
 

 1 

Improving the diagnosis and classification of Ph-negative 

myeloproliferative neoplasms through deep phenotyping 
 

 

Running title: Deep phenotyping megakaryocytes in MPNs 
 

Korsuk Sirinukunwattana1-3 *, Alan Aberdeen1 *, Helen Theissen1,2, Nikolaos Sousos4,5, Bethan 

Psaila4,5, Adam J. Mead4,5, Gareth D.H. Turner6, Gabrielle Rees6, Jens Rittscher1-3,7 † and Daniel 

Royston6,8 † 

  
1Institute of Biomedical Engineering (IBME), Department of Engineering Science, Old Road Campus 

Research Building, University of Oxford, UK 
2Big Data Institute / Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, University 

of Oxford, UK 
3Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK 
4Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular 

Medicine, University of Oxford, UK 
5Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of 

Molecular Medicine, University of Oxford, UK  

6Department of Cellular Pathology, John Radcliffe Hospital, Oxford University NHS Foundation Trust, Oxford, 

UK 
7Ludwig Institute for Cancer Research / Nuffield Department of Medicine, Old Road Campus Research 

Building, University of Oxford, UK 
8Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, 

University of Oxford, UK 

* joint first authors 
† joint senior authors 

 

Disclosure of Conflicts of Interest 

The authors have no conflicts of interest to disclose.  

 

Word count: 4000 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 11, 2019. ; https://doi.org/10.1101/762013doi: bioRxiv preprint 

https://doi.org/10.1101/762013
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 2 

Abstract 

Myeloproliferative neoplasms (MPNs) are clonal disorders characterized by excessive proliferation 

of myeloid lineages. Accurate classification and appropriate management of MPNs requires 

integration of clinical, morphological and genetic findings. Despite major advances in 

understanding the molecular and genetic basis, morphological assessment of the bone marrow 

trephine (BMT) remains paramount in differentiating between MPN subtypes and reactive 

conditions. However, morphological assessment is heavily constrained by a reliance on subjective, 

qualitative and poorly reproducible criteria. To address this, we have developed a machine-

learning strategy for the automated identification and quantitative analysis of megakaryocyte 

morphology using clinical BMT samples. Using a sample cohort of recently diagnosed or 

established ET (n = 48) and reactive control cases (n = 42) we demonstrated a high predictive 

accuracy (AUC = 0.95) of automated tissue ET diagnosis based upon these specific 

megakaryocyte phenotypes. These separate morphological phenotypes showed evidence of 

specific genotype associations, which offers promise that an automated cell phenotyping approach 

may be of clinical diagnostic utility as an adjunct to standard genetic and molecular tests. This has 

great potential to assist in the routine assessment of newly diagnosed or suspected MPN patients 

and those undergoing treatment / clinical follow-up. The extraction of quantitative morphological 

data from BMT sections will also have value in the assessment of new therapeutic strategies 

directed towards the bone marrow microenvironment and can provide clinicians and researchers 

with objective, quantitative data without significant demands upon current routine specimen 

workflows. 

 

Keywords: pathology, artificial intelligence, myeloproliferative neoplasm, megakaryocyte, bone 

marrow trephine, image analysis 
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Introduction 

Recent advances in computational image analysis have the potential to transform the conventional 

morphological assessment of human tissues.1,2 The quantitative assessment of specific cell 

populations and the systematic description of tissue architecture have application in replacing or 

augmenting the subjective categorical classification systems that are central to the diagnosis of 

many human cancers. Moreover, translation of advanced tissue and single-cell-based genomic 

and proteomic technologies into new therapeutic strategies will require sophisticated approaches 

to the assessment of complex pathological tissues that are beyond the scope of routine 

histopathology. 

