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Abstract 

Aim 

Temporal patterns of community dynamics are drawing increasing interest due to their 

potential to shed light on assembly processes and anthropogenic effects. However, interpreting 

such patterns considerably benefits from comparing observed dynamics to the reference of a null 

model. For that aim, the cyclic shift permutations algorithm, which generates randomized null 

communities based on empirically observed time series, has recently been proposed. The use of 

this algorithm, which shifts each species time series randomly in time, has been justified by the 

claim that it preserves the temporal autocorrelation of single species. Hence it has been used to 

test the significance of various community patterns, in particular excessive compositional 

changes, biodiversity trends and community stability.  

Innovation 

Here we critically study the properties of the cyclic shift algorithm for the first time. We 

show that, unlike previously suggested, this algorithm does not preserve temporal autocorrelation 

due to the need to “wrap” the time series and assign the last observations to the first years. 

Moreover, this algorithm scrambles the initial state of the community, making any dynamics that 

results from deviations from equilibrium seem excessive. We exemplify that these two issues 

lead to a highly elevated type I error rate in tests for excessive compositional changes and 

richness trends. 

Conclusions 

Caution is needed when using the cyclic shift permutation algorithm and interpreting results 

obtained using it. Interpretation is further complicated because the algorithm removes all 

correlations between species. We suggest guidelines for using this method and discuss several 

possible alternative approaches. More research is needed on the best practices for using null 

models for temporal patterns. 
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Introduction 

One of the main approaches for the study of community ecology is documenting patterns of 

variation in ecological communities and underpinning the mechanistic basis for these patterns 

(Rosenzweig, 1995). Some of the most commonly studied patterns are species-area relationships 

(e.g. Preston, 1960; Rosindell & Cornell, 2007), latitudinal diversity gradients (e.g. Hillebrand, 

2004; Usinowicz et al., 2017), productivity-diversity relationships (e.g. Kondoh, 2001; Tilman & 

Pacala, 1993) and so forth. Multiple explanations have been suggested for these patterns and 

studying them has shed light on the mechanisms determining species diversity in ecological 

communities (e.g. DeMalach, Zaady, & Kadmon, 2017; Usinowicz et al., 2017). 

However, all the aforementioned patterns have a thing in common: they are static, 

representing a “snapshot” of ecological communities without any temporal dimension. While 

interest in these patterns continues, in recent years there is growing interest in understanding 

temporal patterns in communities (Dornelas et al., 2013; Loreau & de Mazancourt, 2013; 

Magurran, 2016; McGill, Dornelas, Gotelli, & Magurran, 2015). It is believed that some of these 

patterns, that represent community dynamics and assembly “in action”, may reveal new insights 

on the processes shaping ecological communities (Chisholm et al., 2014; Kalyuzhny, Seri, et al., 

2014). For example, studies on the scaling of population fluctuations revealed the central role of 

temporal environmental variability in shaping ecological communities (Chisholm et al., 2014; 

Jabot & Lohier, 2016; Kalyuzhny, Schreiber, et al., 2014; Kalyuzhny, Kadmon, & Shnerb, 

2015), and studies focusing on long-term changes in abundance and diversity revealed that 

population-level regulation is often weak (Kalyuzhny, Seri, et al., 2014; Knape & de Valpine, 

2012; Ziebarth, Abbott, & Ives, 2010), while total-abundance and species diversity are indeed 

regulated (Brown, Ernest, Parody, & Haskell, 2001; Goheen, White, Ernest, & Brown, 2005; 

Gotelli et al., 2017; Magurran & Henderson, 2018). Moreover, in recent years there is an 

increasing interest in understanding richness trends and compositional turnover, partly motivated 

by concerns over the effect of anthropogenic activities on ecological communities (Elahi et al., 

2015; Magurran et al., 2018; McGill et al., 2015; Vellend et al., 2013). Several studies have 

shown that while some local communities show richness trends, negative and positive changes 

may cancel out in multiple communities worldwide (Dornelas et al., 2014; Vellend et al., 2013). 

