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To quantify the force impinging on the follicle we implemented a mechanical model of the rat whisker 

(see Methods for details). Whisker displacement during active palpation onto a stationary target was 

simulated as animals gradually approached the target according to behaviorally observed trajectories 

(Fig.1).  In all in silico experiments, only the last 3 cm of the approach was simulated where animals 

with serotonergic dysregulation contacted the target less often than their counterparts in the 

corresponding control groups (Fig.1E-F). For the simulation of non-adaptive whisking, the maximum 

protraction angle of the whisker was kept constant (~ 27�~). During adaptive whisking the protraction 

angle gradually increased from 27�~ to 37�~ along the locomotion path per experimental observation 

(Fig.2). The results showed that mechanical forces transmitted to the whisker follicle upon whisker 

contact is increased as the animal approached the target (see red traces, Fig.3) independent from the 

whisking strategy employed, due to the reduction in the relative distance between the target and the 

body.  Lack of adaptive whisking resulted in systematic reduction of the force transmitted to the whisker 

along three axis (blue traces, Fig.3). These results argue that adaptive whisking increases the force 

transmitted to the whisker base, increasing the feed-forward excitatory drive upon whisker contact.  

Lack of adaptive whisking after fluoxetine treatment or SERT-/- reduces forces in the whisker base upon 

whisker contact (Fig.3), thus reducing the sensory information originating from the periphery.   

Figure 3. Lack of adaptive sensorimotor control upon altered serotonergic signaling reduces the 
force transmitted along the whisker upon contact with a tactile target. (A) Whisker contacts with 

objects in the plane of whisking change the 
axial force (Fx), transverse force (Fy) and 
the reaction moment (Mz) at the whisker 
base, and leads to mechanoreceptor 
activation to initiate bottom-up propagation 
of the sensory information. (B)  Mechanical 
forces at the whisker base upon whisker 
contacts as the animal approached the target 
(Axial force genotype effect: F=88; p 
<0.001, 2-way ANOVA with df=1, 
Transverse force genotype effect: F=113; p 
<0.001, 2-way ANOVA with df =1). (C) 
Change in Moment (Mz) at the follicle upon 
whisker contact (Genotype effect: F=56; p 
<0.001, 2-way ANOVA with df=1). The 
data presented as mean ∓ std, blue denotes 
non-adaptive whisking conditions (SERT-/-

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 10, 2019. ; https://doi.org/10.1101/762534doi: bioRxiv preprint 



 

 

12 

, fluoxetine) and red adaptive whisking conditions (wild type, vehicle).  

 

A network model of adaptive whisking 

Sensory exploration and motor control are coupled processes. Considering that lack of adaptive 

whisking reduces mechanical forces traveling along whiskers upon whisker touch (Fig.3), this change 

in the sensory drive could potentially alter the motor control of whisker position in subsequent whisk 

cycles. To address this question without the confounding variables (including compensatory change in 

body position) of navigation in freely behaving animals, we used a simplified graph based network 

model of whisking (Circuits of whisking; github.com/DepartmentofNeurophysiology/Circuits-of-whisking).   

A computational circuit that could perform adaptive sensorimotor control necessarily requires 

information from sensory circuits about the stimulus availability as well as motor control circuits that 

perform phase to motor signal transformation given the current state of the sensory information.  Based 

on the known coding properties of the neurons along sensorimotor circuits, and the connectivity between 

them (see Discussion), the graph network consists of the following nodes (Fig.4A): 1) primary 

somatosensory cortex (S1; barrel cortex) where stimulus properties are encoded (Brecht and Sakmann, 

2002; Ganguly and Kleinfeld, 2004; Crochet and Petersen, 2006; Curtis and Kleinfeld, 2009; de Kock 

and Sakmann, 2009; Lundstrom et al., 2010; Azarfar et al., 2018a); 2) primary motor cortex (M1) which 

provides adaptive motor control for whisker protraction (Berg and Kleinfeld, 2003a; Brecht et al., 2004; 

Diamond et al., 2008; Petersen, 2014; Sreenivasan et al., 2016), through recursively adjusting the 

amplitude and midpoint of whisking envelope (Hill et al., 2011); 3) central pattern generators (CPGs) 

that control phasic motion of whiskers (Gao et al., 2001; Cramer and Keller, 2006; Kleinfeld et al., 