  

Philadelphia-negative myeloproliferative neoplasms (Ph-MPN) are driven by acquired mutations in 

the JAK-STAT signalling pathway of haematopoietic stem cells, resulting in the excessive 

proliferation of one or more blood lineages.3 The three most common Ph-MPNs (essential 

thrombocythaemia [ET], polycythaemia vera [PV] and primary myelofibrosis [PMF]) have 

overlapping clinical and laboratory features that can make their distinction challenging, particularly 

at early disease time points.4 In 95% of driver mutation-bearing cases, the MPN phenotype is 

accounted for by somatic mutations in 3 genes: JAK2, CALR and MPL. Mutations in non-MPN-

driver genes also occur in up to one half of MPNs, some of which influence overall, leukaemia-free 

and myelofibrosis-free survival.5-7 Although detection of one or more of these mutations identifies 

the case in question as clonal and is useful in eliminating a number of reactive differential 

diagnoses, they are not disease specific.8 

 

Approximately a third of ET and PMF cases lack a mutation in one of the three main MPN driver 

genes (so called triple negative [TN]).9 The distinction between TN ET cases and a ‘reactive’ 

process, for example due to chronic inflammation, remains particularly challenging. This is 

reflected in the revised 2016 WHO Classification scheme of myeloid malignancies, in which 

particular emphasis is placed upon the integration of clinical, genetic and histological features for 

the diagnosis of ET and other MPNs.10 Central to the histological interpretation of bone marrow 

trephines (BMT) from suspected MPN patients is the assessment of megakaryocytes using long-
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established but subjective descriptions of their cytological and topographic features. These include 

variations in cell size, atypia (nuclear lobulation / complexity etc.) and cell clustering which may be 

subconsciously based on assessment of only a subset of the megakaryocytes examined in the 

tissue section. Despite their continued incorporation into the 2016 WHO classification system, 

there is controversy about the relative significance and reliability of these subjective cytological 

descriptions, with several studies documenting considerable intra- and inter-observer variability, 

even amongst experienced haematopathologists.11,12 An improved, quantitative approach to the 

description / analysis and classification of the complex cytological features of BMT 

megakaryocytes has the potential to significantly enhance the histological component of integrated 

MPN diagnosis. 

  

We propose that the complex cytological features of megakaryocytes can be captured on digital 

images of routinely prepared haematoxylin and eosin (H&E) stained sections, and be used to 

develop improved disease diagnosis and classification tools through image analysis and artificial 

intelligence (AI) technologies. These approaches offer a unique opportunity to identify genotype-

phenotype correlations that can inform future clinical decision making and basic research into 

patients with MPNs. Recent advances in computational image analysis have already shown 

significant promise in various histological diagnosis / classification tasks in common human 

malignancies.13-19 In the latter context, image analysis has even demonstrated the potential to 

provide robust predictions about key, targetable mutations.20 

  

Here we describe a computational method of subtyping megakaryocytes based on their 

cytomorphological features and determining their relative association with an underlying diagnosis 

of MPN (ET) or a reactive / non-neoplastic condition. We developed a platform that combines 

manual annotation tools with support from statistical AI models to assist clinical 

haematopathologists in the efficient identification of megakaryocytes from routine H&E slides of 

clinical BMTs. Clustering analysis based on deeply-learned features was deployed to identify 

megakaryocyte phenotypes and we demonstrate the existence of 11 distinct megakaryocyte 

subtypes within the marrow of normal and ET BMTs. Our analysis reveals a clear association 
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between the distribution frequency of particular megakaryocyte phenotypic subtypes and a 

diagnosis of ET. Furthermore, we provide evidence of a direct association between particular 

megakaryocyte phenotypes and the underlying ET mutational status. Importantly, although the 

study samples represent a modest cohort of ET (n=48) and reactive control cases (n=42), our 

analysis was restricted to a single cell population and resulted in a library comprising more than 

25,000 megakaryocytes. 

 

In contrast to the high costs associated with specialised sequencing and bioinformatics facilities, 

the approaches outlined here rely upon H&E stained sections that are prepared as part of the 

routine investigations of MPN patients. Taken together, these results hold significant promise in the 

future investigation and clinical management of MPN patients, with the added value of being well 

suited to integration into existing diagnostic workflows including those operating in low resource 

settings.   

