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 2 

ABSTRACT  22 

Staphylococcus aureus is an important pathogen responsible for nosocomial and 23 

community acquired infections in humans, and methicillin-resistant S. aureus (MRSA) infections 24 

have continued to increase despite wide-spread preventative measures. S. aureus can colonize the 25 

female vaginal tract and reports have suggested an increase in MRSA infections in pregnant and 26 

postpartum women as well as outbreaks in newborn nurseries. Currently, little is known about 27 

specific factors that promote MRSA vaginal colonization and subsequent infection. To study S. 28 

aureus colonization of the female reproductive tract in a mammalian system, we developed a 29 

mouse model of S. aureus vaginal carriage and demonstrated that both hospital-associated and 30 

community-associated MRSA isolates can colonize the murine vaginal tract. 31 

Immunohistochemical analysis revealed an increase in neutrophils in the vaginal lumen during 32 

MRSA colonization. Additionally, we observed that a mutant lacking fibrinogen binding 33 

adhesins exhibited decreased persistence within the mouse vagina. To further identify novel 34 

factors that promote vaginal colonization, we performed RNA-sequencing to determine the 35 

transcriptome of MRSA growing in vivo during vaginal carriage at 5 hours, 1-day, and 3-days 36 

post-inoculation. Over 25% of bacterial genes were differentially regulated at all time points 37 

during colonization compared to laboratory cultures. The most highly induced genes were those 38 

involved in iron acquisition, including the Isd system and siderophore transport systems. Mutants 39 

deficient in these pathways did not persist as well during in vivo colonization. These results 40 

reveal that fibrinogen binding as well as the capacity to overcome host nutritional limitation are 41 

important determinants of MRSA vaginal colonization.   42 

 43 

IMPORTANCE  44 
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Staphylococcus aureus is an opportunistic pathogen able to cause a wide variety of 45 

infections in humans. Recent reports have suggested an increasing prevalence of MRSA in 46 

pregnant and postpartum women, coinciding with the increased incidence of MRSA infections in 47 

the NICU and newborn nurseries. Vertical transmission from mothers to infants at delivery is a 48 

likely route of MRSA acquisition by the newborn, however, essentially nothing is known about 49 

host and bacterial factors that influence MRSA carriage in the vagina. Here, we established a 50 

mouse model of vaginal colonization and observed that multiple MRSA strains can persist in the 51 

vaginal tract.  Additionally, we determined that MRSA interactions with fibrinogen as well as 52 

iron uptake can promote vaginal persistence. This study is the first to identify molecular 53 

mechanisms which govern vaginal colonization by MRSA, the critical initial step preceding 54 

infection and neonatal transmission. 55 

 56 

INTRODUCTION 57 

Staphylococcus aureus is a commensal of approximately 20% of the healthy adult 58 

population (1) and also an opportunistic bacterial pathogen able to cause a wide variety of 59 

infections ranging in severity from superficial skin lesions to more serious invasive and life-60 

threatening infections such as endocarditis and septicemia. Prevalence of S. aureus infections has 61 

increased due to higher rates of colonization, immunosuppressive conditions, greater use of 62 

surgical implants, and dramatic increases in antibiotic resistance (2, 3). Compared to antibiotic-63 

susceptible strains, methicillin-resistant S. aureus (MRSA) infections exhibit elevated mortality 64 

rates, require longer hospital stays, and exert a higher financial burden on patients and healthcare 65 

institutions (4). Over the past 20 years, MRSA strains have expanded from healthcare settings 66 

and began infecting otherwise healthy individuals in the community (“community-associated” 67 
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MRSA (CA-MRSA))(5). USA300 isolates are the most problematic lineage of CA-MRSA that 68 

have emerged and clonally expanded across the US, reaching epidemic levels in many hospital 69 

settings (6, 7).  70 

Methicillin-susceptible S. aureus and MRSA possesses many virulence factors that 71 

promote bacterial persistence and invasive infections in different host sites. These virulence 72 

factors include cell wall-anchored surface proteins that facilitate S. aureus adherence to and 73 

invasion of host cells (8), proteases that modulate the host immune response to the bacterium (9), 74 

as well as pore-forming toxins such as α-toxin and the bicomponent leukocidins that lyse host 75 

cells (10). The expression of these various virulence determinants is dependent on factors such as 76 

growth rate, the availability of certain nutrients, host interactions, and the presence of 77 

antimicrobial compounds (8, 11-13). 78 

Nasal carriage is known to be a risk factor for S. aureus infections both in the hospital 79 

and in the community with individuals often being infected with the strain that they carry (14).  80 

S. aureus can colonize the moist squamous epithelium in the anterior nares (15, 16), a process 81 

which depends upon specific interactions between bacterial cell adhesins and epithelial cell 82 

ligands. Two S. aureus surface proteins, clumping factor B (ClfB) and iron regulated surface 83 

determinant A (IsdA), have been strongly implicated in nasal colonization. Both ClfB and IsdA 84 

were shown to promote adhesion to nasal epithelium in vitro (17) and colonization of the nares 85 

of rodents (18, 19) and, in the case of ClfB, humans (20). ClfB is a member of a family of 86 

proteins that are structurally related to clumping factor A (ClfA), the archetypal fibrinogen (Fg) 87 

binding protein of S. aureus. ClfB has been shown to bind Fg, as well as cytokeratin 10, by the 88 

“dock, lock, and latch” mechanism first defined for the Fg binding proteins SdrG and ClfA (21, 89 