2015); 4) superior colliculus (SC) which translates phase and amplitude information to motor control 

commands for facial motor nucleus (FMN) to drive whisking (Hemelt and Keller, 2008); 5) dorsal raphe 

nucleus (DRN) that regulates excitability in cortical and subcortical (sensorimotor) nuclei (Schubert et 

al., 2015); and 6) a control circuit, plausibly the barrel cortex (Matyas et al., 2010), that triggers whisker 

retraction upon stimulation to maintain touch duration (Azarfar and Celikel, 2019). In this model output 

of each node is a transfer function rather than a time and/or rate varying action potentials. Please note 

that the aim of this model is not to mechanistically explain how the brain performs sensorimotor 

computation. Rather, it is to provide the minimal circuit requirements for adaptive control of whisker 

position (see Discussion).  
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Simulations in this circuit showed that adaptive whisker protraction (Fig.4B, left) is an emergent 

computation and can be dysregulated by either removal of the serotonergic reuptake or increasing the 

excitability in the sensory cortex, which was previously shown in SERT-/- animals (Miceli et al., 2017) 

(Fig.4B, right). Although simulated animals, similar to rats (Fig.2), continue remapping whisker position 

as they approach the tactile target (Fig.4C), in circuits simulations without adaptive sensorimotor control 

do not result in a change in increased whisker protraction, similar to the observations in SERT-/- and 

fluoxetine animals (Fig.4D, compare it to Fig.2B).    

  

Figure 4. A computational circuit model of adaptive sensorimotor control. (A) Circuit components 
in the network: Barrel cortex subregion of the primary somatosensory cortex (S1), vibrissal motor cortex 
(M1),  dorsal raphe nuclei (DRN), Superior colliculus (SC), central pattern generator (CPG) and facial 
motor nuclei (FMN) are modeled. See Discussion for details on the known anatomical and functional 
projections along this network. (B)  Relative distance of a whisker tip to the tactile target during 
simulated adaptive whisking (red; left figurines) and simulated non-adaptive whisking (blue; right). The 
black line is an experimentally observed, randomly selected approach trajectory in a 2D plane, i.e. 
change in relative Euclidean distance to the target (dn) as a freely behaving animal approaches a 
stationary tactile object. In adaptive whisking, sensory information modulates the motor command: 
protraction angle increases given the sensory information collected prior to the current whisk cycle, 
whisking amplitude decreases, and whisker retraction is actively controlled to keep the touch duration 
constant. Figures summarize the experimental observations regarding whisker protraction amplitude, 
set-point and mid-point in the respective group of animals. (C) Simulated tip distance to target (dW) in 
relation to body-to-target position. Left: adaptive whisking (red, r2=0.89); right: non-adaptive whisking 
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(blue, r2=0.78). (D) Protraction amplitude, in respect to mid-point, versus the nose distance dn from 
target in silico. Left: adaptive whisking (red, r2=0.40); right: non-adaptive whisking (blue, r2<0.01).  

 

Adaptive whisking improves tactile scanning resolution and this difference in whisking pattern is 

sufficient to explain the reduced sensory exploration during serotonergic dysfunction (seen in Fig. 1). 

The aforementioned computational model might help to unravel whether the reduced likelihood of 

tactile exploration observed in the SERT-/- and Fluoxetine groups is a product of the lack of adaptive 

motor control. To address this question we simulated sensorimotor exploration of a stationary target in 

silico (Fig.5). In this experiment the object was “touch transparent”, as such contact with the target did 

not change whiskers’ motion trajectory.  This is akin to the “virtual whisker tip position” mapping 

described previously (Voigts et al., 2015) and ensures that intended whisker tip position could be 

visualized (Fig.5A).  

The simulations showed that tactile navigation using adaptive whisker protraction results in in silico 

whiskers being positioned at the virtual target (Fig.5A, left) while non-adaptive whisking introduce 

localization errors (Fig.5A, right). These results could potentially explain the reduced tactile exploration 

observed in experiments (Fig.1E) with SERT-/- and fluoxetine injected animals as the likelihood of 

whisker contacts with the target observed in silico closely resemble the experimental observations 

(compare Fig.1E to Fig.5B). After the first touch event, the whisker motor commands are modulated 

and directed towards the target in adaptive whisking. This target alignment directly increases the 

probability of touch events.   