Materials and Methods 

Clinical Samples 

BMT samples were obtained from the archive of the host institution. Whole slide scanned images 

(Hammamatsu NanoZoomer 2.0HT / 40X / NDPI files) were prepared from 4 μm H&E stained 

sections cut from formalin fixed paraffin-embedded (FFPE) blocks. The data set comprised 90 

samples (48 ET and 42 reactive / non-neoplastic) with reactive cases derived from a range of 

patients undergoing lymphoma or plasma cell myeloma investigation or staging in whom there was 

no evidence of bone marrow involvement and in whom there was no known myeloid disorder. We 

identified BMTs from the laboratory reporting system or multidisciplinary team meeting (MDT) 

records. This work was conducted as part of the INForMeD study (Investigating the genetic and 

cellular basis of sporadic and Familial Myeloid Disorders; IRAS ID: 199833; REC reference: 

16/LO/1376; PI: Prof AJ Mead). ET cases represent patients in whom this was either an 

established or new diagnosis satisfying the diagnostic criteria of the latest WHO classification 

(2016)10. A summary of the key patient characteristics is provided in Supplemental Table 1. 
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Constructing a Megakaryocyte Library — a Human-in-the-loop Approach  

Supervised machine learning methods are dependent on large numbers of labelled examples. The 

analysis of megakaryocyte morphology presented here required close collaboration with specialist 

haematopathologists in order to ensure that a reliable, high-quality and well-curated dataset 

(library) contained suitable example images of megakaryocytes. These example images included 

megakaryocytes with the wide variety of cytomorphological features commonly encountered in 

normal and diseased BMT samples. 

 

In an attempt to reduce the burden of repetitive and labour-intensive manual annotation, we 

designed assistive AI models to enable quick and efficient feedback from their annotation tasks. 

For this we used a human-in-the-loop (HITL) iterative method that leverages both human and 

machine judgement. The loop refers to the cycle in which humans provide feedback to tune the 

latest model; the latest model updates the predictions and further feedback is provided. 

Iterative Pipeline 

To begin with, we placed all BMT slide images in the unlabelled pool (Figure 1a). To train our initial 

machine learning algorithms for identification (Figure 1a) and delineation (Figure 1b) of 

megakaryocytes, we created a first limited set of training data. A random selection of 14 reactive 

and 6 ET slide images were annotated manually by a specialist haematopathologist (DR). The 

annotation process required delineating the boundary of every megakaryocyte in each image. This 

direct manual annotation ensured that the number of examples in the dataset was above the 

threshold required to train the first iteration of the detection and segmentation models (Figure 1a-

b). 

 

After the first detection and segmentation models were trained, the annotation paradigms were 

switched to the iterative HITL feedback approach. This system consists of iterating through three 

distinct steps (Figure 1a-b): 
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1. Train: The validated annotation cases were randomly allocated to either the training or 

evaluation datasets, which accumulated validated examples from all iterations. The models 

were trained on the training set, with performance measured on the evaluation set. 

2. Predict: The updated models were used to detect and delineate megakaryocytes in a 

sampled subset of unseen cases. 

3. Validate: Three specialist haematopathologists (DR, GR and GT) provided feedback on the 

inference results (predicted megakaryocytes for the prediction model and predicted 

boundaries for the segmentation model), indicating whether the inference results were 

valid. Validated results were then placed in the labelled pool for detection and segmented 

pool for segmentation (Figure 1a-b). 

For the complete details of all iterations of the training and validation procedure, see Supplemental 

Tables 2 and 3. 

Detection 

The detection task required predicting the location and dimensions of a rectangular box bounding 

each megakaryocyte on a BMT slide (Figure 2a). We used a deep neural network called Single 

Shot Multibox Detector.21 This method defines a default set of bounding boxes over different 

aspect ratios and scales. To find the megakaryocytes, the network generated a score for each 

default box to indicate the likelihood that it contained a megakaryocyte and a score for the 

recommended offset for each default box that more closely matches the identified megakaryocyte. 

