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 2 

Abstract 26 

Comprehensive reference data is essential for accurate taxonomic and functional 27 

characterization of the human gut microbiome. Here we present the Unified Human 28 

Gastrointestinal Genome (UHGG) collection, a resource combining 286,997 genomes 29 

representing 4,644 prokaryotic species from the human gut. These genomes contain over 625 30 

million protein sequences used to generate the Unified Human Gastrointestinal Protein 31 

(UHGP) catalogue, a collection that more than doubles the number of gut protein clusters over 32 

the Integrated Gene Catalogue. We find that a large portion of the human gut microbiome 33 

remains to be fully explored, with over 70% of the UHGG species lacking cultured 34 

representatives, and 40% of the UHGP missing meaningful functional annotations. Intra-35 

species genomic variation analyses revealed a large reservoir of accessory genes and single-36 

nucleotide variants, many of which were specific to individual human populations. These freely 37 

available genomic resources should greatly facilitate investigations into the human gut 38 

microbiome.  39 
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 3 

Main 40 

The human gut microbiome has been implicated in important phenotypes related to human 41 

health and disease1,2. However, incomplete reference data that are missing microbial diversity3 42 

hamper our understanding of the roles of individual microbiome species, their interactions and 43 

functions. Hence, establishing a comprehensive collection of microbial reference genomes and 44 

genes is an important step for accurate characterization of the taxonomic and functional 45 

repertoire of the intestinal microbial ecosystem. 46 

 47 

The Human Microbiome Project (HMP)4 was a pioneering initiative to enrich our knowledge 48 

of human-associated microbiota diversity. Hundreds of genomes from bacterial species with 49 

no sequenced representatives were obtained as part of this project, allowing their use for the 50 

first time in reference-based metagenomic studies. The Integrated Gene Catalogue (IGC)5 was 51 

subsequently created, combining the sequence data available from the HMP and the 52 

Metagenomics of the Human Intestinal Tract (MetaHIT)6 consortium. This gene catalogue has 53 

been applied successfully to the study of microbiome associations in different clinical 54 

contexts7, revealing microbial composition signatures linked to type 2 diabetes8, obesity9 and 55 

other diseases10. But, as the IGC comprises genes with no direct link to their genome of origin, 56 

it lacks contextual data to perform a high-resolution taxonomic classification, establish genetic 57 

linkage and deduce complete functional pathways on a genomic basis. 58 

 59 

Culturing studies have continued to unveil new insights into the biology of our gut 60 

communities11,12 and are essential for applications in research and biotechnology. However, 61 

the advent of high-throughput sequencing and new metagenomic analysis methods — namely 62 

involving genome assembly and binning — has transformed our understanding of the 63 

microbiome composition both in humans and other environments13–15. Metagenomic analyses 64 
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are able to capture substantial microbial diversity not easily accessible by cultivation by 65 

directly analysing the sample genetic material without the need for culturing, though biases do 66 

exist16. Recent studies have massively expanded the known species repertoire of the human 67 

gut, making available unprecedented numbers of new cultured and uncultured genomes16–20. 68 

Two culturing efforts isolated and sequenced over 500 human gut-associated bacterial genomes 69 

each18,20, while three independent studies16,17,19 reconstructed 60,000–150,000 microbial 70 

metagenome-assembled genomes (MAGs) from public human microbiome data, most of which 71 

belong to species lacking cultured representatives. Combining these individual efforts and 72 

establishing a unified non-redundant dataset of human gut genomes is essential for driving 73 

future microbiome studies. To accomplish this, we compiled and analysed 286,997 genomes 74 

and 625,251,941 genes from human gut microbiome datasets to generate the Unified Human 75 

Gastrointestinal Genome (UHGG) and Protein (UHGP) catalogues, the most comprehensive 76 

sequence resources of the human gut microbiome established to date. 77 

 78 

Results 79 

The UHGG represents over 280,000 human gut microbial genomes 80 

We first gathered all prokaryotic isolate genomes and MAGs from the human gut microbiome 81 

(publicly available as of March 2019). We compiled the isolate genomes from the Human 82 

Gastrointestinal Bacteria Culture Collection (HBC)18, the Culturable Genome Reference 83 

(CGR)20, as well as cultured human gut genomes available in the NCBI21, PATRIC22 and 84 

IMG23 repositories which include genomes from several other large studies11,12,24. In addition, 85 

we included all of the gut MAGs generated in Pasolli, et al.19 (CIBIO), Almeida, et al.17 (EBI) 86 

and Nayfach, et al.16 (HGM). To standardize the genome quality across all sets, we used 87 

thresholds of >50% genome completeness and <5% contamination, combined with an 88 

estimated quality score (completeness – 5 ´ contamination) >50. Final numbers of genomes 89 
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matching these criteria were: 734 (HBC), 1,519 (CGR), 651 (NCBI), 7,744 (PATRIC/IMG), 90 

137,474 (CIBIO), 87,386 (EBI) and 51,489 (HGM), resulting in a total of 286,997 genome 91 

sequences (Fig. 1a and Supplementary Table 1). Genomes were recovered in samples from a 92 

total of 31 countries across six continents (Africa, Asia, Europe, North America, South 93 