Considering that the body locomotion together with the whisking pattern govern the forces at the follicle, 

the localization errors observed during non-adaptive whisking could contribute to the reduction in 

mechanical forces transmitted to the follicle upon whisker contacts. Simulations showed that the contact 

induced forces were indeed significantly smaller during non-adaptive whisker protraction (Fig.5C). 

Larger touch induced mechanical information (i.e. force) at the follicle, improved tactile resolution 

(reduced localization error), and increased likelihood of sensory exploration argue that adaptive 

whisking results in higher signal to noise ratio during sensory acquisition. 
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Figure 5. Lack of adaptive motor control alone is sufficient to explain the sensory exploration 
pattern upon altered serotonergic transmission. (A) Whisker tip position during exploration of a 
stationary target in silico. Grey shaded area represents the edge of tactile target. Density plots quantify 
the relative position of the whisker tip during tactile exploration with (Wild type: Contours are drawn 
with a step size of 16.5%, range: 16.5-100%) and in the absence of (SERT-/- contours: step size of 12%, 
range: 9-100%) adaptive control of whisker protraction. (B) Probability of whisker contact with target 
in silico.  Red: Adaptive whisker protraction (as seen in rats in wild type and vehicle injected groups); 
Blue: Non-adaptive whisker protraction (as performed by SERT-/- and after transient pharmacological 
intervention. (C) Mechanical forces (Fx and Fy) and Momentum (Mz) evolution at the whisker base 
(mean ∓ std) during simulated whisker contacts with tactile target in silico. Color code as in B.  The 
approach trajectory for the adaptive and non-adaptive whisker protraction are based on behavioral 
observations. Touch number 0 in the X axis refers to the last whisking cycle prior to first contact with 
the target. 

Discussion 

Here we showed that persistent or transient SERT inactivation induce lasting impairment of 

sensorimotor computation, and interfere with the development of adaptive sensorimotor control during 

tactile object localization. Specifically, after serotonergic interventions animals fail to integrate sensory 

information to regulate the whisker positions in the subsequent whisk cycles (Fig.2B). Nonetheless these 

rats are able to perform object localization successfully, similar to the wild-type and vehicle groups. To 
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address whether changes in sensorimotor strategies alter sensory information mechanically transmitted 

along the whisker upon whisker contact, we modeled the forces generated at the follicle during active 

whisking based on the behavioral data. The results showed that adaptive whisking maximizes the forces 

transmitted along the whisker, although this nonlinear mechanical gain modulation is spatially 

constrained. A computational circuit model of adaptive versus non-adaptive (uniform) whisking showed 

that inactivation of the communication between primary somatosensory and primary motor cortices 

impairs adaptive whisking sensorimotor control. The results also indicated that adaptive whisking 

improves tactile scanning resolution and confirmed the finding that adaptive whisking strategy increases 

sensory information transmitted during tactile exploration.  Higher scanning resolution and stronger 

signal representation at the follicle translates to higher signal to noise ratio in sensory acquisition. The 

outcome of the simulation further proposed that the difference in whisking pattern between the two 

groups is sufficient to explain the sensory exploration pattern after alterations in serotonin transmission. 

Altered excitation/inhibition balance might explain serotonergic phenotypes  

Changes in the serotonergic drive early in life might have long-term behavioral consequences including 

depression and anxiety (McAllister et al., 2012; Francis-Oliveira et al., 2013; Kiryanova et al., 2013; 

Kroeze et al., 2016), deficit in circadian rhythmicity (Kiryanova et al., 2013), reduction in body weight 

(McAllister et al., 2012; Kroeze et al., 2016), decreased social behavior (Kiryanova et al., 2013), reduced 

sexual motivation (Kiryanova et al., 2013; Vieira et al., 2013; Rayen et al., 2014), (Kiryanova et al., 

2013; Kroeze et al., 2016), and might alter reward processing and learning & memory (Kiryanova et al., 