22). Additional surface proteins shown to contribute to bacterial attachment to nasal epithelial 90 
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cells in vitro include S. aureus surface protein G (SasG) and the serine-aspartate repeat proteins 91 

SdrC and SdrD (23). 92 

While a ubiquitous colonizer of the skin and mucous membranes, S. aureus, including 93 

antibiotic sensitive and resistant strains, has also been reported to colonize the vagina in up to 94 

22% of pregnant women (24-29). A study that examined MRSA colonization showed that out of 95 

5,732 mothers, 3.5% were colonized by MRSA in the genital tract during pregnancy (24). 96 

Another recent study of 1834 mothers showed that 4.7% were colonized vaginally by multidrug-97 

resistant S. aureus (30). Reports have suggested an increasing prevalence in the USA300 lineage 98 

of MRSA in pregnant and postpartum women, coinciding with the increased incidence in the 99 

NICU and in newborn nurseries (31-36). MRSA outbreaks in NICUs can be difficult to control 100 

and have been associated with significant morbidity and mortality (33). Vertical transmission 101 

from mothers to infants at delivery has been proposed as a possible mechanism of neonatal CA-102 

MRSA acquisition (30, 37), and while it is clear that S. aureus and MRSA can colonize the 103 

vaginal tract during pregnancy, essentially nothing is known about specific bacterial factors that 104 

promote vaginal persistence.  105 

In this study, we have adapted a murine model of vaginal colonization by Group B 106 

Streptococcus (GBS) (38), to investigate MRSA vaginal colonization. We determined that 107 

divergent MRSA strains, CA-MRSA USA300 and HA-MRSA252, can persist within the mouse 108 

vaginal tract and that three mouse strains, CD-1, C57BL/6, and BALB/c, can be colonized with 109 

MRSA. We detected fluorescent MRSA in the vaginal lumen as well as cervical and uterine 110 

tissues of colonized mice and immunohistochemical staining showed an increase of neutrophils 111 

in colonized mice compared to naïve mice. We found that a MRSA strain lacking fibrinogen-112 

binding surface adhesins was attenuated in both in vitro and in vivo models of vaginal 113 
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colonization. Lastly, RNA-sequencing analysis of bacteria growing in vivo revealed the 114 

importance of iron homeostasis in promoting MRSA persistence within the mouse vagina. 115 

Mutant USA300 strains lacking the siderophore transporter FhuCBG or the cell-surface heme 116 

receptor IsdB were significantly attenuated in their ability to colonize the vaginal tract in vivo.  117 

 118 

RESULTS 119 

MRSA colonization of the reproductive tract.  120 

 To characterize the ability of MRSA to attach to epithelial cells of the lower female 121 

reproductive tract, we performed quantitative adherence assays with community-associated 122 

USA300 strain LAC (39) and hospital-acquired strain MRSA252 (40) as described in (41) and in 123 

the Methods. An inoculum of 10
5
 CFU/well (MOI = 1) was added to confluent monolayers of 124 

immortalized human vaginal (VK2), ectocervical (Ect1), and endocervical (End1) epithelial 125 

cells. Following a 30-minute incubation, the cells were washed to remove all nonadherent 126 

bacteria. Data are expressed as percent recovered cell-associated MRSA relative to the initial 127 

inoculum. Both strains exhibited substantial adherence to all three cell lines, ranging from 30-128 

57% of the original inoculum (Fig. 1A and B). Next, we assessed the ability of both MRSA 129 

strains to initiate colonization of the murine vaginal tract. 8-week old female CD-1 mice were 130 

treated with 17-estradiol 1-day before inoculation with 10
7
 CFU of either USA300 or 131 

MRSA252. The next day the vaginal lumen was swabbed and then we euthanized the animals 132 

and collected the vagina, cervix, and uterus from each mouse to quantify bacterial load. The total 133 

CFU from the swab or tissue homogenates was determined by plating on S. aureus CHROMagar 134 

supplemented with cefoxitin. Both strains of MRSA were recovered from the majority of mice 1-135 

day post-inoculation in all tissues, and the CFU recovered from the swab were similar to the total 136 
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CFU counts from the vaginal tissue homogenates (Fig. 1C and D). This level and range in 137 

recovered CFU is similar to what we have observed using this mouse model for GBS 138 

colonization (38). In a subsequent experiment, mice were inoculated with USA300 expressing a 139 

fluorescent DsRed protein and we harvested the female reproductive tract 1-day post-140 

colonization for histological analysis. We made serial sections of these tissues and performed 141 

H&E staining to examine overall tissue morphology (Fig 1E, G, and I) and fluorescent 142 

microscopy to visualize USA300 (Fig 1F, H, J, K, and L).  We observed numerous red 143 

fluorescent bacteria contained within the lumen of the vagina (red arrows) (Fig. 1F). We could 144 

also see MRSA in the cervical and uterine lumen, as well as within the lamina propria of those 145 

organs (green arrows) (Fig. 1H, J, K, and L) 146 

 147 

MRSA vaginal persistence and host response.  148 

To assess vaginal persistence, mice were colonized with USA300 or MRSA252 and 149 

swabbed to determine bacterial load over time. We recovered similar CFU from mice colonized 150 

with either MRSA strain and we observed that both strains exhibited similar persistence within 151 

the mouse vagina. While all mice were initially highly colonized by both MRSA strains, some 152 

remained highly colonized while MRSA was cleared from other mice. (Fig. 2A and B). We also 153 

assessed USA300 vaginal colonization for multiple mouse strains and observed the highest mean 154 

