger contribution of 220 

bacterial reads and in particular of reads assigned to Cyanobacteria and Bacteroidetes 221 

(Fig. 1A). Because of the use of strand specific RNA-seq libraries, we could confidently 222 

identify both intergenic (it)sRNA, located between coding regions, and antisense 223 

(a)sRNA, overlapping with their putative target (Table 1). We found 3 times more 224 

itsRNAs in the Archaea than in the Bacteria, whereas asRNAs were more abundant in 225 

the Bacteria and more often associated with members of the Cyanobacteria (38%) and 226 

Bacteriodetes (15%) (Table 1; Fig. 1D and E). We also found 79 ncRNAs, that belong 227 

to 6 known families of RNAs present in the Rfam database (Fig. S5; data S2) (Kalvari 228 

et al. 2017), validating our experimental and computational approach. This database is 229 

a collection of RNA families, each represented by multiple sequence alignments, 230 

consensus secondary structures, and covariance models. Of the Rfam-conserved 231 

ncRNAs, 70% were assigned to archaea and included RNaseP RNAs, signal 232 

recognition particle RNAs (SRP RNAs), and tRNAs. Of the Rfam-conserved bacterial 233 

ncRNAs, most were from SRP RNAs and tRNA conserved families. In addition, a 234 

cobalamin riboswitch and the regulatory sRNA, CyVA-1, were detected in low 235 
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abundance in the halite Cyanobacteria. We also found 3 ncRNAs (4%) from Eukarya, a 236 

tRNA, a U4 spliceosomal RNA, and a RNase for mitochondrial RNA processing (MRP). 237 

Using blastn analysis (max e-value of 1E-3, sequence similarity of 70% or more, 238 

coverage of 50% or more), we discovered another 155 ncRNAs that were conserved in 239 

the NCBI nt datasbase, with 60% from archaea and 40% from bacteria (Table 1). The 240 

majority were asRNAs (109), with only 44 itsRNAs. The conserved asRNAs most highly 241 

expressed (standardized tpm> 100) were all SPR RNAs in haloarchaea that were not 242 

found in the Rfam database. Of the conserved itsRNAs, we identified 3 tRNAs, 13 SRP 243 

RNAs, and 22 ncRNAs that were found in the genome of multiple species, all 244 

Halobacteria, but with no function assigned. The most highly expressed and conserved 245 

itsRNAs (standardized tpm> 100; 13 ncRNAs) were SRP RNAs not included in the 246 

Rfam database.  247 

Another validation of our findings was the presence of canonical promoter elements 248 

upstream of archaeal itsRNAs, suggesting that they were indeed bona fide transcripts 249 

that could recruit basal transcription factors (Fig. S6). We did not find significant 250 

promoter elements upstream of the bacterial itsRNAs, which might reflect the diversity 251 

of promoter elements across the various bacterial taxa we identified in the halite 252 

community. In contrast, no promoter elements were identified in the upstream regions of 253 

asRNA from both domains of life.  254 

When looking at the expression levels of all itsRNAs normalized to contig abundances, 255 

we found that they were similar for both the 2016 and 2017 samples and slightly higher 256 

than that of the asRNAs, whereas the expression profile of the asRNAs was more 257 

variable across samples for both years (Fig. S7). Remarkably, the expression levels of 258 

itsRNAs and asRNAs for both years was 2-fold higher than that of protein encoding 259 

genes. Whereas there is an inherent bias in our approach to identify sRNAs at the 260 

community level (coverage threshold in SnapT) compared to protein encoding genes, 261 

this finding strongly indicates potential functional relevance for a number of these 262 

sRNAs. 263 

We experimentally validated a number of sRNAs using RT-PCR with environmental and 264 

enrichment cultures (Table S1). Enrichments were performed with several media 265 
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containing high (25%) and relatively low (18%) salt, and various combinations of carbon 266 

sources. Amplicon sequencing of the enrichments revealed that high salt and diverse 267 