2013). Impaired sensorimotor integration, upon serotonergic dysregulation, might contribute to the 

expression of many of these phenotypes (Francis-Oliveira et al., 2013; Kroeze et al., 2016). Altered 

serotonergic drive might also result in miswiring of sensorimotor circuits, and thus cause sensorimotor 

deficits. Elevated serotonin levels during the critical period disrupts locomotion (Bairy et al., 2007; Lee 

et al., 2008; Lee and Lee, 2012; Kiryanova et al., 2013; Kroeze et al., 2016), decreases novel object 

exploration (Rodriguez-Porcel et al., 2011; Kiryanova et al., 2013; Kroeze et al., 2016) and causes delay 

in development of several reflexes and muscle strength (Deiró et al., 2006; Bairy et al., 2007; 

Zimmerberg and Germeyan, 2015; Kroeze et al., 2016) possibly via structural changes in the circuit 

organization (Kiryanova et al., 2013). On the other hand, the lack of adaptive sensorimotor control in 

adult rats with early changes in serotonergic drive is also seen in juvenile animals which have not been 

fully matured yet. Interestingly, it has been demonstrated that fluoxetine exposure leads to a juvenile-

like state of neurons across brain regions, including sensory cortices, in adults (Umemori et al., 2018). 
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Accordingly, the non-adaptive whisking seen in SERT-/- rats and postnatally fluoxetine exposed rats 

may be a by-product of increased exploratory drive compensating for the lack of adaptive whisking. 

Alternatively, the sensorimotor deficits might be a consequence of an altered balance between excitation 

and inhibition (E/I) as elevated serotonin levels during development impairs feedforward inhibition and 

facilitate excitatory drive in the somatosensory system (Miceli et al., 2017). Considering that altered E/I 

balance is critical for preventing runaway excitation, sharpening stimulus selectivity, and increasing the 

overall sparseness of stimulus representations, a local change in E/I balance in sensory systems might 

have global consequences on the perceptual, cognitive and motor deficits (Pang et al., 2011; Murray et 

al., 2014; Juczewski et al., 2016; Lainscsek et al., 2019), even in invertebrates (Hughes and Celikel, 

2019).  Given the regulatory close-loop between serotonergic drive and sensory experience (Yan et al, 

submitted) the impact of the transient alterations in E/I balance could be sustained in longer time scales.       

A network model of whisking 

To provide a simplified circuit model of adaptive computation where serotonergic dysregulation to 

sensorimotor integration can be quantitatively studied, we deployed a graph based network model 

whisking.  The model is based on the known principles of neural representations and circuit connectivity 

across sensorimotor nuclei (see results and below).  We have repeated the behavioral experiments 

(Fig.1-2) in silico to validate our model, and finally used it to address the circuit mechanisms of adaptive 

whisking.  

Behavioral and in silico experiments showed that control animals (wild-type and vehicle groups) 

modulate the whisker protraction based on the recent sensory information by adjusting the midpoint of 

whisking. In control animals peak to peak amplitude of whisking decreases and whisking rhythm is 

regulated to keep the contact duration constant independent from the relative position of the body and 

whiskers in respect to the target. M1 is a possible candidate that controls the amplitude and midpoint of 

the envelope of whisking (Berg and Kleinfeld, 2003a; Brecht et al., 2004; Diamond et al., 2008). Hill et 

al. (Hill et al., 2011) found that the majority of single units in vM1 cortex code for variation in amplitude 

and midpoint of whisking. Since these motor representations are not influenced by inactivation of the 

trigeminal sensory input, these signals should be generated by a central source, plausibly in M1. In our 

whisking network model, we have a modulatory unit that applies the same controls on whisking pattern 

upon activation (see Figure 4A). When simulated whiskers contact the target, incoming sensory 

information drives the M1 module to apply goal-oriented modulation on whisking pattern. The peak to 

peak amplitude decreases and the maximum protraction angle increases. 
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Touch events modulate whisking by driving the adaptive motor control as well as through a regulatory 

circuit that keeps the duration (duty cycle) constant (Azarfar and Celikel, 2019). S1 (barrel cortical) 

neurons encode the touch event and its duration both at the single-cell and population levels (Brecht and 

Sakmann, 2002; O’Connor et al., 2002; Ganguly and Kleinfeld, 2004; Crochet and Petersen, 2006; 