CFUs from BALB/c mice while C57BL/6 and CD-1 mice were colonized to a lower level (Fig. 155 

S1).  Furthermore, MRSA was cleared more rapidly from the vaginal tract of CD-1 mice and 156 

persisted the longest in BALB/c mice (Fig. S1).  157 

As we observed eventual clearance of MRSA from the vaginal tract, we examined the 158 

presence of neutrophils in vaginal tissue of mice colonized with MRSA compared to naïve mice. 159 
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Previous studies have shown that neutrophils respond to vaginal colonization by pathogenic 160 

Streptococcus species, namely GBS and Streptococcus pyogenes (Group A Streptococcus, GAS), 161 

and that neutrophils contribute to host defense and ultimate bacterial clearance (42-44). To 162 

visualize neutrophils during colonization by MRSA, we collected vaginal tissues from mice 1-163 

day and 3-days post-inoculation with USA300 and made serial sections for H&E staining and 164 

labelling with an antibody against the neutrophil marker Gr-1. H&E analysis showed that there 165 

were no obvious differences in morphology of the vaginal lumen between naïve and colonized 166 

mice (Fig. 2C, E, G, I, K, and M). We observed very few Gr-1 positive cells in the tissue sections 167 

form naïve mice (Fig. 2D and F). In contrast to those from naïve mice, the tissue sections from 168 

mice colonized with USA300 for 1-day contained numerous neutrophils within the vaginal 169 

lamina propria (Fig. 2H and J). At 3-days post-inoculation we detected neutrophils within the 170 

vaginal lumen (Fig. 2L and N).  171 

 172 

Adherence to fibrinogen impacts MRSA vaginal colonization. 173 

In a previous study, we demonstrated that GBS Fg binding contributed to vaginal 174 

persistence (45). Also, several studies have shown the importance of S. aureus interactions with 175 

extracellular matrix components, including Fg, in colonization and disease progression (46-49). 176 

USA300 binding to Fg is primarily mediated by the four sortase-anchored surface adhesins ClfA, 177 

ClfB, FnbA, and FnbB. (8, 46, 50). The serine-aspartate adhesins SdrC, SdrD, and SdrE are in 178 

the same protein family as ClfA/B (51) and have been reported to bind nasal epithelia (23). To 179 

eliminate these adherence functions, a USA300 strain was engineered where all of these adhesins 180 

were deleted or disrupted by incorporating four separate mutations (clfA clfB::Tn fnbAB 181 

sdrCDE::Tet; hereafter called “Fg adhesin mutant”). Compared to WT USA300, the Fg adhesin 182 
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mutant was significantly less adherent to Fg (Fig. 3A). Quantitative adherence assays showed 183 

that the fibrinogen adhesin mutant exhibited decreased attachment to VK2 vaginal epithelial cells 184 

(Fig. 3B), and we could visualize this difference via Gram staining (Fig. 3C and D). Further, the 185 

Fg adhesin mutant was also less adherent to Ect1 and End1 cervical epithelial cells (Fig. 3E and 186 

F). To assess the impact of these important surface adhesins during in vivo colonization, we co-187 

challenged mice with both WT USA300 and the Fg adhesin mutant. Initially we recovered 188 

similar CFUs of both strains from the mice. However, by 3-days post-inoculation, mice were 189 

significantly less colonized by the Fg adhesin mutant compared to WT USA300 (Fig. 3G). At 5-190 

days post-inoculation, we could recover WT USA300 CFU from 60% of the mice while only 191 

30% were still colonized by the Fg adhesin mutant (Fig. 3G).  192 

 193 

Transcriptome analysis during MRSA vaginal colonization  194 

Although the Fg adhesin mutant was impaired in vaginal persistence compared to WT 195 

USA300, we did not observe a significant difference in recovered CFUs between the two strains 196 

during the first two days of colonization, and a few mice remained colonized with the Fg adhesin 197 

mutant at later time points (Fig. 1G). Thus, we hypothesized that other bacterial factors are 198 

involved in promoting MRSA vaginal carriage. To determine the impact of vaginal colonization 199 

on MRSA gene expression, we performed transcriptome analysis by RNA-sequencing of 200 

USA300 recovered from the mouse vagina compared to USA300 cultured under laboratory 201 

conditions. For these experiments, we utilized the CD-1 mouse strain as likely in this background 202 

the bacteria encounter more host pressure to maintain colonization. Mice were pre-treated with 203 

17-Estradiol, inoculated with 10
7
 CFU of USA300, and swabbed at 5hrs, 1-day, and 3-days 204 

post-inoculation for RNA isolation. The same mice were swabbed 2-, 4-, 6-, and 8-days post-205 
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inoculation for CFU enumeration (Fig. 4A and B). Based on swab CFU counts, we selected 206 

samples from 18 mice (purple circles) for RNA-sequencing analysis (Fig. 4B). RNA samples 207 

from 6 mouse swabs were pooled to generate 3 replicates for each time-point to compare to 208 

triplicate culture samples. Principle component analysis (PCA) for all of the samples showed that 209 

culture samples clustered separately from mouse samples (Fig. 4C). Next, we compared mouse 210 

samples from each time point to the culture samples and observed 709 genes were significantly 211 

down-regulated (Fig. 4D) and 741 genes were significantly upregulated (Fig. 4E) in the mouse 212 