America and Oceania), but the majority originated from samples collected in China, Denmark, 94 

Spain and the United States (Fig. 1b). 95 

 96 

To determine how many species were included in this gut reference collection, we clustered all 97 

286,997 genomes using a multi-step distance-based approach (see ‘Methods’) with an average 98 

nucleotide identity (ANI) threshold of 95% over at least a 30% alignment fraction25. The 99 

clustering procedure resulted in a total of 4,644 inferred prokaryotic species (4,616 bacterial 100 

and 28 archaeal, Supplementary Table 2). We found the species clustering results to be highly 101 

consistent with those previously obtained16,17,19 (Supplementary Table 3). The best quality 102 

genome from each species cluster was selected as its representative on the basis of genome 103 

completeness, contamination and assembly N50 (with isolate genomes always given 104 

preference over MAGs), and the final set was used to generate the Unified Human 105 

Gastrointestinal Genome (UHGG) catalogue (Fig. 1c). Out of the 4,644 species-level genomes, 106 

3,207 were >90% complete (interquartile range, IQR = 87.2–98.8%) and <5% contaminated 107 

(IQR = 0.0–1.34%), with 573 of those having the 5S, 16S and 23S rRNA genes together with 108 

at least 18 of the standard tRNAs (Supplementary Fig. 1). These 573 genomes satisfy the “high 109 

quality” criteria set for MAGs by the Genomic Standards Consortium26. Thereafter, we 110 

classified each species representative using the Genome Taxonomy Database27 Toolkit 111 

(Supplementary Fig. 2), a standardized taxonomic framework based on a concatenated protein 112 

phylogeny representing >140,000 public prokaryote genomes, fully resolved to the species 113 

level (see ‘Methods’ for details on the taxonomy nomenclature used). However, over 60% of 114 
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the gut genomes could not be assigned to an existing species, confirming the majority of the 115 

UHGG species lack representation in current reference databases.  116 

 117 

Comparison of species recovered in individual studies  118 

We investigated how many of the 4,644 gut species were found in the different study 119 

collections in order to determine their level of overlap and reproducibility, as well as the ratio 120 

between cultured and uncultured species (Fig. 2a). The largest intersection was between the 121 

collections of MAGs, with the same 1,081 species detected independently in the CIBIO, EBI 122 

and HGM datasets, but not in any of the cultured genome studies. By restricting the analysis to 123 

genomes recovered from 1,554 samples common to all three MAG studies, we found that 93-124 

97% of species from each set were detected in at least one other MAG collection, and 79-86% 125 

across all three (Supplementary Fig. 3a). Similar level of species overlap was observed when 126 

comparing studies on a per-sample basis (Supplementary Fig. 3b). Further, conspecific 127 

genomes recovered from the same samples across different studies shared a median ANI and 128 

aligned fraction of 99.9% and 92.1%, respectively (Supplementary Fig. 3c). These results 129 

emphasize the reproducibility of the different assembly and binning methods used in the large-130 

scale studies of human gut MAGs16,17,19. Importantly, rarefaction analysis indicates the number 131 

of uncultured species detected has not reached a saturation point, meaning additional species 132 

remain to be discovered (Fig. 2b). However, these most likely represent rarer members of the 133 

human gut microbiome, as the number of species is closer to saturating when only considering 134 

those with at least two conspecific genomes.  135 

 136 

We also investigated the intersection between the three large culture-based datasets: the HBC, 137 

CGR and the NCBI (which contains gut genomes from the Human Microbiome Project, 138 

HMP4). Unlike the MAGs, the majority of cultured species were unique within a single 139 
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collection (486/698; 70%), with only 70 (10%) being common to all three collections 140 

(Supplementary Fig. 3d). This may be due to varied geographical sampling between the 141 

collections (Asia, Europe and North America) or highlight the stochastic nature of culture-142 

based studies. 143 

 144 

By calculating the number of genomes contained within each cultured and uncultured species, 145 

we found that species containing isolate genomes represented the largest clusters, while those 146 

exclusively encompassing MAGs tended to be the rarest, as discussed previously16,17,19. For 147 

example, only two of the 25 largest bacterial clusters were exclusively represented by MAGs 148 

(Fig. 2c), with 1,212 uncultured species represented by a single genome (80% of which 149 

originated from samples only analysed in one of the MAG studies; Supplementary Fig. 4). The 150 

bacterial species most represented in our collection were Agathobacter rectalis (recently 151 

reclassified from Eubacterium rectale28), Escherichia coli D and Bacteroides uniformis (Fig. 152 

2c, Supplementary Fig. 5 and Supplementary Table 2), whereas the most frequently recovered 153 

archaeal species was Methanobrevibacter A smithii, with 608 genomes found across all six 154 

continents (Supplementary Fig. 6). The largest species clusters displayed similarly high levels 155 

of geographical distribution, indicating the most highly represented species were not restricted 156 

to individual locations (Fig. 2c and Supplementary Fig. 5b). 157 

 158 

Most gut microbial species still lack isolate genomes 159 

We found that 3,750 (81%) of the species in the UHGG did not have a representative in any of 160 

the human gut culture databases. To extend the search to isolate genomes from other 161 

environments or lacking information on their isolation source, we compared the UHGG 162 

catalogue to all NCBI RefSeq isolate genomes. We identified an additional set of 438 species 163 
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closely matching cultured genomes, leaving 3,312 (71%) of UHGG species as uncultured 164 