On the other hand, multiple ecological communities show large compositional turnover 

(Dornelas et al., 2014; Magurran et al., 2018).  
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This immediately raises the question: what qualifies as a “large” change in richness or 

composition? Stochastic community models generally predict that ecological communities would 

undergo constant changes at steady state (Lande, Engen, & Saether, 2003), and so do some 

deterministic models of nonlinear dynamics (May, 1976). This is true even for the simplest and 

most minimalistic models of community dynamics – Neutral Theory and Dynamic Equilibrium 

(DE) theory (Hubbell, 2001; MacArthur & Wilson, 1967). Consequently, and in analogy to null 

models of community patterns in space, temporal patterns should be compared to some null 

model to evaluate whether they deviate from the expectations under a minimalistic set of 

mechanisms (Gotelli & Graves, 1996; Gotelli & McCabe, 2002). Such null models preserve 

some aspects of the data and randomize others. 

A promising suggestion for a null model of community dynamics is the cyclic shift 

permutations algorithm (Hallett et al., 2014), originally proposed for spatial analysis (Harms, 

Condit, Hubbell, & Foster, 2001). This algorithm gets as an input a matrix of species by years (or 

other temporal units). In each realization of the algorithm, the time series of every species is 

shifted forwards in time a random number of years y, independently of other species. The last y 

data points are then assigned to the first y years, hence “wrapping” the time series like a loop. 

For example, two possible resamples of the time series [1 2 3 4 5] could be [5 1 2 3 4] or [3 4 5 1 

2] with equal probability. This approach has been claimed to preserve the autocorrelation 

structure and the abundance distribution of each species time series (Hallett et al., 2014; Lamy et 

al., 2019; Magurran et al., 2018), that result from the ecological dynamics of this species, while 

removing all correlations between species. Cyclic shift permutations have been used as a null 

model for richness and compositional changes (Demars et al., 2014; Magurran et al., 2018), 

changes in dominance (Jones & Magurran, 2018), and compensatory dynamics and stability of 

species diversity and total biomass (Gotelli et al., 2017; Hallett et al., 2014; Lamy et al., 2019; 

Magurran & Henderson, 2018). The application of the cyclic shift null model is greatly 

facilitated by the available implementation of this algorithm within the open source R package 

Codyn (Hallett et al., 2016). 

Here we would like to point out two important issues with the use of cyclic shift 

permutations and investigate their implications for statistical tests of temporal patterns. We claim 

that a) Cyclic shift permutations do not preserve the autocorrelation structure of single species 
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time series, especially the long-term autocorrelation patterns; and b) cyclic shift permutations 

scramble the initial state of the community, making any dynamics that result from initial 

deviations from equilibrium seem “excessive”. We show that these two properties lead to 

seriously inflated type I error rates when testing for excessive compositional changes and 

richness trends. For that aim, we generate synthetic community time series using two generic 

models, the independent single-species version of Dynamic Equilibrium theory (DE, MacArthur 

& Wilson, 1967; D. Simberloff, 1983; D. S. Simberloff, 1969) and Multispecies Ricker 

(Kalyuzhny & Shnerb, 2017; Kilpatrick & Ives, 2003). The former is a presence-absence 

dynamic model where species go extinct and arrive stochastically and independently of each 

other, while the latter considers abundances dynamics of interacting species in a fluctuating 

environment. For the synthetic time series, richness trends and compositional changes are 

compared to the predictions of cyclic shift permutations. We conclude by discussing the possible 

applications of the cyclic shift algorithm and other community null models.  

Do cyclic shift permutations preserve temporal autocorrelation? 

The most important argument for using the cyclic shift permutations algorithm is that is 

(supposedly) preserves the temporal autocorrelation of the data. While this argument is highly 

intuitive, it ignores a crucial aspect of the algorithm – the “wrapping” procedure, where the last y 

data points (where y is the number of years that the time series has been shifted) are assigned to 

the first y years.   

Consider the first and last year data points in the resampled time-series. It is highly likely 

that in the original time series, those were consecutive years, now maximally separated by the 

“wrapping” of the time series.  Assuming the original time series had positive short-term 

temporal autocorrelation, this results in the last data point in the resample resembling 

considerably the first data point. This is generalizable, to some degree, to the first several data 

points resembling the final several data points. Moreover, the wrapping “attaches” a pair of years 

that were originally maximally separated in time, also distorting short-term autocorrelation. 