(Table. S1.) Volcano plots of the log2(fold change) vs. –log10(P value) show that many of the 213 

differentially upregulated and downregulated changes were highly significant at all three time 214 

points compared to culture (Fig. 4F-H). We observed significant overlap in differentially 215 

expressed transcripts at the various time points; over half of the differentially upregulated and 216 

downregulated genes were the same at all three time points (Fig. 4E).  217 

We identified genes encoding transcriptional regulators, toxins, extracellular enzymes, 218 

and extracellular matrix-binding surface proteins that were significantly upregulated at all three 219 

time points (Table 1). Interestingly, while only one immune evasion factor, chemotaxis inhibitor 220 

(chs), was upregulated at all three time points, additional immune evasion genes were 221 

significantly upregulated at 3-days post-inoculation. We observed a similar trend with genes 222 

encoding components of the type VII secretion system (T7SS), which has been shown to 223 

contribute to S. aureus virulence and competition with other microbes in polymicrobial settings 224 

(52, 53). At 5 hrs post-inoculation, only 5 T7SS genes were significantly upregulated while 14 225 

genes were upregulated at 1-day and 3-days post-inoculation (Table 1). 226 

 227 

Iron homeostasis impacts vaginal persistence.  228 
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Though there were global transcriptional changes, the most highly-significant, 229 

differentially-expressed transcripts belonged to iron uptake and export systems. The most highly 230 

induced was the iron-surface determinant isd heme acquisition system (isdBACDEFG and srtB). 231 

Other genes included those involved in the production of the siderophore staphyloferrin B (SB) 232 

(sbnABCDEFGHI) as well as its importer (sirAB), the staphyloferrin A (SA) importer (htsABC), 233 

the xeno-siderophore transporter (fhuCB), as well as the catechol/catecholamine iron transporter 234 

system (sstABCD). Lastly, the heme-regulated export hrt system, was highly down-regulated 235 

during colonization (hrtAB). (Fig. 5A) (54-57). As these results strongly suggest that the vaginal 236 

environment is iron limited, we performed inductively coupled plasma mass spectrometry (ICP-237 

MS) to determine the iron concentration in vaginal lavage fluid from naïve mice and mice 238 

colonized with USA300.  We observed a very low concentration of iron (0.52 M), irrespective 239 

of MRSA colonization, compared to the level present in tryptic soy broth (TSB) (10 M) (Fig. 240 

5B).  241 

To confirm the differential expression of iron-uptake systems by USA300, we incubated 242 

USA300 in mouse vaginal lavage fluid and performed RT-qPCR to compare transcripts of select 243 

iron-homeostasis genes between bacteria grown in lavage fluid and bacteria cultured under 244 

laboratory conditions in TSB. Similar to our RNA-seq results, the RT-qPCR analysis revealed an 245 

increase in sirB, sbnA, isdB, isdD, srtB, htsC, and htsB transcripts in MRSA cultured in vaginal 246 

lavage fluid (Fig. 5C to 5I). Additionally, hrtA and hrtB were significantly downregulated in 247 

MRSA from vaginal lavage compared to MRSA grown in TSB (Fig. 5J and 5K).   248 

To assess the impact of iron uptake by MRSA on vaginal persistence, we co-colonized 249 

mice with WT USA300 and either ΔfhuCBG or isdB::Tn mutants. In addition to its role in the 250 

uptake of xeno-siderophores, the FhuC ATP-ase also provides energy needed for uptake of the 251 
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siderophores staphyloferrin A and staphyloferrin B. Therefore, the ΔfhuCBG mutant is defective 252 

in the transport of all siderophores (58). Also, our RNA-seq results show that at all three time 253 

points, the most highly upregulated gene was isdB, which encodes the hemoglobin-binding 254 

surface protein that transports heme to downstream components of the isd system (55). isdB 255 

transcripts from mouse samples were increased 210-fold at 5hrs, 90-fold at 1-day, and 117-fold 256 

at 3-days post-inoculation compared to culture (Table S1 and Fig. 5A). Compared to WT 257 

USA300, the ΔfhuCBG mutant and the isdB::Tn mutant were cleared significantly faster from 258 

the mouse vagina (Fig. 5L and M). Because a previous study reported that IsdB may impact 259 

bacterial attachment to host cells (59), we quantified adherence of the isdB::Tn mutant to VK2, 260 

Ect1, and End1 cells in vitro and observed no defect compared to WT USA300 (Fig. S2).  261 

 262 

DISCUSSION 263 

S. aureus is capable of causing disease at nearly every site of the body (60), and MRSA 264 

colonization of the skin as well as mucosal sites, such as the nares and the vaginal tract, is a 265 

necessary initial step preceding the development of invasive disease (27, 37, 61-63). While many 266 

studies have investigated host and bacterial determinants of S. aureus colonization of the skin 267 

and nares as well as subsequent infection, little is known about factors which influence vaginal 268 

niche establishment and persistence. Because vaginal carriage during pregnancy represents a 269 

major risk factor for transmission of this pathogen to the newborn (24, 25, 64, 65), we utilized in 270 

vitro and in vivo models of MRSA vaginal colonization to identify determinants of persistence 271 

within the female reproductive tract. The results of our study reveal that MRSA can interact 272 

directly with the female reproductive tract epithelium in vitro and in vivo, and that the expression 273 
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of cell-wall anchored Fg binding adhesins as well as iron-acquisition systems promote MRSA 274 

vaginal colonization.   275 

 The effect of S. aureus colonization on the host immune response has been well-276 

characterized at many epithelial sites. S. aureus on the skin promotes a robust inflammatory 277 

response involving both the innate and adaptive immune system (66, 67). Neutrophils in 278 

particular are rapidly and highly recruited to the site of S. aureus skin infection and are key 279 

mediators of clearance of the pathogen (68-75). Our studies on GBS vaginal carriage have shown 280 

a clear role for neutrophils in combatting GBS colonization of this host site (43, 76). 281 