(Supplementary Table 2). 165 

 166 

The phylogenetic distribution of the 4,616 bacterial (Fig. 3a) and the 28 archaeal species 167 

(Supplementary Fig. 6) revealed that uncultured species exclusively represented 66% and 31% 168 

of the phylogenetic diversity of Bacteria and Archaea, respectively, with several phyla lacking 169 

cultured representatives (Fig. 3b). The four largest monophyletic groups lacking cultured 170 

genomes were the 4C28d-15 order (167 species, recently proposed as the novel order 171 

Comantemales ord. nov.29; Fig. 3c), order RF39 (139 species), family CAG-272 (88 species), 172 

and order Gastranaerophilales (67 species). While none have been successfully cultured, 173 

several have been described in the literature, including RF3916 and Gastranaerophilales 174 

(previously classified as a lineage in the Melainabacteria30) which are characterized by highly 175 

reduced genomes with numerous auxotrophies. This analysis suggests that, despite recent 176 

culture-based studies11,12,18,20, much of the diversity in the gut microbiome remains uncultured, 177 

including several large and prevalent clades. 178 

 179 

The UHGP expands the protein universe in the human gut microbiome 180 

Metagenomic approaches have the ability to leverage gene content information not only for 181 

more precise taxonomic analysis, but to also predict the functional capacity of individual 182 

species of interest compared to marker gene-based methods (e.g. relying solely on the 16S 183 

rRNA gene or a limited number of diagnostic genes). We built the Unified Human 184 

Gastrointestinal Protein (UHGP) catalogue with a total of 625,251,941 full-length protein 185 

sequences predicted from the 286,997 genomes here analysed. These were clustered at 50% 186 

(UHGP-50), 90% (UHGP-90), 95% (UHGP-90) and 100% (UHGP-100) amino acid identity, 187 

generating between 5 to 171 million protein clusters (Fig. 1c and Fig. 4a).  188 
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To determine how comprehensive the UHGP was when compared to existing human gut gene 189 

catalogues, we combined the UHGP-90 (n = 13,910,025 protein clusters) together with the 190 

Integrated Gene Catalogue5, a collection of 9.9 million genes from 1,267 gut metagenome 191 

assemblies, which we grouped into 7,063,981 protein clusters at 90% protein identity (referred 192 

to as IGC-90). Nearly all samples used to generate the IGC were also included in the UHGP 193 

catalogue (except for 59 transcriptome datasets), but the latter was generated from a larger and 194 

more geographically diverse metagenomic dataset (including samples from Africa, South 195 

America and Oceania). The UHGP-90 and IGC-90 resulted in a combined set of 15.2 million 196 

protein clusters, with an overlap of 5.8 million sequences (Fig. 4b). This revealed that 81% of 197 

the IGC is represented in the UHGP catalogue, with the missing 19% likely representing 198 

fragments of prokaryotic genomes <50% complete, viral or eukaryotic sequences, plasmids or 199 

other sequences not binned into MAGs. Most notably though, the UHGP provided an increase 200 

of 115% coverage of the gut microbiome protein space over the IGC. As the UHGP was 201 

generated from individual genomes and not from their original unbinned metagenome 202 

assemblies, our catalogue also has the advantage of providing a direct link between each gene 203 

cluster and its genome of origin. This ultimately allows combining individual genes with their 204 

genomic context for an integrated study of the gut microbiome. 205 

 206 

Functional capacity of the human gut microbiota 207 

We used the eggNOG31, InterPro32, COG33 and KEGG34 annotation schemes to capture the full 208 

breadth of functions within the UHGP. However, we found that 42.6% of the UHGP-100 was 209 

poorly characterized, as 28.1% lacked a match to any database and a further 14.5% only had a 210 

match to a COG with no known function (Fig. 4c). Based on the distribution of COG functions, 211 

the most highly represented categories were related to amino acid transport and metabolism, 212 

cell wall/membrane/envelope biogenesis and transcription. 213 
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We further leveraged the set of 625 million proteins derived from the human gut genomes to 214 

explore the functional diversity within each of the UHGG species. Protein sequences from all 215 

conspecific genomes were clustered at a 90% amino acid identity to generate a pan-genome 216 

for each species. Analysis of the functional capacity of the UHGG species pan-genomes 217 

identified a total of 363 KEGG modules encoded by at least one species (Supplementary Fig. 218 

7a and Supplementary Table 4). Most conserved modules were related to ribosomal structure, 219 

glycolysis, inosine monophosphate biosynthesis, gluconeogenesis, and the shikimate pathway 220 