For complete details of the training method see Supplemental Methods. The validity of each 

predicted bounding box was confirmed by at least one specialist haematopathologist. To collect the 

specialist feedback as quickly as possible, we simplified the interaction in our custom web interface 

(Figure 2a). The interface cycled through the predictions and the user simply assigned a ‘positive’ 

or ‘negative’ label to each prediction with the labels mapped to scores of +1 and -1, respectively. 

The level of consensus was quantified by showing the same example megakaryocyte to more than 

one pathologist. If the average score was positive, the candidate cell was labelled as a 

megakaryocyte. 
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Segmentation 

Image segmentation involves partitioning an image into different regions by assigning a class label 

to each pixel such that pixels of the same class share similar characteristics. Segmentation is often 

used to locate the boundaries of objects of interest; in this case megakaryocyte cells. 

Supplemental Figure 1a shows an example of a segmented megakaryocyte. We used a 

convolutional neural network U-Net to delineate the boundaries of megakaryocytes.22 Our 

implementation of the network produced both a segmentation result and an estimated score for the 

quality of the result. The estimated intersection over union (IoU) score, ranging between 0 and 1, 

reflected how well the segmentation result overlapped with the ground truth. For complete details 

of the training of the method see Supplemental Methods. In each iteration of the iterative training 

cycle, the model was applied to unseen data. We then selected segmentation results that are 

considered outliers based on Tukey's rule (the estimated IoU < Q1 - 1.5 [Q3 - Q1], where Q1 and 

Q3 denote the 1st and 2nd quartile of the estimated IoU values of segmentation results). These 

selected segmentation results deemed to be outliers went through a quality control stage involving 

inspection and correction by two annotators (KS and HT) [Figure 1b]. 

Megakaryocyte Phenotyping 

We used two methods to identify morphological phenotypes: feature extraction and clustering 

analysis. For feature extraction, it was important to make sure that only the morphology of 

megakaryocytes impacted the resulting output. To account for this, we used the fully segmented 

megakaryocyte image patches (see Section Segmentation) and removed the background area 

from the image. We used the autoencoder method to transform the image patches into numerical 

vectors (latent representations) of length 128.23 Each vector is an efficient encoding of the 

megakaryocyte morphology. For complete details of the training method see Supplemental 

Methods. 

 

Following feature extraction, we performed a clustering analysis to group morphologically similar 

megakaryocytes. We trained a self-organizing map (SOM) on the learned latent representation 

vectors to produce a 10-by-10 grid with 100 groups of similar megakaryocytes.24 To further reduce 
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the number of clusters we applied Markov clustering on the self-organising groups.25 We chose the 

Markov clustering result that maximizes the modularity measure.26 The results from Markov 

clustering and self-organising map were used to assign each megakaryocyte to a cluster (Figure 

1d; Figure 3a). 

Spatial Distribution Analysis 

We estimated the spatial density of megakaryocytes using kernel density with an Epanechnikov 

kernel. A single kernel’s bandwidth was estimated for all samples by Silverman’s rule-of-thumb.27 

Clusters of densely packed megakaryocytes have uniformly high values of density and so low 

variance of the density within clusters. We selected a global cut-off that yields the lowest average 

variance of density within clusters to determine clusters of densely packed megakaryocytes. Figure 

4a shows examples of megakaryocyte clusters. 

Case Classification 

A k-nearest neighbour classifier utilising six discriminative megakaryocyte phenotypes 

(Phenotypes 1, 3, 8, 9, 10, and 11) [Figure 3c] was trained to discriminate reactive and ET 

samples. The distance between samples is defined by Euclidean distance. We used 5-fold cross-

validation in which each cross-validation fold preserves the ratio of reactive to ET cases to 

maintain the class balance at their original levels. Classification accuracy measures including 

precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC) were 

recorded for each cross-validation permutation. To evaluate the effect of the number of nearest 

neighbours, k, on the classification performance, we trained separate classifiers using different 

values of k (k = 1,3,5,7, and 9). See Figure 3e and Supplemental Table 7 for the classification 

results. 