Derdikman et al., 2006; Ferezou et al., 2006; Hentschke et al., 2006; Yu et al., 2019). S1 spiking 

correlates by rapidly varying signals that represent the phase of the motion during rhythmic whisking 

(Crochet and Petersen, 2006; Curtis and Kleinfeld, 2009; de Kock and Sakmann, 2009; Lundstrom et 

al., 2010). S1 is also linked to adaptive whisking; whisking increases phase-locking between vibrissa 

movement and electrical activity in barrel cortex (Brecht and Sakmann, 2002; O’Connor et al., 2002; 

Ganguly and Kleinfeld, 2004; Crochet and Petersen, 2006; Derdikman et al., 2006; Ferezou et al., 2006; 

Hentschke et al., 2006) while targeted stimulation of S1 results in whisker retraction (Matyas et al., 

2010). In our in silico model, the S1 module detects the contact timing and whisker phase during a touch 

event. Information from S1 is ultimately integrated with the reafference copy (Crapse and Sommer, 

2008) of the control signal in M1 to calculate the error between the planned whisking path and the 

current location (i.e. interrupted path) upon a contact event.  Touch duration in S1 is further used to 

retract the whisker which ensures the constancy of touch duration. This calculation could emerge in a 

variety of brain regions (Matyas et al., 2010), including the posterior parietal cortex (Mohan et al., 2017). 

In free whisking, rhythmic motion is the dominant mode of whisking (Berg and Kleinfeld, 2003b). 

However, in adaptive whisking this rhythmic movement is altered by adjusting the whisk amplitude and 

midpoint of whisk cycle (Mehta et al., 2007; O’Connor et al., 2010; Voigts et al., 2015). M1 could have 

an instructive role over this cyclical pattern of whisking (Gao et al., 2003). In our model we have two 

central pattern generator (CPG) modules, one for protraction, the other retraction generation. In the 

absence of sensory input (free whisking), the output of these two modules directly govern the whisking 

pattern. In case of contact, the M1 modules manipulates their output to instruct adaptive whisking, 

possibly via superior colliculus (Hemelt and Keller, 2008).  

The serotonergic system contributes to sensorimotor system prominently through its projections via 

DRN (Commons, 2015; Schubert et al., 2015). Although these projections target most of the neocortex, 

in the current model, DRN regulates only a limited subset of neural loci as shown in Fig.4 as our focus 

is to provide a minimum circuit model that could drive adaptive sensorimotor control.  
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The final motor command (whisker angle/phase) is connected to a virtual model of whisker (Towal et 

al., 2011; Quist and Hartmann, 2012). Our whisker is modeled with a parabola and bends upon contact. 

We use the egocentric information of the whisker position combined with allocentric information of 

body-to-target position of the animal in the simulation as input to our whisker model. Using this model 

we calculate the bending along the whisker and the forces at the whisker’s base. The body locomotion 

(allocentric) information in simulation is learned and determined through experimental data of rats 

performing gap crossing task. Using this in-silico whisker model, the consequences of adaptive motor 

control on sensory acquisition is simulated.  

Outlook 

The present study demonstrates that reduction of SERT during early development, either by blocking 5-

HTT using an SSRI (fluoxetine) or by genetic deletion of  SERT, have long-term effects on sensorimotor 

computation and impairs emergence of adaptive whisking, in agreement with the observations on the 

serotonergic contributions to motor development (Kroeze et al., 2016). As a result, whisker contacts 

transmit less mechanical information to whisker follicle. Considering our previous observations on the 

reduction of inhibitory drive and increased feedforward excitation in the primary somatosensory cortex 

(Miceli et al., 2017), and the observations that SERT-/- deletion reduces the thalamocortical projections 

targeting the cortical layer 4 (Miceli et al., 2013), it is tempting to speculate that the change in cortical 

excitability is a compensatory change to facilitate the detection of weak signals originating from the 

periphery. Regulating the excitability of inhibitory neurons in Layer 4 in a cell type specific manner 

during object localization will provide a mechanistic insight into the neural basis of touch sensation. Re-

balancing excitatory and inhibitory drive in the somatosensory cortex will also alter the communication 

between S1 and M1, is expected to rescue the adaptive sensorimotor control even in adulthood.    
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