— all representing essential bacterial functions. However, we found that for certain phyla such 221 

as Myxococcota, Bdellovibrionota, Thermoplasmatota, Patescibacteria and 222 

Verrucomicrobiota, a substantial proportion of the species pan-genomes remained poorly 223 

characterized (Supplementary Fig. 7b). At the same time, species belonging to the clades 224 

Fibrobacterota, Bacteroidota, Firmicutes I, Verrucomicrobiota and Patescibacteria had the 225 

highest proportion of genes encoding carbohydrate-active enzymes (CAZy; Supplementary 226 

Fig. 7b). As most of these lineages are largely represented by uncultured species (Fig. 3b), this 227 

suggests the gut microbiota may harbour many species with important metabolic activities yet 228 

to be cultured and functionally characterized under laboratory conditions. 229 

 230 

Patterns of intra-species genomic diversity 231 

With the protein annotations and pan-genomes inferred for each of the UHGG species, we 232 

explored their intra-species core and accessory gene repertoire. Only near-complete genomes 233 

(³90% completeness) and species with at least 10 independent conspecific genomes were 234 

analysed. The overall pattern of gene frequency within each of the 781 species here considered 235 

showed a distinctive bimodal distribution (Supplementary Fig. 8), with most genes classified 236 

as either core or rare (i.e. present in ³90% or <10% of conspecific genomes). We analysed the 237 

pan-genome size per species in relation to the number of conspecific genomes to look for 238 
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differences in intra-species gene richness. We observed distinct patterns across different gut 239 

phyla, with species from various Firmicutes clades showing the highest rates of gene gain (Fig. 240 

5a). There was a wide variation in the proportion of core genes between species even among 241 

clades with more than 1,000 genomes (Fig. 5b), with a median core genome proportion 242 

(percentage of core genes out of all genes in the representative genome) estimated at 66% (IQR 243 

= 59.6–73.9%). 244 

 245 

To distinguish the functions encoded in the core and accessory genes, we analysed their 246 

associated annotations. Core genes were well covered, with a median of 96%, 94%, 92% and 247 

69% of the genes assigned with an eggNOG, InterPro, COG and KEGG annotation, 248 

respectively (Fig. 5c). However, the accessory genes had a significantly higher proportion of 249 

unknown functions (P <0.001), with a median of 21% of the genes (IQR = 16.7–27.3%) lacking 250 

a match in any of the databases considered. Thereafter, we investigated the functions encoded 251 

by the core and accessory genes on the basis of the COG functional categories. Genes classified 252 

as core were significantly associated (adjusted P <0.001) with key metabolic functions 253 

involved in nucleotide, amino acid and lipid metabolism, as well as other housekeeping 254 

functions (e.g. related to translation and ribosomal structure, Fig. 5d). In contrast, accessory 255 

genes had a much greater proportion of COGs without a known function, and of genes involved 256 

in replication and recombination which are typically found in mobile genetic elements (MGEs, 257 

Fig. 5d). A significant number of accessory genes were related to defence mechanisms, which 258 

encompass not only general mechanisms of antimicrobial resistance (AMR) such as ABC 259 

transporter efflux pumps, but also targeted systems towards invading MGEs (e.g. CRISPR-Cas 260 

and restriction modification systems against bacteriophages). These results highlight the 261 

potential of this resource to better understand the dynamics of chromosomally encoded AMR 262 
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within the gut and decipher to what extent the microbiome may be a source of both known and 263 

novel resistance mechanisms. 264 

 265 

We next investigated intra-species single nucleotide variants (SNVs) within the UHGG 266 

species. We generated a catalogue consisting of 249,435,699 SNVs from 2,489 species with 267 

three or more conspecific genomes (Fig. 6a). For context, a previously published catalogue 268 

contained 10.3 million single nucleotide polymorphisms from 101 gut microbiome species35. 269 

Of note, more than 85% of these SNVs were exclusively detected in MAGs, whereas only 2.2% 270 

were exclusive to isolate genomes (Fig. 6b). We found the overall pairwise SNV density 271 

between MAGs to be higher than that observed between isolate genomes (Fig. 6c). Next, we 272 

assigned the detected SNVs to the continent of origin of each genome and observed that 36% 273 

of the SNVs were continent exclusive. Notably, genomes with a European origin contributed 274 

to the most exclusive SNVs (Fig. 6d). However, genomes from Africa contributed over three 275 

times more variation on average than European or North American genomes. Pairwise SNV 276 

analysis also supported a higher cross-continent SNV density, especially between genomes 277 

from Africa and Europe (Fig. 6e). Our results suggest there is a high strain variability between 278 

continents and that a considerable level of diversity remains to be discovered, especially from 279 

underrepresented regions such as Africa, South America and Oceania. 280 

 281 

Resource implementation 282 

Both the UHGG and UHGP catalogues are available as part of a new genome layer within the 283 

MGnify36 website, where summary statistics of each species cluster and their functional 284 

annotations can be interactively explored and downloaded (see ‘Data availability’ section for 285 

more details). We have also generated a BItsliced Genomic Signature Index (BIGSI)37 of the 286 

UHGG, which will allow users to interactively screen for the presence of small sequence 287 
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fragments (<5 kb) in this collection. As new genomes from the human gut microbiome are 288 

generated and made publicly available, we plan to periodically update the resource with newly 289 

discovered species or by replacing uncultured reference genomes with better quality versions.  290 