Implementation 

All machine learning models were implemented using Python and the deep learning Pytorch 

library.28 Statistical analyses were performed using R version 3.5.1. Our web-based annotation tool 

is publicly available at https://github.com/alanaberdeen/AIDA. 
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Results 

Human-in-the-loop Assisted Annotation Tools to Accelerate the Curation of 

Megakaryocytes 

We employed a human-in-the-loop methodology to efficiently build a large library of annotated 

megakaryocytes (approx. 25,000 megakaryocytes). Figure 2a shows the interface of our web-

based annotation tool for megakaryocyte identification. The identification tool detected candidate 

megakaryocytes for which the delineation tool suggested segmentation masks (Figure 1b; 

Supplemental Figure 1a). To ensure accuracy and quality, these predicted results were reviewed 

and edited by haematopathologists and fed into the AI models for further training to iteratively 

improve the model performance (Figure 2b; Supplemental 1b-c). Our tools achieved high levels of 

accuracy for identification (mAP = 0.86) and delineation (IoU = 0.93) within four training iterations. 

The time spent on annotating megakaryocytes with our assisted AI tools was significantly less than 

manual annotation (Figure 2c; Supplemental Figure 1d).  

 

Megakaryocyte Phenotypes and Their Diagnostic Associations 

To identify a feature set that best captures megakaryocyte morphology an autoencoder neural 

network was used. A total of 11 morphological subtypes were identified through clustering analysis 

performed on these learnt features. Certain of the 11 identified phenotypes have distinct, readily 

appreciated morphological characteristics (Figure 3a; Supplemental Figure 2). For instance, cells 

identified as belonging to phenotype 11 are significantly enlarged and frequently contain an 

atypical, polylobated nucleus. By contrast, cells of phenotype 3 are relatively small with a high 

nuclear-cytoplasmic ratio. However, certain other megakaryocyte phenotypes are not so easily 

distinguished by trained haematopathologists, which emphasizes the limitations of conventional 

subjective assessment. As predicted, analysis of megakaryocyte spatial distribution revealed that 

ET samples contain an increased cell density and absolute cell number when compared to reactive 

samples (Figure 4a-b), with megakaryocytes in ET tending to form increased numbers of large, 

more densely packed clusters (Figure 4c-d). 
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We used the proportion of megakaryocytes of each phenotype to characterise the BMT samples. 

Principal component analysis demonstrated separation between reactive and ET samples under 

the identified phenotypic profiles (Figure 3b). We identified significant enrichment of phenotypes 

1,3, and 8 in reactive samples and phenotypes 9-11 in ET samples (Figure 3c). Detailed 

visualisation of the spatial distribution of megakaryocytes on the scanned images confirmed the 

prominence of these phenotypes in reactive and ET samples (Figure 3d). Although significantly 

enriched in reactive samples, the clustering of megakaryocytes of phenotypes 1, 3, and 8 was not 

different between reactive and ET samples. By contrast, phenotypes 9-11 were both significantly 

increased and more likely to form clusters in ET (Figure 4e). Based on the proportion of these 

discriminative phenotypes, we trained k-nearest classifiers with different values of k to classify ET 

(n = 48) and reactive samples (n = 42). The optimal classifier used k = 9 and reached the AUC of 

0.95 in 5-fold cross validation (Figure 3e; Supplemental Table 7). 