Given data that was generated by some process, the goal of bootstrap resampling is 

generating more data that should resemble new data that would have been generated by repeating 

that process. Many ecological models, and DE and Ricker (for parameter regimes where the 

nonlinear effects do not take place) in particular, predict that consecutive time points would be 
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relatively similar, and as time passes dissimilarity monotonously increases. Figure 1 exemplifies 

this for a single species undergoing stochastic colonization and extinction (Figure 1a), for 

multiple such species under DE (Figure 1b) and the Ricker model (Figure 1c). In all three cases, 

time series resampled using the cyclic shift permutations show a unimodal pattern of 

autocorrelation, very different from the original time series. Dissimilarity indeed initially 

increases, but then, after half the time series duration, begins to symmetrically decrease. Short 

term correlation is also quantitatively somewhat different from the original data. 

 

Figure 1 – Comparison of temporal autocorrelation and dissimilarity patterns between 

“empirical” simulated time series and their resamples, obtained using the cyclic shift algorithm. 

In (a) 105 colonization-extinction time series of a single species under Dynamic Equilibrium 

(DE) were simulated with colonization probability = extinction probability = 0.1. For each time 

series and time point, the probability to be at the same state (presence or absence) as the initial 

state was calculated for the “empirical” time series and for the resamples. In (b) and (c), 104 

communities of 100 and 10 species, respectively, were simulated under DE and multispecies 

Ricker. The Jaccard and Bray-Curtis compositional dissimilarity indices in every year were 

compared with the initial year for the empirical communities and resamples. For every empirical 

time series, 500 resamples were calculated and the results are averaged over the time series and 

resamples for every time point. 

 

We conclude that the “wrapping” of the time series inherently distorts the temporal 

autocorrelation structure of ecological processes. This effect is dramatic on time scales that are 

on the order of the length of the time series, and less dramatic for shorter time scales. This raises 
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the question – what are the implications of this, and of the “scrambling” of the initial state that 

was mentioned earlier, for the performance of statistical tests? 

Type I errors of richness trends and excessive turnover 

We exemplified the consequences of these properties for the testing of two fundamental 

patterns of community dynamics – temporal trends in diversity and compositional turnover. 

These are quantified by calculating the linear regression slope of a) species richness and b) the 

dissimilarity of species composition of each year w.r.t the initial year; both versus time. These 

patterns have been studied in various communities and compared to the expectations under 

cyclic shift permutations to test for significance (Demars et al., 2014; Magurran et al., 2018). To 

examine the performance of the cyclic shift permutations null model in testing the significance of 

these patterns we generated 104 synthetic communities under several parameter regimes using 

each of the DE and Ricker models. We then applied the cyclic shift algorithm 500 times to each 

community and compared the observed compositional and richness slopes in the time series 

generated by the model to the distribution of slopes under the cyclic shift algorithm. This 

allowed us to calculate the significance of the observed slopes for each community, and the 

proportion of significant (P < 0.05) results out of the generated communities. 

Since simulations began at steady state, the percent of significant results (type I error) 

should be close to 0.05 if the null model is appropriate. This is particularly true for DE, since this 

model assumes that the species are independent, so the breaking of correlations imposed by 

cyclic shift permutations should have no effect. However, we found that for both models and 

under all parameter regimes, type I errors were considerably inflated (Figure 2). 

Type I errors for compositional changes were very high (0.3 – 1) in all cases and tended to 

increase with the number of species in the pool (Sreg, Figure 2a, b) and the number of species in 

the community. The latter is, at least in part, the reason that communities with more 

environmental fluctuations and less immigration, both with fewer species, having lower type I 

errors (Figure 2b). These results are the consequences of the unimodal pattern of dissimilarity 

with time that is generated by cyclic-shift permutations (Figure 1). The distribution of linear 

slopes fitted to this unimodal pattern is very different from the slope of the actual data, leading 

inevitably to a strong inflation of type I errors. 
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Figure 2 – Proportion of significant tests (at α = 0.05) for excessive compositional changes 

(a, b) and richness trends (c, d) for data generated by the Dynamic Equilibrium (DE, a, c) and 

the multispecies Ricker (b, d) models. 104 synthetic time series were generated for each 

parameter regime. For each time series, the slopes versus time of compositional dissimilarity 

w.r.t the first year and of specie richness were calculated. They were then compared with the 

distributions of slopes for 500 resamples (using the cyclic shift algorithm and a two sided test) of 

the synthetic time series to obtain a P value. In c and d, communities were assigned to bins based 

on the deviation of initial richness from equilibrium, and the proportion was calculated in each 

bin. We used the Jaccard and Bray-Curtis dissimilarity indices for DE and Ricker, respectively. 