 291 

Discussion 292 

We have generated a unified sequence catalogue representing 286,997 genomes and over 625 293 

million protein sequences of the human gut microbiome. Of the 4,644 species contained in the 294 

UHGG, 71% lack a cultured representative, meaning the majority of microbial diversity in the 295 

catalogue remains to be experimentally characterized. During preparation of our manuscript, a 296 

new collection of almost 4,000 cultured genomes from 106 gut species was released38, which 297 

will be incorporated in future versions of the resource. As 96% of these genomes were reported 298 

to have a species representative in the culture collections here included, we do not anticipate 299 

this dataset to provide a substantial increase in the number of species discovered. Nevertheless, 300 

our analyses suggest additional uncultured species from the human gut microbiome are yet to 301 

be discovered, highlighting the importance and need for culture-based studies. Furthermore, 302 

given the sampling bias towards populations from China, Europe and the United States, we 303 

expect that many underrepresented regions still contain substantial uncultured diversity. 304 

 305 

By comparing recently published large datasets of uncultured genomes16,17,19, we were able to 306 

assess the reproducibility of the results from each study. We show that despite the different 307 

assembly, binning and refinement procedures employed in the three studies, almost all of the 308 

same species and near-identical strains were recovered independently when using a consistent 309 

sample set. These results further increase confidence in the use of metagenome-assembled 310 

genomes for the characterization of uncultured microbial diversity.  311 

 312 
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With the establishment of this massive sequence catalogue, it is evident that a large portion of 313 

the species and functional diversity within the human gut microbiome remains uncharacterized. 314 

Moreover, our knowledge of the intra-species diversity of many species is still limited due to 315 

the presence of a small number of conspecific genomes. Having this combined resource can 316 

help guide future studies and prioritize targets for further experimental validation. Using the 317 

UHGG or UHGP, the community can now screen for the prevalence and abundance of 318 

species/genes in a large panel of intestinal samples and in specific clinical contexts. By 319 

pinpointing particular taxonomic groups with biomedical relevance, more targeted approaches 320 

could be developed to improve our understanding of their role in the human gut. The functional 321 

predictions generated for the species pan-genomes could also be leveraged to develop new 322 

culturing strategies for isolation of candidate species. Target-enrichment methods such as 323 

single-cell39 and/or bait-capture hybridization40 approaches could also be applied. Being able 324 

to enrich for specific groups of interest, even without culturing, could allow recovery of better-325 

quality versions of MAGs and improve the analysis derived from genome sequence data alone. 326 

Given the large uncultured diversity still remaining in the human gut microbiome, having a 327 

high-quality catalogue of all currently known species substantially enhances the resolution and 328 

accuracy of metagenome-based studies. Therefore, the presented genome and protein catalogue 329 

represents a key step towards a hypothesis-driven, mechanistic understanding of the human gut 330 

microbiome. 331 

332 
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Methods 468 

Genome collection 469 

We compiled all the prokaryotic genomes publicly available as of March 2019 that have been 470 

sampled from the human gut. To retrieve isolate genomes, we surveyed the IMG23, NCBI21 471 

and PATRIC22 databases for genome sequences annotated as having been isolated from the 472 

human gastrointestinal tract. We complemented this set with bacterial genomes belonging to 473 

two recent culturomics collections: the Human Gastrointestinal Bacteria Culture Collection 474 

(HBC)18 and the Culturable Genome Reference (CGR)20. To avoid including duplicated entries 475 

due to redundancy between reference databases, we combined genomes obtained from the 476 

PATRIC and IMG repositories, and added only those without an identical genome in the sets 477 

extracted from NCBI, HBC and CGR. Metagenome-assembled genomes (MAGs, i.e. 478 

uncultured genomes) were obtained from Pasolli, et al.19 (CIBIO), Almeida, et al.17 (EBI) and 479 

Nayfach, et al.16 (HGM). For the CIBIO set, only those genomes retrieved from samples 480 

collected from the intestinal tract were used. Metadata for each genome was retrieved using 481 

the API of the various public repositories and combined with that available in each of the 482 

original studies.  483 

 484 

Assessing genome quality 485 

Genome quality (completeness and contamination) was estimated with CheckM v1.0.1141 486 

using the ‘lineage_wf’ workflow to select only those that passed the following criteria: >50% 487 

genome completeness, <5% contamination and an estimated quality score (completeness – 5 ´ 488 

contamination) >50. We also searched for the presence of ribosomal RNAs in each genome 489 

with the ‘cmsearch’ function of INFERNAL42 (options ‘-Z 1000 --hmmonly --cut_ga --noali –490 

tblout’) against the Rfam43 covariance models for the 5S, 16S and 23S rRNAs. tRNAs of the 491 
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standard 20 amino acids were identified with tRNAScan-SE44 with options ‘-A -Q’ for archaeal 492 

species and ‘-B -Q’ for those belonging to bacterial lineages. 493 

 494 

Species clustering  495 

We clustered the total set of 286,997 genomes at an estimated species level (average nucleotide 496 

identity, ANI ³95%25) using dRep v2.2.445 with the following options: ‘-pa 0.9 -sa 0.95 -nc 497 