Additionally, neutrophils have been shown to respond to other common pathogens of the vaginal 282 

tract such as the fungus Candida albicans (77, 78) and the Gram-negative bacterium Neisseria 283 

gonorrhoeae (79). In this study, we observed an increased neutrophil presence in the vaginal 284 

tissues from mice colonized by MRSA compared to naïve controls. Interestingly, while there is 285 

obvious neutrophil infiltration of the lamina propria of the vagina 1-day post-colonization with 286 

MRSA, we did not detect neutrophils in the vaginal lumen at this early time point. In contrast, at 287 

3-days post-inoculation, we could visualize many neutrophils within the vaginal lumen. The 288 

timing of the infiltration of neutrophils into the vaginal lumen coincides with the increased 289 

expression of immune evasion factors by MRSA; in our RNA-sequencing analysis we observed 290 

significant upregulation of these factors at 3-days post-inoculation and not at earlier time points. 291 

Future studies aimed at further characterizing the dynamics of neutrophil response to MRSA in 292 

the female reproductive tract and their extravasation into the vaginal lumen may reveal new 293 

insights into host immune responses common to all vaginal pathogens as well as those specific to 294 

MRSA.  295 
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 The impact of S. aureus interactions with Fg on colonization and disease at various tissue 296 

sites has been well-characterized. In the context of invasive infections, Fg and fibrin can promote 297 

clearance of S. aureus by containing the bacteria within aggregates (80, 81). Additionally, Fg can 298 

stimulate the production of inflammatory cytokines and activate neutrophils (82-84). However, 299 

S. aureus has also been shown to target Fg to promote persistence and disease in the host. The 300 

bacterium can interact with Fg in order to coagulate or to form clumps which help it evade 301 

immune detection, and this clumping is mediated by surface Fg binding adhesins including ClfA, 302 

ClfB (46, 85-88). There is also evidence that S. aureus can alter gene regulation in the presence 303 

of fibrinogen-containing clumps to enhance expression of virulence determinants (89). 304 

Moreover, S. aureus can use Fg as part of its biofilm structure to promote persistence within the 305 

host (90). Our data suggest that, in the context of vaginal colonization, MRSA interactions with 306 

Fg are necessary for persistence within the host. A mutant deficient in Fg binding was 307 

significantly impaired in its ability to adhere to human female reproductive tract cells in vitro 308 

and was also rapidly cleared from the vaginal tract in vivo compared to the WT. These results 309 

hint that the benefits of MRSA binding to Fg outweigh the potential detriments for the pathogen 310 

during vaginal colonization.  311 

 While a majority of mice rapidly clear the Fg adhesin mutant during vaginal colonization, 312 

it is able to persist in some of the animals (Fig. 3G). This result suggests that there are likely 313 

other factors that contribute to in vivo vaginal colonization. To identify additional determinants 314 

of vaginal persistence, we performed RNA-sequencing to profile the transcriptome of MRSA 315 

during vaginal colonization. We observed that over one-quarter of the genes of USA300 were 316 

differentially expressed during in vivo colonization, and over half of those genes were 317 

differentially expressed at all three in vivo time points that were analyzed. Of note, many of the 318 
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most highly and significantly differentially expressed genes belonged to iron-acquisition or iron-319 

homeostasis pathways. Our observation that genes involved in iron uptake were upregulated was 320 

not surprising since their expression is controlled by iron levels and our ICP-MS data revealed 321 

the vaginal environment to be limited in iron (Fig. 5B). Using our in vivo murine vaginal 322 

colonization model, we confirmed that mutants in fhuCBG and isdB exhibited decreased 323 

persistence compared to the isogenic WT MRSA strain. Numerous reports have demonstrated 324 

the importance of nutrient iron for S. aureus growth and pathogenicity (55, 91, 92), and the 325 

results of our study highlight the necessity of this metal for MRSA persistence within the vaginal 326 

environment. That the ΔfhuCBG mutant was attenuated in this model was interesting because, 327 

while FhuCBG is known to transport hydroxamate-type siderophores which S. aureus does not 328 

synthesize (57, 93), FhuC is also the ATP-ase which provides energy for uptake of both SA and 329 

SB siderophores (55, 58). Both WT and the ΔfhuCBG mutant should, under the iron-restricted 330 

conditions during vaginal colonization, express SA and SB. Given that the ΔfhuCBG mutant 331 

cannot transport these siderophores, the extracellular environment becomes more iron restricted 332 

to the mutant as it cannot access SA-Fe and SB-Fe chelates.  333 

The limitation of iron is a major host mechanism for defending against pathogens 334 

because this metal is vital for bacterial growth and metabolic processes (55, 94, 95). Other 335 

transcriptomic studies examining S. aureus growing in vivo during invasive infections have 336 

shown that the bacteria respond to nutrient limitation within the host. One study which compared 337 

the transcriptomes of S. aureus in a murine osteomyelitis model to bacteria grown under 338 

laboratory conditions revealed the importance of iron homeostasis mechanisms, especially the 339 