The dashed grey line marks a proportion of 0.05. 
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Regarding richness trends, communities starting at the equilibrium species richness had 

acceptable type I errors, with some exceptions (Figure 2c, d). For DE, communities with slow 

immigration and extinction rates and a regional pool of 30 species had a type I error probability 

of 0.102. For the Ricker model, communities with a high level of environmental fluctuations had 

type I error probabilities > 0.0945. However, the most pronounced result is that communities 

whose richness in the first year deviated from equilibrium, even by a few species, had a much 

higher type I error probability, reaching 0.3 – 0.7 in some parameter regimes (Figure 2c, d). 

Moreover, type I error probabilities increased sharply with the magnitude of the initial deviation 

from equilibrium. It is important to emphasize that we did not intentionally initiate the 

communities at a deviation from equilibrium richness. Rather, deviations were a result merely of 

stochastic dynamics at steady state. This implies that such deviations, and the resulting inflation 

in type I error, are to be expected in natural ecological communities. 

The sharp increase in type I error rate as initial community richness moves away from 

equilibrium is a result of the “scrambling” of the initial state. Fairly generally, if some 

community property (richness, in this case, but without loss of generality) has an equilibrium 

value, and we find it initially at a different value, it is expected to return to that equilibrium. 

Hence, some level of short-term trends is to be expected under wide settings in ecological 

communities. However, the cyclic-shift permutation eliminates the initial state of the community, 

and as a result any trend would seem excessive. This effect is more pronounced if stochastic 

deviations are more likely and the rate of return to equilibrium is low, such as when colonization 

and extinction rates are low. This is also the reason for communities with low colonization and 

extinction rates having higher type I error rates (Figure 2a, c). 

Discussion 

The cyclic shift algorithm is a generalistic and easy to apply null model, making it an 

appealing approach for testing a variety of different patterns. However, as we have shown, this 

approach has two fundamental undesired properties. First, it distorts the autocorrelation structure 

so that the end of the resampled time series for each species closely resembles its beginning. The 

short-term autocorrelation is also affected, but to a lesser degree. Moreover, the cyclic shift 

randomization “scrambles” the initial state of the community, making any dynamics that results 

from properties of this initial state seem unlikely. We have further exemplified that these 
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fundamental limitations have severe consequences for type I error rates in tests for trends in 

species richness and excessive compositional changes. We believe that the fundamental nature of 

the issues with the cyclic shift null model would have negative consequences for tests that may 

be developed for other patterns as well. 

Another aspect that must be considered carefully before using the cyclic shift algorithm is 

the implications of removing the correlations between species. If the goal of the analysis is 

testing for the significance of such correlations (e.g. Hallett et al., 2014) then using a null with no 

correlations definitely makes sense. However, other aspects of the dynamics, such as temporal 

changes in diversity, composition and dominance, may very well be affected by correlations 

between species. These correlations could be caused by biotic interactions or responses to 

environmental changes, and the interpretation of finding excessive changes compared to such a 

null of independent species should be carefully considered. Even more so, one should be 

cautious about using cyclic-shift permutations on data that is available at a resolution of less than 

a year (e.g. Magurran et al., 2018; Magurran & Henderson, 2018). In such data, correlation 

between species may be the result of seasonality, and randomly shifting each species 

independently of other species removes its effect. Consequently, the likely strong effects of 

seasonality on community composition will be detected as excessive changes. 

These issues do not lessen, however, the need that led to the development of the cyclic shift 

algorithm. Indeed, we believe that the interest in temporal patterns will continue to grow, along 

with the need for a null model to serve as reference for them. We would like to suggest several 

possible directions for addressing this need. 

First, it is possible that the performance of the cyclic shift algorithm as a null model is not as 

bad for some patterns. Because of the concerns we raise here, we believe that it is up to the 

future researchers who wish to use this approach for testing some pattern to convince that its 

performance is reasonable. We recommend specifically examining its performance on the 

statistical test of interest applied to simulated data, as we did. One should ensure that the 

characteristics of the simulated data, such as the rates of the dynamics and total richness, 

resemble the empirical patterns.  