0.30 -cm larger’. Because of the computational burden of clustering together the entire genome 498 

set, we employed an iterative approach where random chunks of 50,000 genomes were 499 

clustered independently. The selected representatives from each chunk were combined and 500 

subsequently clustered, reducing the final computational load. To ensure the best quality 501 

genome was selected as the species representative in each iteration, a score was calculated for 502 

each genome based on the following formula: 503 

Score = CMP – 5 ´ CNT + 0.5 ´ log(N50) 504 

where CMP represents the completeness level, CNT the estimated contamination and N50 the 505 

assembly contiguity characterized by the minimum contig size in which half of the total 506 

genome sequence is contained. The genome with the highest score was chosen as the species 507 

representative, with cultured genomes prioritized over uncultured genomes (i.e. if a MAG had 508 

a higher score than an isolate genome, the latter would still be chosen as the representative). 509 

 510 

Evaluating methods reproducibility 511 

The species clusters inferred here were compared with those previously generated in the human 512 

gut MAG studies16,17,19 from a common set of genomes. Similarity between species clusterings 513 

was estimated using the Adjusted Rand Index (ARI) computed in the Scikit-learn python 514 

package46. This metric considers both the number of clusters and cluster membership to 515 

compute a similarity score ranging from 0 to 1. 516 
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Conspecific genomes recovered in the same metagenomic samples but in different studies were 517 

compared with FastANI v1.125 with default parameters to obtain both the maximum aligned 518 

fraction and ANI for each pairwise comparison. 519 

 520 

Inferring cultured status 521 

To determine their cultured status, the UHGG species representatives were searched against 522 

NCBI RefSeq release 93 after excluding uncultured genomes (i.e. metagenome-assembled or 523 

single-cell amplified genomes). Genome alignments were performed in two stages: (1) Mash 524 

v2.1 was used as an initial screen (using the function ‘mash dist’) to identify the most similar 525 

RefSeq genome to each of the UHGG species, and (2) ‘dnadiff’ from MUMmer v4.0.0beta247 526 

was subsequently used to compute whole genome ANI between the genome pairs. A species 527 

was considered to have been cultured if (1) it contained a cultured gut genome from the UHGG 528 

catalogue, or (2) if it matched an isolate RefSeq genome with at least 95% ANI over at least 529 

30% of the genome length. 530 

 531 

Calculating number of conspecific genomes 532 

For an accurate assessment of the number of non-redundant genomes belonging to each 533 

species, we de-replicated all conspecific genomes at a 99.9% ANI threshold using dRep with 534 

options ‘-pa 0.999 –SkipSecondary’. Furthermore, the frequency of each species was only 535 

counted once per sample to avoid cases where the same genome was recovered multiple times 536 

because of overlapping samples between the three MAG studies. 537 

 538 

Estimating geographical diversity 539 

A geographical diversity index was estimated to assess how widely distributed each species 540 

was. We calculated the Shannon diversity index on the proportion of samples each species was 541 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 19, 2019. ; https://doi.org/10.1101/762682doi: bioRxiv preprint 

https://doi.org/10.1101/762682
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

found per continent. This metric combines both richness and evenness, so the level of estimated 542 

diversity is highest in species found across all continents at a similar proportion. 543 

 544 

Phylogenetic analyses 545 

Taxonomic annotation of each species representative was performed with the Genome 546 

Taxonomy Database27 Toolkit (GTDB-Tk) v0.3.1 547 

(https://github.com/Ecogenomics/GTDBTk) (database release 04-RS89) using the 548 

‘classify_wf’ function and default parameters. To use consistent species boundaries between 549 

the genome clustering and taxonomic classification procedures, genomes were assigned at the 550 

species level if the ANI to the closest GTDB-Tk species representative genome was ³95% and 551 

the alignment fraction ³30%. In this taxonomy scheme, genera and species names with an 552 

alphabetic suffix indicate taxa that are polyphyletic or needed to be subdivided based on 553 

taxonomic rank normalization according to the current GTDB reference tree. The lineage 554 

containing the type strain retains the unsuffixed (valid) name and all other lineages are given 555 

alphabetic suffixes, indicating they are placeholder names that need to be replaced in due 556 

course. Taxon names above the rank of genus appended with an alphabetic suffix indicate 557 

groups that are not monophyletic in the GTDB reference tree, but for which there exists 558 

alternative evidence that they are monophyletic groups. We also generated NCBI taxonomy 559 

annotations for each species-level genome based on its placement in the GTDB tree, using the 560 

‘gtdb_to_ncbi_majority_vote.py’ script available in the GTDB-Tk repository 561 

(https://github.com/Ecogenomics/GTDBTk/tree/stable/scripts). 562 

 563 

Maximum-likelihood trees were generated de novo using the protein sequence alignments 564 

produced by the GTDB-Tk: we used IQ-TREE v1.6.11 to build a phylogenetic tree of the 4,616 565 

bacterial and 28 archaeal species. The best-fit model was automatically selected by 566 
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‘ModelFinder’ on the basis of the Bayesian Information Criterion (BIC) score. The LG+F+R10 567 

model was chosen for building the bacterial tree, while the LG+F+R4 model was used for the 568 

archaeal phylogeny. Trees were visualized and annotated with the Interactive Tree Of Life 569 