carbon sources resulted in higher diversity of taxa, although haloarchaea dominated in 268 

all enrichments (Fig. S8). All validated sRNAs belong to haloarchaea with the exception 269 

of one from Cyanobacteria. Sequences of the PCR products confirmed that they were 270 

sRNAs and validated our computational approach. 271 

Relationship with target genes and putative function of community asRNAs 272 

Using our strand-specific RNA-seq data, we were able to identify the overlap position of 273 

asRNAs to their antisense transcripts. We found that, in both Archaea and Bacteria, the 274 

majority of asRNAs start within the span of their cognate gene and end near the 5’ end 275 

of its mRNA. In both domains there is also an enrichment for asRNA-mRNA overlaps 276 

near the 5’ end of the mRNA. A similar trend has previously been reported in two 277 

species of archaea (Gelsinger and DiRuggiero 2018a, de Almeida et al. 2019). 278 

We compared the expression level of asRNAs with that of their putative target genes 279 

and found that highly expressed asRNAs were associated with lowly express genes 280 

(Fig. 2A). Of gene pairs with asRNA expression >100 tpm and gene expression <0.1 281 

tpm, most where from haloarchaea (77%), with 12% of Cyanobacteria, and 11% of 282 

other bacteria (Bacteriodetes and Acinetobacter) (data S3). Gene functions were 283 

enriched for transport (16%) and cell membrane/wall metabolism (5%), while most were 284 

hypothetical proteins (44%). Of the genes potentially negatively regulated by their 285 

cognate asRNAs, we found an archaeal regulator of the IclR family and potassium 286 

uptake protein TrkA. Only 2 asRNAs with high expression levels (>100 standardized 287 

tpm) were associated with genes with relatively high expression levels (>1 standardized 288 

tpm), while still being negatively correlated (Fig. 2A). The corresponding genes encoded 289 

for an iron complex outermembrane receptor protein from Salinibacter and a ABC-type 290 

sodium efflux pump permease subunit from a Halobacteria. When applying a stringent 291 

cut-off, we found 9 statistically significant and negatively correlated asRNA:gene pairs 292 

(Fig. 2B). Four were from Bacteroidetes, 4 from Halobacteria, and 1 from an 293 

unidentified bacterium. At the functional level, transport systems, and in particular iron 294 

transport systems, were particularly enriched (data S3). In contrast, we did not find any 295 

significant positive regulation between asRNAs and their cognate genes. When 296 
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adjusted for the carrying organism’s abundance, expressed as the average RNA read 297 

coverage of the contigs, we found that overall itsRNAs were more highly expressed 298 

than asRNAs (Fig. 2C and 2D). Highly expressed sRNAs, for both types, were mostly 299 

carried by haloarchaea. 300 

Differential expression of itsRNAs at the community level and target prediction 301 

Analysis of itsRNAs expression levels showed a clear separation between the 2016 and 302 

2017 samples (Fig. 3a). We carried out a differential expression analysis and found that 303 

109 (18%) of the regulatory itsRNAs were significantly differentially expressed (FDR 304 

<5%) between samples collected in 2016 and 2017 (Fig. 3 and data S4), 3 and 15 305 

months after a major rain event in the desert (Uritskiy et al. 2019). Of these, 72% were 306 

annotated as archaea and 28 % as bacteria and 16 were conserved in multiple 307 

genomes (14 from Halobacteria and 2 from Cyanobacteria). Conservation of 308 

differentially expressed itsRNAs allowed for structure modeling and, when high quality 309 

MAGs (>70% completion and <5% contamination) were available from the 310 

metagenome, target prediction (Fig. 4 and Fig. S10). A number of non-differentially 311 

expressed itsRNAs were also conserved, providing additional opportunity for structure 312 

prediction; these included itsRNAs from Halococcus (STRG. 48671.1; 69 nt), Halobellus 313 

limi (STRG136887.1; 209 nt), and from a member of the Nanohaloarchaea 314 

(STRG.4577.1; 266 nt) (Fig. S10A).  315 

All predicted structures displayed loop and stems regions that had high sequence 316 

conservation (light purple regions on sequence–structure-based alignment reliability 317 