An alternative approach that has indeed been suggested as a null model for community 

dynamics is neutral models (Dornelas et al., 2014; Gotelli & McGill, 2006; Hubbell, 2001). 
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However, it has been shown that neutral models where stochastic events affect individuals 

independently (known as “demographic stochasticity” or “ecological drift”), such as the classical 

Unified Neutral Theory of Biodiversity and Biogeography (Hubbell, 2001), predict considerably 

smaller changes then observed in multiple communities (Dornelas et al., 2014; Kalyuzhny, 

Schreiber, et al., 2014; Kalyuzhny, Seri, et al., 2014). It has been shown that this is the result of 

ignoring environmental fluctuations, which affect the growth rate of entire populations 

synchronously (Chisholm et al., 2014; Fung, O'Dwyer, Rahman, Fletcher, & Chisholm, 2016; 

Jabot & Lohier, 2016; Kalyuzhny et al., 2015). Hence, a neutral model with environmental 

fluctuations would be a much more appropriate null (Jabot & Lohier, 2016; Kalyuzhny et al., 

2015). Furthermore, neutral theories impose compensatory dynamics, or negative correlations, 

between species, which stem from the zero-sum assumption. This makes them not necessarily 

the best choice as a null model (Gotelli & McGill, 2006). Another alternative would be to try to 

fit multispecies autoregressive models (Ives, Dennis, Cottingham, & Carpenter, 2003). This 

framework is more flexible, and one may decide to preserve (or not to preserve) multiple 

properties such as the autocorrelation structure of the data, the magnitude of fluctuations, the 

correlations between species and the initial state of the community. This approach has not been 

studied much as a null model to this day. 

Finally, a null model for presence-absence data named Presence-Absence Resampling 

wIthin periodS (PARIS) has recently been suggested as a methodology to generate synthetic 

communities where each species independently undergoes colonization and extinction dynamics 

at fixed rates (Kalyuzhny, Flather, Shnerb & Kadmon, 2019). While this approach imposes the 

autocorrelation structure of a Poisson process and species independence, it preserves the initial 

state of the community and has recently been shown to have excellent statistical properties for 

data satisfying these assumptions (Kalyuzhny, Flather, Shnerb & Kadmon, 2019). PARIS is also 

very easy to apply to ecological time series because, like the cyclic-shift algorithm, it is a 

randomization-based methodology. 

Overall, we believe that studying temporal patterns has great promise to shed light on the 

processes shaping ecological communities. This promise is amplified by the increasing 

availability of extensive datasets of temporal community dynamics (Dornelas et sl., 2018). 

However, more research is required on how to appropriately analyze such data, and in particular 
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on the best practices for applying null models of community dynamics. We hope this work will 

reduce the improper application of such null models and help guide the use and development of 

more appropriate null models for temporal community dynamics. 

Methods 

Models 

We have studies the statistical performance of the cyclic shift permutations algorithm by 

applying it to synthetic time series generated using two models: the independent-species version 

of Dynamic Equilibrium theory (DE, D. Simberloff, 1983; D. S. Simberloff, 1969) and a 

multispecies Ricker model (M. Kalyuzhny & Shnerb, 2017; Kilpatrick & Ives, 2003). 

DE is the simplest possible model of community dynamics, considering a local community 

that receives immigrants from a regional pool with Sreg species. Time is modeled in discrete time 

steps. Every time step, if species i is present, it has a fixed probability ei to go extinct and be 

absent by the next time step, while if it is absent it will arrive and be present by the next time 

step with probability ci. The probability of any species to be present at steady state is 
𝑐𝑖

𝑐𝑖+𝑒𝑖 
, hence 

communities are initialized at steady state by drawing the presence of each species from a 

Bernoulli distribution with the aforementioned probability.  

Despite its simplicity, this model has two parameters (ci and ei) for each species. For 

generating them, we assumed that colonization and extinction rates follow a lognormal 

distribution with both mean and variance M. This is a reasonable assumption since both body 

mass and species abundance are often approximately lognormally distributed (Brown, Marquet, 

& Taper, 1993; Ulrich, Ollik, & Ugland, 2010). The rates are drawn independently and 

transformed to probabilities by the 1 - exp(-k) transformation, where k is a rate. This 

transformation calculates the probability for the occurrence of an event in a Poisson process. For 

figure 1 we took M = 0.2 and for figure 2 we considered two regimes, one with high and one 

with low rates, which are M = 0.4 (median probability of event: 0.21) and 0.08 (median 

probability of event: 0.022), respectively. 