(iTOL) v4.4.248. Phylogenetic diversity (PD) was estimated by the sum of branch lengths, with 570 

the amount that was exclusive to uncultured species calculated as PDtotal – PDcultured. Uncultured 571 

monophyletic groups were defined as nodes in the tree containing child leaves exclusively 572 

comprised of uncultured genomes. 573 

 574 

BIGSI construction 575 

A BItsliced Genomic Signature Index (BIGSI)37 was generated for all species-level genomes 576 

with BIGSI v0.3.8. First, k-mers of size 31 were extracted from each genome with McCortex 577 

v1.0.149 (‘mccortex31 build -k 31’). Thereafter, Bloom filters were built for each k-mer set 578 

using ‘bigsi bloom’ and inserted into the BIGSI index with ‘bigsi build’. BIGSI config 579 

parameters h (number of hash functions applied to each k-mer) and m (Bloom filter’s length in 580 

bits) were set at 1 and 28,000,000, respectively. A final API layer for querying the index was 581 

built using hug (http://www.hug.rest/) and hosted on the MGnify36 website: 582 

https://www.ebi.ac.uk/metagenomics/genomes. 583 

 584 

Pan-genome analysis and functional annotation 585 

Protein coding sequences (CDS) for each of the 286,997 genomes were predicted and annotated 586 

with Prokka v1.13.350, using Prodigal v2.6.351 with options ‘-c’ (predict proteins with closed 587 

ends only), ‘-m’ (prevent genes from being built across stretches of sequences marked as Ns) 588 

and ‘-p single’ (single mode for genome assemblies containing one single species). Pan-589 

genome analyses were carried out using Roary v3.12.052. We set a minimum amino acid 590 

identity for a positive match at 90% (‘-i 90’), a core gene defined at 90% presence (‘-cd 90’) 591 
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and no paralog splitting (‘-s’). A normalized pan-genome size was estimated by dividing the 592 

total number of core and accessory genes by the number of genes contained in the species 593 

representative genome. 594 

 595 

The Unified Human Gastrointestinal Protein (UHGP) catalogue was generated from the 596 

combined set of 625,251,941 CDS predicted. Protein clustering of the UHGP and the Integrated 597 

Gene Catalogue (IGC)5 was performed with the ‘linclust’ function of MMseqs2 v6-f5a1c53 598 

with options: ‘--cov-mode 1 -c 0.8’ (minimum coverage threshold of 80% length of the shortest 599 

sequence) and ‘--kmer-per-seq 80’ (number of k-mers selected per sequence, increased from 600 

the default of 21 to improve clustering sensitivity). The ‘--min-seq-id’ option was set at 1, 0.95, 601 

0.9 and 0.5 to generate the catalogues at 100%, 95%, 90% and 50% protein identity, 602 

respectively. We clustered the IGC solely at a 90% and 50% protein identity as it was originally 603 

de-replicated at a 95% nucleotide identity5. Functional characterization of all protein sequences 604 

was performed with eggNOG-mapper v254 (database v5.031) and InterProScan v5.35-74.032. 605 

COG33, KEGG34 and CAZy55 annotations were derived from the eggNOG-mapper results. 606 

Differences in annotation coverage and COG functional categories between the core and 607 

accessory genes were evaluated with a two-tailed Wilcoxon rank-sum test in R v3.6.0 (function 608 

‘wilcox.test’). Expected P values were corrected for multiple testing with the Benjamini-609 

Hochberg method. Cohen’s d effect sizes were estimated with the function ‘cohen.d’ from the 610 

Effsize56 R package. To accurately estimate the proportion of each KEGG module in the 611 

species pan-genome, we used the compositional data analysis R package CoDaSeq57. Pseudo 612 

counts for zero-count data were first imputed using a Bayesian-Multiplicative simple 613 

replacement procedure implemented in the ‘cmultRepl’ function (method ‘CZM’). Final counts 614 

were thereby converted to centred log-ratios using the ‘codaSeq.clr’ function to account for the 615 

compositional nature of the data and for differences in pan-genome size. 616 
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SNV analyses 617 

A total of 2,489 species with at least three conspecific genomes were used for generating a 618 

catalogue of single nucleotide variants (SNVs). For each species, we mapped all conspecific 619 

genomes to the representative genome using the ‘nucmer’ program from MUMmer 620 

v4.0.0.beta247 and filtered alignments using the ‘delta-filter’ program with options ‘-q -r’ to 621 

exclude chance- and repeat-induced alignments. Thereafter, we identified SNVs using the 622 

‘show-snps’ program. Single base insertions and deletions were not counted as SNVs. Each 623 