[STAR] profile plots) and high structure conservation (dark purple), and line plots 318 

representing the reliability of the predictions as calculated by LocaRNA (Fig. 4 and Fig. 319 

S10B). Density plots combined with dumbbell plots were used for visualizing predicted 320 

interactions between itsRNAs and their putative targets, using IntaRNA data from the 321 

top 100 most reliable interaction predictions with the lowest free energy of hybridization 322 

(Mann, Wright, and Backofen 2017) (Fig. 4). High confidence assignments were 323 

obtained for 4 differentially expressed itsRNAs from Cyanobacteria, Halapricum salinun, 324 

and a member of the Halobacteria (data S5) More than one interaction peak were 325 

derived from density plots; peak 1 (green) corresponded to the highest interaction 326 
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density, which mapped to loop regions in the itsRNA secondary structure with high 327 

sequence and structure conservation, respectively, and was thus a confident 328 

assignment as an interaction region, whereas Peak 2 (yellow) was a less confident 329 

assignment structurally despite high interaction density (Fig. 4 and Fig. S10B).  330 

Using this information, we identified the most probable targets for Cyanobacteria 331 

STRG.5354.4 candidate itsRNA (229 nt). This itsRNA was conserved as a 6S 332 

regulatory RNA in the rfam database, which in bacteria is found to inhibit transcription 333 

by binding directly to the housekeeping holoenzyme form of RNA polymerase 334 

(Wassarman 2018). Of the top 50 most probable targets for STRG.5354.4, which were 335 

those with the lowest free energy of hybridization between itsRNA and targets, were 336 

cation:H+ antiporters [shown to be involved in osmoregulation (Krulwich, Hicks, and Ito 337 

2009)], a PleD family two-component response regulator, the photosystem I PsaB 338 

protein, chemotaxis transducers, and proteins involved in energy metabolism. Most 339 

probable targets for differentially expressed itsRNA, STRG. 86294.1 (281 nt) from 340 

Halapricum salinum included various transporters and putative membrane and cell wall 341 

associated proteins; notably an ammonium transporter (Amt family), an alkanesulfonate 342 

monooxygenase SsuD from a gene cluster expressed under sulfate or cysteine 343 

starvation (Eichhorn, van der Ploeg, and Leisinger 1999), and several proteins involved 344 

in cofactors and vitamin metabolism. Predicted targets with the lowest free energy of 345 

hybridization for STRG.49508.3 candidate itsRNA (99 nt) from Halobacteria were 346 

elongation factor 1-alpha, which promotes the GTP-dependent binding of aminoacyl-347 

tRNA to the A-site of ribosomes during protein biosynthesis, several ribosomal proteins, 348 

and a number of hypothetical proteins. Target prediction for Cyanobacteria 349 

STRG.5356.1 candidate itsRNA (242 nt) included molecular chaperones (DnaK and 350 

DnaJ classes), a cell division protease FtsH, and a number of uncharacterized proteins.  351 

 352 
DISCUSSION 353 

The roles of regulatory sRNAs have been extensively studied in bacterial, and to a 354 

lesser extent, in archaeal model systems (Carrier, Lalaouna, and Massé 2018, 355 

Gelsinger and DiRuggiero 2018b) but, to date, only two studies have reported the 356 

discovery of sRNAs in microbial communities. In one study, Shi et al. (Shi, Tyson, and 357 
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DeLong 2009) used metatranscriptomic data to identify unique microbial sRNAs in the 358 

ocean’s water column while the study by Bao et al. (Bao et al. 2015) revealed extensive 359 

antisense transcription in the human gut microbiota, also using metatranscriptomic 360 

datasets. Efforts have also been made to mine publically available databases for sRNA 361 