Morpho-molecular Association Analysis 

We performed statistical analysis to assess the association between megakaryocyte phenotypes 

and the underlying mutational status, including TN cases and those carrying the two most common 

driver mutations (JAK2 and CALR). Statistically significant associations to the CALR mutational 

status were observed for megakaryocyte phenotypes 4 and 7 (Figure 5a). Indeed, principal 

component analysis also showed a reasonable separation of CALR mutated samples from TN and 

JAK2 mutated samples (Figure 5c). No significant morpho-molecular associations were identified 

for cases carrying a JAK2 mutation or having TN status (Supplemental Figure 3). The proportion of 

megakaryocytes with phenotype 11 was significantly higher in ET samples than reactive, and there 

was an increasing trend in the proportion of phenotype 11 amongst the ET samples as stratified by 

order of TN, JAK2, and CALR mutation status (Figure 5b). Furthermore, we observed a moderate 

correlation between the proportion of phenotype 11 cells and the peripheral blood platelet counts 

(Spearman correlation coefficient = 0.43) [Figure 5d-e]. 
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Representative samples from our analysis are illustrated in Figure 6. A typical reactive sample 

(patient 1) can be readily distinguished from those of ET patients with or without an identified driver 

mutation (patient 7 representing the only MPL mutant case in our cohort of 48 ET samples). Of 

interest, the sample from patient 4 harbouring a JAK2 mutation with a low variant allele frequency 

(VAF <5%) was identified by our analysis as being phenotypically more similar to the TN samples. 

Notably, while clearly identified as cases of ET using our current analysis, the samples from 

patients 2 and 4 were challenging cases to interpret morphologically. Indeed, in both cases the 

original histology reports offered a descriptive account of the specimen and specifically raised a 

reactive differential diagnosis. This likely reflects the relatively low proportion of megakaryocytes 

with phenotypes 10 and 11, which are more readily appreciated on routine, subjective assessment. 

Finally, the BMT specimen from patient 8 was processed and analysed as a case of ET but is 

clearly identified as an outlier in Figure 3b and Figure 5c-e. Subsequent review revealed this case 

to have been incorrectly assigned (typographical error) as ET rather than reactive during image 

acquisition and labelling prior to our analysis. This highlights the discriminatory potential of our 

analytical tools. 

 

 

Discussion 

The BMT histological criteria required for an MPN diagnosis based on current classification 

schemes are qualitative and rely upon the subjective assessment of morphological features by a 

trained haematopathologist.10 In particular, there is emphasis on the description of various 

cytological and topographical features of megakaryocytes, with various accounts of cellular atypia / 

pleomorphism, nuclear lobulation and clustering outlined in most diagnostic manuals and 

textbooks. These subjective, qualitative descriptions are poorly reproducible, even between 

experienced haematopathologists.11,12 

 

Here we present a strategy for the annotation, extraction and quantitative description of MPN 

megakaryocytes using advanced machine learning approaches. The automated capture of cellular 

features and their translation into reproducible unsupervised morphological phenotypes allows the 
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complex range of megakaryocytes to be quickly and efficiently curated from routine BMT samples, 

and overcomes the limitations of describing this complexity in language that is subject to 

interpretation. These approaches have identified specific megakaryocyte phenotypes that offer 

significant promise as automated adjuncts in the diagnosis of MPN and their distinction from 

potential reactive mimics. In our cohort of ET and reactive / normal BMT samples, principal 

component analysis using the identified megakaryocyte phenotypes showed a clear separation of 

these cases, with 6 out of 11 specific phenotypes being significantly associated with either a 

reactive or ET diagnosis. As expected, several of these phenotypic groups broadly correspond to 

the traditional phenotypes described in conventional subjective classification schemes. However, 

our analysis suggests that particular phenotypic groups are not easily distinguished by 

conventional approaches and some may have significance beyond the simple segregation of 

neoplastic and non-neoplastic cases. Specifically, megakaryocyte phenotypes 4 and 7 appear to 

be disproportionately represented in TN and JAK2 cases of ET when compared to CALR mutation-

bearing samples, although interestingly these phenotypes were not identified as being significantly 

over-represented in the ET cohort as a whole. Taken together, these observations suggest that in 

addition to having utility in the distinction of ET from reactive mimics, particular megakaryocyte 

phenotypes correspond to specific genetic subgroups of ET. While this finding is supported by 

recent observations of certain mutational-phenotypic associations in ET 29, the identification and 

characterization of the specific phenotypes presented here could not have been achieved by 

conventional subjective specimen assessment, and are reliant upon the quantitative data extracted 

by our automated machine learning tools.  