Isd pathway, during chronic infection (96). Another analysis of USA300 gene expression during 340 

human and mouse infections also showed upregulation of iron transporters in vivo (97). 341 
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Interestingly, many reports have shown that neutrophils can play an active role in limiting iron in 342 

numerous host sites, including the vagina, during exposure to a bacterial pathogen (98-101). The 343 

precise mechanisms by which the host restricts iron availability during colonization warrants 344 

further research as this would provide insight into the exact function of neutrophils in controlling 345 

MRSA vaginal persistence.  346 

We have developed a murine model of S. aureus vaginal colonization and this study is 347 

the first to investigate the molecular mechanisms that promote vaginal carriage and persistence 348 

by MRSA. This mouse model will be useful for continued studies on MRSA-host interactions 349 

within a mucosal environment. Here we demonstrate the importance of Fg binding as well as 350 

iron-acquisition in promoting long-term colonization. Additionally, we observed that neutrophils 351 

respond to MRSA presence in the vagina and that the bacteria upregulate the expression of 352 

immune-modulating genes during the course of colonization. Further investigation into these 353 

specific colonization determinants could yield therapeutic interventions to treat MRSA 354 

persistence within this host niche.  355 

  356 

MATERIALS AND METHODS 357 

Bacterial strains and culture conditions.  358 

S. aureus strains USA300 (39) and MRSA252 (40) were used for the experiments. S. 359 

aureus was grown in tryptic soy broth (TSB) at 37 ̊C and growth was monitored by measuring 360 

the optical density at 600nm (OD600). For selection of S. aureus mutants, TSA (tryptic soy agar) 361 

was supplemented with chloramphenicol (Cm) (10 μg/mL), erythromycin (Erm) (3 μg/mL), or 362 

tetracycline (Tet) (1 μg/mL).  363 
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 To generate the Fg adhesin mutant, first the fnbAB operon was deleted using allelic 364 

replacement. Phages 80α or 11 were used for transduction between S. aureus strains (102). The 365 

fnbAB markerless deletion plasmid pHC94 was constructed using Gibson assembly with the 366 

plasmid backbone coming from amplification of pJB38 (103) using primers pJB R2 and pJB38 367 

F2. The region upstream of fnbA was amplified with primers fnbAB delA and fnbAB delB, and 368 

the region downstream of fnbB was amplified using fnbAB delC and fnb delD (Table S2). The 369 

resulting plasmid was electroporated in S. aureus RN4220 (104), selecting on TSA Cm plates at 370 

30°C. The plasmid was then transduced into S. aureus strain LAC ΔclfA (85). Individual 371 

colonies were streaked on TSA Cm plates incubated at 42°C to select for integration of the 372 

plasmid into the chromosome. Single colonies were grown in TSB at 30°C and re-inoculated into 373 

fresh media for several days before plating on TSA containing anhydrotetracycline (0.3 μg/mL) 374 

to select for loss of the plasmid, creating the LAC ΔclfA ΔfnbAB mutant. The clfB::Tn mutation 375 

was than transduced into this background from the Nebraska Transposon Mutant Library (105) 376 

and selected on TSA Erm plates.  377 

 The isdB mariner-based transposon bursa aurealis mutation (JE2 isdB::ΦNΣ, NE1102) 378 

from the Nebraska Transposon Library (105) into USA300 LAC with phage 11 as described 379 

previously (106). S. aureus genomic DNA of LAC* isdB::ΦNΣ was isolated using Puregene 380 

DNA purification kit (Qiagen) and the transposon insertion was verified by PCR with primers 381 

KAS249 and KAS250 (Table S2) .  382 

 The fhuCBG mutant (58) and the DsRed expressing USA300 strain were generated 383 

previously (107).  384 

 385 
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In vitro MRSA adherence assays. 386 

Immortalized VK2 human vaginal epithelial cells, Ect1 human ectocevical endothelial 387 

cells, and End1 human endocervical epithelial cells were obtained from the American Type 388 

Culture Collection (VK2.E6E7, ATCC CRL-2616; Ect1/E6E7, ATCC CRL-2614; End1/E6E7, 389 

ATCC CRL-2615) and were maintained in keratinocyte serum-free medium (KSFM; Gibco) 390 

with 0.1 ng/mL human recombinant epidermal growth factor (EGF; Gibco) and 0.05 mg/ml 391 

bovine pituitary extract (Gibco) at 37°C with 5% CO2.  392 

Assays to determine cell surface-adherent MRSA were performed as described 393 

previously (41). Briefly, bacteria were grown to mid-log phase to infect cell monolayers 394 

(multiplicity of infection [MOI] = 1). After a 30-min. incubation, cells were detached with 0.1 395 

mL of 0.25% trypsin-EDTA solution and lysed with addition of 0.4 mL of 0.025% TritonX-100 396 

by vigorous pipetting. The lysates were then serially diluted and plated on TSA to enumerate the 397 

bacterial CFU. Experiments were performed at least three times with each condition in triplicate, 398 

and results from a representative experiment are shown.  399 

Crystal violet fibrinogen adhesion assays were performed as described in (85). Briefly, 400 

96-well plates (Corning) were coated with 20 μg/mL of human fibrinogen and incubated with 401 

100 μL of bacterial suspensions in PBS at OD600 = 1.0 for 1h at 37°C. Wells were then washed 402 

and dried, and the adherent bacteria were stained with 0.1% crystal violet. The bound crystal 403 

violet stain was solubilized with 33% acetic acid and measured at OD570. 404 

For Gram staining analysis, VK2 monolayers were grown in tissue culture treated 405 

chamber slides (ThermoFisher) and infected with either WT USA300 or the fibrinogen adhesin 406 

mutant at an MOI of 20. Following a 30 min incubation, the cell monolayers were washed to 407 
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remove any non-adherent bacteria then fixed with 10% formalin (Fisher) and Gram stained 408 