discovery (Weinberg et al. 2017) but this was still addressing the role of sRNAs in single 362 

microorganisms.  363 

One major difficulty in obtaining metatranscriptomic data from natural microbial 364 

communities, in particular from extreme environments, is the low amount of biomass 365 

that can be collected, resulting in low RNA yields (Uritskiy and DiRuggiero 2019). This, 366 

in turn, prevents attempts at ribo-depletion, resulting in a decreased number of non-367 

ribosomal RNA reads available for analysis. Nevertheless, using SnapT, a flexible 368 

pipeline to process metagenomics and metatranscriptomic data, we report the discovery 369 

of hundreds of diverse sRNAs from an extremophilic community inhabiting halite 370 

nodules in the Atacama Desert. In the process, we applied extensive quality control with 371 

coverage thresholding, correction for contig edge mis-annotation, and the removal of 372 

potential non-ncRNAs through sequence and homology searches. While this approach 373 

might potentially result in false negatives, and may bias our findings toward the most 374 

highly expressed sRNAs in the community, it also insured the robustness of our sRNA 375 

predictions by minimizing the number false positives. The identification of ncRNAs in the 376 

halite community that belong to the Rfam database (Kalvari et al. 2017), together with 377 

experimental validation of a number of sRNAs with environmental and enrichment 378 

cultures, substantiated our analytical approach. Additionally, expression levels of 379 

sRNAs 2-fold higher than that of protein encoding genes, strongly indicates potential 380 

functional relevance for a number of these sRNAs. 381 

The taxonomic composition of the halite sRNAs matched that of the community’s 382 

metatranscriptomic profile, reflecting the contribution of the most active members, 383 

including Cyanobacteria, Bacteriodetes, and a number of Halobacteria. We found 384 

significantly more itsRNAs in the archaea than in the bacteria and the trend was reverse 385 

for the asRNAs. This novel finding is representative of published work in model 386 

organisms where a wide range of sRNAs has been found so far in prokaryotes, from 387 
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less than a dozen to more than a thousand per genome (Carrier, Lalaouna, and Massé 388 

2018, Gelsinger and DiRuggiero 2018b).  389 

Antisense sRNAs overlap their putative targets providing insights into their functional 390 

role (Wagner and Romby 2015). In the halite community, we found that asRNAs 391 

expression levels were negatively correlated with that of their putative targets, with 392 

highly expressed asRNAs overlapping lowly expressed protein encoding genes. A 393 

similar trends was reported in the haloarchaeon Haloferax volcanii, when investigating 394 

oxidative stress responsive sRNAs, and most of the putative targets were transposase 395 

genes (Gelsinger and DiRuggiero 2018a). Putative target gene functions in our study 396 

were mostly from haloarchaea and enriched for transport systems, cell membrane and 397 

cell wall metabolism, with a large number of hypotheticals. Of particular interest, was an 398 

archaeal IcIR transcription regulator; these regulators are known to be involved in 399 

diverse physiological functions, including multidrug resistance, degradation of 400 

aromatics, and secondary metabolites production (Molina-Henares et al. 2006) and are 401 

distributed in a wide range of prokaryotes, including Archaea (Perez-Rueda et al. 2018). 402 

Also of interest, was a Trk potassium uptake system, also found in both bacteria and 403 

archaea and essential for the maintenance of high intracellular potassium in salt-in 404 

strategists (Oren 2013). In contrast, we did not find any significant positive regulation 405 

between asRNAs and their cognate genes, which might be due to the inherent quality of 406 

our data set, i.e. no ribo-depletion and heterogeneity across replicates (Uritskiy and 407 

DiRuggiero 2019). Alternatively, it might also reflect promiscuous transcription 408 

processes as argued when considering the functionality of asRNAs (Lloréns-Rico et al. 409 