 

In addition to the identification of 11 distinct megakaryocyte phenotypic groups, our analytical tools 

allow us to correlate these phenotypes with their topographical distribution within the analysed 

BMT specimens. As expected, prominent clustering of megakaryocytes was observed in ET, but 

our analysis also suggests that this clustering of megakaryocytes is associated with particular 

phenotypes. This observation raises important questions about possible crosstalk between specific 

clonally related megakaryocyte subpopulations within the bone marrow microenvironment, 
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particularly given the observed morpho-molecular associations, and clearly warrants further 

investigation.  

 

We consider that the machine learning approaches presented here offer significant promise in 

several distinct clinical scenarios. Firstly, a fully automated annotation and analysis pipeline of 

BMT megakaryocytes in suspected cases of MPN has the potential to provide a fast and reliable 

initial diagnostic assessment of specimens in advance of formal pathology reporting. This is likely 

to be of value when access to haematopathology expertise is restricted (for example in low-

resource healthcare systems). In the context of histological reporting by specialist 

haematopathologists, we also consider that the automated output from our analysis will provide 

valuable ancillary information in the routine work up and reporting of BMT samples. In particular, a 

comprehensive, reliable and easily interpreted summary of the megakaryocytic population will 

allow the diagnostic pathologist to concentrate on the ‘higher-level’ process of integrating the 

broader pathological features with the clinical and laboratory findings.30 We anticipate that this may 

prove particularly useful for the assessment of sequential specimens from patients undergoing 

treatment and / or repeated investigation, in whom quantitative morphological correlates of disease 

response are currently unavailable. 

 

Importantly, although the morphological assessment of megakaryocytes is central to the 

histological assessment of MPNs, other features such as marrow cellularity, presence / absence of 

fibrosis and blast cell estimation are included in the current WHO classification system of MPNs. It 

is therefore likely that the optimal clinical application of our machine learning megakaryocyte 

analysis will require structured integration into a more comprehensive quantitative description of 

the bone marrow microenvironment. 

 

One limitation of our current analysis is the modest number of samples and lack of detailed clinical 

follow up and molecular characterisation beyond the identification of the key driver mutations 

JAK2, CALR and MPL. We also recognise that our current study has been restricted to MPN cases 

labelled as ET and does not include cases of PV or PMF. This partly reflects our intention to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 11, 2019. ; https://doi.org/10.1101/762013doi: bioRxiv preprint 

https://doi.org/10.1101/762013
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 15 

establish an analytical workflow with samples in which the morphological analysis of 

megakaryocytes is not significant disrupted by bone marrow fibrosis, but also recognises that one 

of the key unmet clinical needs in the management of MPN patients is the challenging distinction of 

ET and prefibrotic/early PMF (pre-MF). We reason that the machine learning approaches 

described here will be readily applicable to the interrogation of sample cohorts enriched for cases 

of pre-PMF and ‘high-risk’ ET, in whom the distinction from low-risk ET is of significant prognostic 

and therapeutic importance. This will require access to large multi-centre trial cohorts in whom 

detailed longitudinal clinical and genetic data are available, and is the subject of ongoing work.   

 

Notwithstanding the promise of the machine learning approaches outlined here, important 

questions remain about the relationship between various molecular / genetic subtypes of MPN and 

the megakaryocyte phenotypes and their topographical distribution throughout the marrow. 

Importantly, the molecular landscape of aberrant megakaryopoiesis emerging from novel 

technologies such as high-throughput single-cell transcriptome profiling is already demonstrating 

the potential to identify clone-specific cell surface antigens. Similar, modified approaches designed 

to interrogate intact bone marrow tissue and characterise megakaryocyte sub-populations and their 

unique microenvironment are clearly required to expand and refine the preliminary findings 

presented here. 
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Figure Legends 

 