The second model we used is a stochastic, discrete-time multispecies Ricker model. In this 

model, the expected population of species i at time t+1, 𝑁𝑖,𝑡+1, in the absence of immigration is: 
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(eq. 1)   E(𝑁𝑖,𝑡+1) = 𝑁𝑖,𝑡exp (𝑟𝑖
𝐾𝑖−𝑁𝑖,𝑡−∑ 𝛼𝑖𝑗𝑁𝑗,𝑡𝑗≠𝑖

𝐾𝑖
+ 𝜀𝑖,𝑡) , 

where 𝑟𝑖 and 𝐾𝑖 are the growth rate and carrying capacity of species i, respectively, 𝛼𝑖𝑗 is the 

per capita effect of an individual of species j on the growth of species i, representing inter-

specific interactions, and 𝜀𝑖,𝑡 represents stochastic fluctuations in the growth rate due to 

environmental changes. 𝜀𝑖,𝑡 is normally distributed with a mean of 0 and variance of 𝜎𝑒
2. 

While eq. 1 represents the expected population of species i at time t, the actual population 

size is drawn from a Poisson distribution: 𝑁𝑖,𝑡+1~Poisson(E(𝑁𝑖,𝑡+1)). This introduces 

demographic stochasticity, that is, random variation between individuals in demography, as well 

as the discreteness of individual, which allows species to go stochastically extinct. Finally, after 

the local demography step described above, we introduce a Poisson distributed number of 

immigrants (with mean I, representing immigration rate), which are chosen uniformly from the 

Sreg species available in the species pool. 

For generating the parameters of the model, we assumed that the 𝐾𝑖s of species are 

lognormally distributed with mean and SD of 1000, the 𝑟𝑖s are exponentially distributed with 

mean 0.5 and the 𝛼𝑖𝑗s are gamma distributed with mean and SD of 0.1. We considered three 

parameter regimes. In the basal regime, σe
2 = 0.1 and I = 2. In the high temporal variability 

regime, we changed σe
2 to 0.5 and in the high immigration regime we changed I to be 10. 

Simulations were initialized with each species at its 𝐾𝑖 and run for 500 time steps to equilibrate. 

For all models, we considered three levels of Sreg: 30, 90 and 270 species and the duration of 

the time series was 20 time steps (after equilibration).  

Statistical tests 

We are interested in testing the performance of tests for excessive compositional turnover 

and richness trends. For compositional turnover, we computed the Jaccard dissimilarity (for DE) 

or Bray-Curtis dissimilarity (for Ricker) of every year with respect to the initial year (as in 

Figure 1b, c) and used the linear slope of dissimilarity vs. time as the test statistic. For richness 

trends, we computed the slope of the regression of richness vs. time. For every synthetic 

community generated by DE or Ricker we calculated these two test statistics, generated 500 

resampled communities by applying cyclic shift permutations to the original data, and then 
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compared the observed statistics to their distribution in the resampled communities using a two-

sided test. This gave us the P value of both statistics for every community. This procedure is in 

line with the approach of Magurran et al. (2018). 

To evaluate the performance of the statistics, we calculated the proportion of significant 

results (using α = 0.05). Since we expect no excessive changes, this proportion can be thought of 

as type I error rate, which should not exceed α. For examining the tests of compositional change 

(Figure 2a, b), the proportion was calculated over all 104 synthetic communities in a given 

parameter regime. For examining the tests of richness trends, we first assigned the communities 

to bins according to their initial deviation from equilibrium richness. Equilibrium richness was 

calculated as the average richness in the 20 year data for the sake of simplicity and resemblance 

to empirical analyses, where the real equilibrium is unknown. The bins that were used were D ≤ -

7, -7 < D ≤ -5, -5 < D ≤ -3, -3 < D ≤  -1, -1 < D ≤ 1, 1 < D ≤ 3, 3 < D ≤ 5, 5 < D ≤ 7, 7 < D, 

where D is initial deviation from richness equilibrium. In each bin, we calculated the average D 

(presented on the X axis), and the proportion of significant results among the communities in the 

bin (presented on the Y axis). Bins with less than 30 communities were discarded.  

All analyses were performed in Matlab 2016a with the full code supplied in supporting 

information S1. 
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