(Sigma).  409 

 410 

Murine vaginal colonization model. 411 

Animal experiments were approved by the Institutional Animal Care and Use Committee 412 

at the University of Colorado-Anschutz Medical Campus protocol #00316 and performed using 413 

accepted veterinary standards. A mouse vaginal colonization model for GBS was adapted for our 414 

studies (38). 8-week old female CD-1 (Charles River), C57BL/6 (Jackson), and BALB/c 415 

(Jackson) mice were injected intraperitoneally with 0.5 mg 17β-estradiol (Sigma) 1 day prior to 416 

colonization with MRSA. Mice were vaginally inoculated with 10
7 

CFU of MRSA in 10μL PBS 417 

and on subsequent days the vaginal lumen was swabbed with a sterile ultrafine swab (Puritan). 418 

To assess tissue CFU, mice were euthanized according to approved veterinary protocols and the 419 

female reproductive tract tissues were placed into 500μL PBS and bead beat for 2 min to 420 

homogenize the tissues. The recovered MRSA was serially diluted and enumerated on 421 

CHROMagar (Hardy Diagnostics) supplemented with 5.2 μg/mL of cefoxitin.  422 

 423 

Histology. 424 

 Mouse female reproductive tract was harvested and embedded into OCT compound 425 

(Sakura) and sectioned with a CM1950 freezing cryostat (Leica). For fluorescence microscopy, 426 

coverslips were mounted with VECTASHIELD mounting medium with DAPI (Vector Labs). 427 

H&E staining was performed using reagents from Sigma. Immunohistochemical analysis was 428 

performed using a biotinylated primary antibody against Gr-1 (Biolegend), Streptavidin 429 
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conjugated to horse radish peroxidase (Jackson Immunoresearch), and AEC peroxidase substrate 430 

kit (Vector Labs). Images were taken with a BZ-X710 microscope (Keyence).  431 

 432 

Generation of RNA-sequencing data. 433 

10
7
 CFU of USA300 were inoculated into the mouse vagina and mice were swabbed 434 

vaginally 5 hrs, 1-day, and 3-days post-inoculation for RNA recovery. Vaginal swabs were 435 

placed into TRIzol reagent (Thermo Fisher), vortexed to dissociated bacteria from swabs, and 436 

stored at -80°C. Swabs samples from 6 mice were pooled and bacteria were lysed by beating for 437 

2 min at maximum speed on a bead beater (BioSpec Products). RNA was isolated by following 438 

the manufacturer’s protocol using a Direct-Zol RNA MiniPrep Plus kit (Zymo Research). For 439 

each sample, 120 ng total RNA was ribodepleted using the Ribo-Zero Magenetic Gold Kit 440 

(Epidemiology) from Epicentre (Illumina) following the manufacurer’s protocol. Ribodeplete 441 

RNA was then prepared into sequence libraries using the RNA Ultra II kit (New Enlgand 442 

Biolabs) following the manufacturer’s protocol without fragmentation. Libraries underwent 9 443 

cycles of PCR efore 1X Ampure Bead purification (Beckman Coulter). Libraries were 444 

quantified, pooled, and sequenced on an Illumina NextSeq500 with 75-base single reads 445 

targeting 20M reads per samples.  446 

 447 

Analysis of RNA-sequencing data.  448 

 Sequencing reads were aligned to the NCBI reference sequence with GenBank accession 449 

number NC_007793.1 and expression levels were calculated using Geneious 11.1.5. Transcripts 450 

with an adjusted P value < 0.05 and log2fold change ±1 were considered significantly 451 
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differentially expressed. PCA and volcano plots were generated using the ggplot2 package in R. 452 

Venn diagrams were generated using the area-proportional Venn diagram tool (BioInfoRx).  453 

 454 

ICP-MS analysis 455 

 Triplicate samples of mouse vaginal lavage and TSB samples were sent to the University 456 

of Nebraska Spectroscopy and Biophysics Core. Fe56 and Fe57 isotope measurements were 457 

combined to show total iron levels.  458 

 459 

RT-qPCR confirmation of RNA-sequencing. 460 

Vaginal lavage fluid was collected as described in (38) and filtered through 0.22μm Spin-461 

X centrifuge tube filters (Costar) to remove contaminants. Triplicated log phase cultures of 462 

USA300 were pelleted and resuspended in filtered lavage fluid. Following a 2-hour incubation at 463 

37°C, bacteria were collected by centrifugation and resuspended in Trizol, lysed by bead beating, 464 

and RNA was isolated using the Direct-Zol RNA MiniPrep Plus kit as described above. RNA 465 

was treated with Turbo DNase (Invitrogen) to remove contaminating DNA. cDNA was 466 

generated using the Quanta cDNA synthesis kit (Quanta Biosciences) and qPCR was performed 467 

using PerfeCTa SYBR Green reagent (Quanta) and a CFX96 Real-Time PCR thermal cycler 468 

(Bio-rad). Fold changes were calculated using the Livak method (108). 469 

 470 

Data analysis.  471 

 GraphPad Prism version 7.0 was used for statistical analysis and statistical significance 472 

was accepted at P values of < 0.05 (∗ P < 0.05; ∗∗ P < 0.00005; ∗∗∗ P < 0.0005; ∗∗∗∗ P < 473 