2016). Other arguments in favor of spurious transcription was the size distribution for 410 

asRNAs found in the halite community, which was significantly larger than that of 411 

itsRNAs, low expression level when adjusted for organism abundance when compared 412 

to itsRNAs, and the absence of canonical regulatory elements in the upstream regions 413 

of asRNAs. However, we found also putative target functions that reflected the 414 

environmental challenges faced by members of this extremophile community, such as 415 

osmoregulation and nutrient uptake, indicating that these asRNAs might indeed regulate 416 

fundamental biological functions at the community level. 417 
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We previously showed that the halite community dramatically shifted its taxonomic and 418 

functional composition after a major rain event in 2015, and while it recovered at the 419 

functional level in 2017, 15 months after the rain, members of the communities were 420 

permanently replaced (Uritskiy et al. 2019). Here we found that 18% of the halite 421 

community itsRNAs were significantly differentially expressed (FDR <5%) between 422 

samples collected in 2016 and 2017 (3 and 15 months after the rain, respectively), 423 

potentially indicating a transcriptional response to changes in environmental conditions. 424 

Intergenic sRNAs are of particular interest because they can target multiple genes, 425 

including key transcription factors and regulators (Gottesman and Storz 2011). As a 426 

consequence, a single sRNA can modulate the expression of large regulons and thus 427 

have a significant effect on metabolic processes (Carrier, Lalaouna, and Massé 2018). 428 

However, they do not overlap their target genes or bind their targets mRNAs with 429 

perfect complementary, which make finding targets for these sRNAs very challenging 430 

without genetic tools (Gelsinger and DiRuggiero 2018b).  431 

To solve this problem at the community level, we focused on itsRNAs that were 432 

conserved and for which we could perform structural prediction. The intersection of this 433 

small subset of sRNAs with high quality MAGs that could be used as reference 434 

genomes, yielded confident target predictions for 4 differentially expressed itsRNAs, 435 

giving insights into metabolic functions potentially regulated by sRNAs at the community 436 

level. These included transporters, particularly related to osmotic stress, nutrient uptake 437 

and starvation, and pathways for chemotaxis and energy production and conversion. 438 

These pathways reflect the environmental challenges members of the halite 439 

communities are subjected to, including osmotic adjustments to climate perturbation 440 

(Uritskiy et al. 2019) and competition for nutrients in a near-close system with primary 441 

production as the major source of organic carbon (Crits-Christoph et al. 2016). Using 442 

the genomic context of sRNAs from the ocean’s water column microbial communities, 443 

Shi et al. (Shi, Tyson, and DeLong 2009) reported similar metabolic functions, 444 

underlying specific regulatory needs for natural communities. In contrast, genes with 445 

antisense transcription to asRNAs identified in the human gut microbiome were mostly 446 

transposase genes with a small component of bacterial house-keeping genes (Bao et 447 
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al. 2015). It important to note that no computational target prediction, using sRNA 448 

conserved predicted structure, was reported in either study.  449 

Regulation of transcription by 6S sRNA has been shown to increase competitiveness 450 

and long-term survival in bacteria (Wassarman 2018), suggesting an important role for 451 

Cyanobacteria candidate sRNA STRG.5354.4, identified as a 6S sRNA. Because of 452 

high RNA-seq coverage of the Cyanobacteria MAGs, we could show that 40% of the top 453 

50 targets for sRNA STRG.5354.4 were differentially regulated and more highly 454 

expressed in 2016, suggesting positive regulation by this sRNAs onto its putative 455 

targets. Transcriptional factors and regulators were also found as putative targets of 456 

differentially regulated itsRNAs in the halite community, underlying the capacity of 457 

microbial sRNAs to modulate the expression of large regulons (Gottesman and Storz 458 

2011, Gelsinger and DiRuggiero 2018b, Nitzan, Rehani, and Margalit 2017). Finally, a 459 

candidate itsRNAs from the Halobacteria had a number of predicted targets associated 460 

with ribosomal proteins and proteins involved in translation processes. This finding, 461 

together with a recent study in H. volcanii (Wyss et al. 2018), support the idea of sRNA 462 

modulation of protein biosynthesis in the Archaea. A potential framework for 463 

mechanisms for sRNA regulation of translation might be provided by a report, in the 464 

haloarchaeon Halobacterium salinarum, of modular translation subsystems that might 465 

selectively translate a subset of the transcriptome under specific growth conditions 466 