Figure 1. Overview of the Computational Pipeline for Phenotypic Analysis of 

Megakaryocytes. In order to effectively build an annotated library of megakaryocytes, assisted 

annotation tools for identification (a) and delineation (b) have been developed. A library containing 

at least 25,000 annotated megakaryocytes from samples with diverse disease background could 

be generated within a short amount of time (c). Clustering analysis performed on the library of 

megakaryocytes to identify possible phenotypes (d). Statistical analyses were carried out to assess 

the diagnostic associations of different megakaryocytes phenotypes (e). 
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Figure 2. Efficiency of the Assisted Tool for Megakaryocyte Identification. Our web-based 

interface for assisted annotation. Candidate megakaryocytes are automatically identified by the AI 

algorithm, allowing haematopathologists to quickly review and confirm these as megakaryocytes 

(green boxes) or non-megakaryocytes (red boxes) (a). The human-in-the-loop assisted annotation 

tool could achieve a high level of accuracy as measured by the mean average precision (mAP) 

within a few training iterations (b), and the amount of annotation time is significantly reduced by 

using our tool (c). Wilcoxon rank-sum test, significance level = 0.05.  
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Figure 3. Statistical Analyses of Megakaryocyte Phenotypes. A total of 11 megakaryocyte 

phenotypes were automatically discovered in the unsupervised clustering analysis (a). Proportions 

of 11 megakaryocyte phenotypes could be used to describe a BMT sample. The results from 

principal component analysis at the sample level show that reactive and ET subgroups are 

reasonably separated under the identified phenotypic profiles (b). Association analysis of the 

phenotypic distributions and the diagnostic status (Bonferroni adjusted Wilcoxon rank-sum test, 

statistical significance at 0.05). An asterisk indicates a statistically significant result. [A dashed 

circle indicates the outlier sample referred to in the results section]. (c). Detailed spatial distribution 

of different megakaryocyte subtypes on examples of a reactive and ET bone marrow trephine. 

Megakaryocytes of phenotypes 1,3, and 8 are prominent in the reactive sample, while phenotypes 

9-11 are most prominent in the ET sample (d). The k-nearest neighbour classifier (k = 9) reached 

the AUC of 0.95 demonstrating the potential to accurately discriminate ET from reactive samples 

based on megakaryocyte phenotypes (e). 
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Figure 4. Spatial Statistics of Megakaryocytes. Clusters of densely packed megakaryocytes 

(orange) could be identified by our analytical pipeline (a). The average density of megakaryocytes 
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in ET is significantly higher than that of the reactive samples (Wilcoxon rank-sum test, p < 0.05) [b-

d] and there is a strong correlation between average density and the number of megakaryocytes 

on a sample (b), the number of clusters (c), and the average cluster size (d). The number of cells, 

cluster size and number of clusters is significantly higher in ET compared to reactive samples 

(Wilcoxon rank-sum test, p < 0.05). Although phenotypes 1,3, and 8 are significantly enriched in 

reactive samples (Bonferroni adjusted Wilcoxon rank-sum test, p < 0.05), they are not enriched in 

clusters of densely packed megakaryocytes. By contrast, phenotypes 9-11 are significantly 

enriched in ET samples and tend to form clusters of densely packed cells (Bonferroni adjusted 

Wilcoxon rank-sum test, p < 0.05) (e). 
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Figure 5. Morpho-molecular Associations in ET. Associations between phenotypes and 

mutational status in ET samples (Bonferroni adjusted Wilcoxon rank-sum test, significance level = 

0.05) (a). Associations between the mutational status and the proportion of the phenotype 11 

(Bonferroni adjusted Wilcoxon rank-sum test, significance level = 0.05). Trend in phenotype 11 

amongst ET samples (as stratified in the order of TN, JAK2 and CALR mutation status) was tested 

using Jonckheere’s test (significance level = 0.05) (b). Principal component analysis of the 

diagnosed samples based on the phenotypic profiles (c), variation in the proportion of phenotype 

11 (d) and the platelet count (e). A dashed circle indicates the outlier sample referred to in the 

results section. 
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Figure 6. Representative examples of reactive, ET, and ‘outlier’ BMT samples 
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