0.00005). Specific tests are indicated in figure legends.  474 
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 483 

FIGURE LEGENDS  484 

Figure 1. Modeling MRSA vaginal colonization. (A and B) Adherence of USA300 (A) and 485 

MRSA252 (B) to human vaginal (VK2), ectocervical (Ect1), and endocervical (End1) 486 

endothelial cells. (C and D) CFU counts from vaginal swabs, vagina, cervix, and uterus 487 

recovered 1-day post-inoculation with USA300 (C) or MRSA252 (D). Lines represent median 488 

CFU. (E-L) Mice were colonized with DsRed expressing USA300. 1-day post-inoculation, the 489 

female reproductive tract was harvested and 6μm sections of the vagina (E and F), cervix (G, H, 490 

and K), and uterus (I, J, and L) were either stained with H&E (E, G, I) or labelled with DAPI and 491 

imaged with an epifluorescent microscope to visualize nuclei and USA300 (F, H, J, K, and L). 492 

The areas highlighted in (H) and (J) are expanded in (K) and (L). USA300 in the lumen of 493 

tissues are indicated with red arrows, and USA300 within the lamina propia are indicated with 494 

green arrows. Scale bar in (E) is 100μm.  495 

 496 
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Figure 2. MRSA vaginal persistence and host response. (A and B) USA300 and MRSA252 497 

persistence within the CD-1 mouse vaginal tract. CFU counts for individual mice (A) and mean 498 

recovered CFU from vaginal swabs (B) were monitored for 14 days. Lines in (A) represent 499 

median CFU. (C-N) Histology of the mouse vagina during MRSA colonization. Mice were pre-500 

treated with 17β-estradiol and either remained naïve (C-F) or were inoculated with 10
7
 CFU of 501 

USA300 (G-N). 6μm serial sections were stained with H&E (C, E, G, I, K, M) or labelled with 502 

an antibody against Gr-1 (D, F, H, J, L, N). Scale bar in (C) is 100μm. 503 

 504 

Figure 3. Adherence to fibrinogen impacts MRSA vaginal colonization. (A) Adherence of 505 

WT USA300 and the Fg adhesin mutant to Fg. (B-D) Adherence to VK2 cells. Monolayers of 506 

VK2 cells were inoculated with WT USA300 or the Fg adhesin mutant for a quantitative 507 

adherence assay (B) or Gram stains (C and D). Scale bar in (C) is 10 μm. (E and F) Adherence to 508 

Ect1 (E) and End1 (F) epithelial cells. (G) WT USA300 and the Fg adhesin co-colonization. 509 

Statistical analysis (A, B, E, and F) Unpaired t test. (G) Two-way ANOVA with Sidak’s multiple 510 

comparisons test. ∗ P < 0.05; ∗∗∗ P < 0.0005; ∗∗∗∗ P < 0.00005. 511 

 512 

Figure 4. Transcriptome analysis during MRSA vaginal colonization. (A) Experimental 513 

design for RNA-sequencing analysis of mouse vaginal swabs. (B) CFU counts from mouse 514 

vaginal swabs. Samples chosen for RNA-sequencing are highlighted in purple. (C) PCA plot for 515 

triplicate samples of culture, 5hr, 1-day, and 3-days swabs. (D and E) Venn diagrams showing 516 

genes expressed at significantly higher levels (fold change > 2, P value < 0.01) in culture (D) or 517 

in mouse swab samples (E). (F-H) Volcano plots highlighting genes that are differentially 518 
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expressed in swab samples from 5hrs (F), 1-day (G), and 3-days (H) post-inoculation compared 519 

to culture.  520 

 521 

Figure 5. Iron homeostasis impacts vaginal persistence. (A) Differential expression of genes 522 

in iron-acquisition and iron-export pathways. (B) ICP-MS analysis of vaginal lavage from naïve 523 

and colonized mice, and TSB. (C-K) RT-qPCR confirmation of select RNA-sequencing iron-524 

homeostasis hits. (L) Co-colonization with WT USA300 and ΔfhuCBG mutant. (M) Co-525 

colonization with WT USA300 and isdB::Tn mutant. Statistical analysis: (B) One-way ANOVA. 526 

(C-K) Unpaired t test. (L and M) Two-way ANOVA with Sidak’s multiple comparisons test.  527 

 528 

Table 1. Virulence factors which were significantly upregulated during vaginal 529 

colonization. Genes which encode transcriptional regulators, toxins, secreted enzymes, and 530 

ECM binding factors and were differentially expressed in mouse swab samples at all three time 531 

points are listed with their respective fold changes relative to growth in TSB. Immune 532 

modulation and T7SS genes which were not significantly differentially expressed at all time 533 

points are indicated with asterisks.  534 

 535 

Supplemental Figure 1. USA300 vaginal colonization in different mouse strains. 536 

CD-1, C57BL/6, and BALB/c mice were inoculated with 10
7
 CFU of USA300 and the percent of 537 

mice colonized (A) as well as mean vaginal swab CFU (B) were monitored for 9 days.  538 

 539 

Supplemental Figure 2. WT USA300 and isdB::Tn adherence to (A) VK2, (B) End1, and 540 

(C) Ect1 cells.  541 
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 542 

Supplemental table 1. Differentially expressed genes in mouse swabs. All genes that were 543 

significantly differentially expressed in mouse samples are listed along with their adjusted P 544 

values, fold changes relative to culture in TSB, and absolute confidence. 545 

 546 

Supplemental table 2. List of primers used in this study. 547 
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