(Raman et al. 2018). 467 

Conclusion 468 

In this study, we characterized the taxonomic and functional landscape of sRNAs 469 

across two domains of life in an extremophilic microbial community, demonstrating that 470 

asRNAs and itsRNAs can be reliably identified from natural environmental communities. 471 

To facilitate this work, we built a flexible pipeline, SnapT 472 

(https://github.com/ursky/SnapT), leveraged by our expertise of sRNA biology in a 473 

model halophilic archaeon, and which is available to use with metatranscriptomic data 474 

from any community. We demonstrated that we could perform target prediction and 475 

correlate expression levels between itsRNAs and predicted target mRNAs, paving the 476 

way for novel discoveries that have never been done at the community level. While 477 

additional work with enrichment cultures remain to be done to fully characterize the 478 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/761684doi: bioRxiv preprint 

https://doi.org/10.1101/761684


 17 

functional roles of sRNAs from the halite community, and their mechanism of action, 479 

these differentially expressed sRNAs for which we found putative targets show the 480 

power of community-level, culture-independent approach analysis for gene regulation 481 

processes. 482 
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Tables and Figures  493 

Table 1: Summary of ncRNAs discovered in halite community   494 

*Percent from total ncRNAs 495 
** Conserved other than Rfam ncRNAs 496 
  497 

 Number (%)* % in Archaea  % in Bacteria 

Total ncRNAs 1538 (100) 54 46 

Rfam ncRNAs 79 (5) 73 27 

Conserved sRNAs** 155 (10) 60 40 

Antisense sRNAs 925 (60) 40 60 

Intergenic sRNAs 613 (40) 75 25 
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 498 
Fig. 1 Taxonomic distribution. Krona graphs of (A) the halite metagenome based of 499 

DNA sequence reads and (B) the halite metatranscriptome based on RNA sequence 500 

reads; and Voronoi plots of (C) total sRNAs; (D) itsRNAs and (E) asRNAs discovered in 501 

the halite community.   502 
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 503 
Fig. 2 sRNA expression levels. (A) asRNAs and their putative targets mean expression 504 

levels (TPM); (B) Pearson correlations in expression level between asRNAs and their 505 

putative mRNA targets across the replicates, with significant correlations (pval<0.01) 506 

highlighted in blue; (C) average expression of itsRNA and average expression of (D) 507 

asRNAs over the average expression of the contigs on which they are found.  508 
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 509 
Fig. 3 itsRNA differential expression. (A) PCA plot showing itsRNA expression levels 510 

clustered by year and (B) heat map of log2-transformed fold change for the top 50 511 

significantly differentially expressed itsRNAs; each row is an itsRNA and each column a 512 

sample collected in 2016 or 2017. 513 

  514 
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 515 

Fig. 4 Predicted structure, target identification, and expression levels for selected 516 

differentially expressed itsRNAs. (A) 2D-layout of consensus structures with base pairs 517 

coloring showing sequence and structure conservation and interactions peaks (green 518 

and yellow arrows); STAR profile plots with dark regions indicating structure reliability, 519 

light regions representing sequence reliability, and thin lines showing the combined 520 

column-reliability as computed by LocARNA-P. (B) Interaction plots of itsRNAs and their 521 

predicted targets. The top graphs are density plots calculated from the top 100 putative 522 

targets, and on the bottom are dumbbell plots of interactions (blue dumbbells) along the 523 

length of the itsRNA for the top 100 predicted mRNA targets; interaction peaks are 524 
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shown in green and yellow in the predicted structures; (C) Expression levels 525 

represented as normalized count for each itsRNA in 2016 and in 2017 across all 526 

samples. 527 

 528 
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