SNV locus was included in the catalogue only when the alternate allele was detected in at least 624 

two conspecific genomes. The final SNV catalogue was generated by unifying the SNV 625 

coordinates on the basis of their position in the species representative genome. The SNV entries 626 

in the catalogue were characterized as genome type-specific or continent-specific based on 627 

whether the alternate allele could be found solely in genomes from a specific genome type or 628 

continent. The number of continent-specific SNVs was normalized by the number of genomes 629 

from the corresponding continent to estimate the contribution per genome to the continent-630 

specific SNV discoveries. 631 

 632 

Similar programs and parameters were used for the pairwise genome alignment, but in this case 633 

only near-complete genomes (³90% completeness) and species with at least 10 independent 634 

conspecific genomes were considered. Due to the high computational demand, pairwise 635 

alignments of species encompassing more than 1,000 genomes were limited to the best-quality 636 

1,000 genomes. A total of 29,283,684 pairwise genome alignments were performed between 637 

almost 113,000 genomes from 909 species. For each pairwise comparison, we estimated the 638 

total number of SNVs and the overall density as the number of SNVs per kb. In addition, the 639 

pairwise comparisons were organized based on the type and the continent origin of the genomes 640 

in the pair for further downstream analyses. A two-tailed Wilcoxon rank-sum test was used to 641 
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evaluate differences in SNV distributions. Resulting P values were corrected for multiple 642 

testing with the Benjamini-Hochberg method. 643 

 644 

Data availability 645 

Genome assemblies of the UHGG have been deposited in the European Nucleotide Archive 646 

under study accession ERP116715. The UHGG, UHGP and SNV catalogues are available in a 647 

public FTP server (http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/) 648 

alongside functional annotations and the pan-genome results. These data together with the 649 

BIGSI search index of the UHGG can also be accessed interactively on the MGnify website: 650 

https://www.ebi.ac.uk/metagenomics/genomes. 651 
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Figures 678 

 679 

Figure 1. The unified sequence catalogue of the human gut microbiome. 680 

a, Number of gut genomes per each study set used to generate the sequence catalogues, 681 

coloured according to whether they represent isolate genomes or metagenome-assembled 682 

genomes (MAGs). b, Geographic distribution of the number of genomes retrieved per country. 683 

c, Overview of the methods used to generate the genome (UHGG) and protein sequence 684 

(UHGP) catalogue. Genomes retrieved from public datasets were first quality-controlled by 685 

CheckM. Filtered genomes were clustered at an estimated species-level (95% average 686 

nucleotide identity) and their intra-species diversity was assessed (genes from conspecific 687 

genomes were clustered at a 90% protein identity). In parallel, a non-redundant protein 688 

catalogue was generated from all the coding sequences of the 286,997 genomes at 100% 689 

(UHGP-100, n = 170,658,203), 95% (UHGP-95, n = 20,240,320), 90% (UHGP-90, n = 690 

13,910,025) and 50% (UHGP-50, n = 4,736,012) protein identity. 691 
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692 

Figure 2. Intersection and frequency of species across studies. 693 

a, Number of species found across the genome study sets here used, ordered by their level of 694 

overlap. Vertical bars represent the number of species shared between the study sets 695 

highlighted in the lower panel. b, Rarefaction curve of the number of species detected as a 696 

function of the number of non-redundant genomes analysed. Curves are depicted both for all 697 

the UHGG species, and after excluding singleton species (represented by only one genome). c, 698 

Number of non-redundant genomes detected per species (left) alongside the degree of 699 

geographical diversity (calculated with the Shannon diversity index, right).  700 
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 701 
Figure 3. Uncultured species are predominant among human gut phyla. 702 

a, Maximum-likelihood phylogenetic tree of the 4,616 bacterial species detected in the human 703 

gut. Clades are coloured by species cultured status with outer circles depicting the GTDB 704 

phylum annotation. Bar graphs in the outermost layer indicate the number of genomes from 705 

each species. The order Comantemales ord. nov. is highlighted with dark green branches. b, 706 

Proportion of species within the 25 prokaryotic phyla detected according to their cultured 707 

status. Numbers in brackets represent the total number of species in the corresponding phylum. 708 

c, Phylogenetic tree of species belonging to the order Comantemales ord. nov. (phylum 709 

Firmicutes A), the largest phylogenetic group exclusively represented by uncultured species. 710 

The geographic distribution of each species and the number of genomes recovered is 711 

represented below the tree. The species previously classified as Candidatus Borkfalki 712 

ceftriaxensis is indicated with an asterisk.  713 
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 714 

Figure 4. The UHGP improves coverage of the human gut protein landscape. 715 

a, Cumulative distribution curve of the number and size of the gene clusters of the UHGP-95 716 

(n = 20,240,320), UHGP-90 (n = 13,910,025) and UHGP-50 (n = 4,736,012). Dashed vertical 717 

lines indicate the cluster size below which 90% of the gene clusters can be found. b, Overlap 718 

between the UHGP (purple) and IGC (orange), both clustered at 90% amino acid identity. c, 719 

COG functional annotation results of the unified gastrointestinal protein catalogue clustered at 720 

100% amino acid identity (UHGP-100).   721 
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 722 

Figure 5. Pan-genome diversity patterns within the gut microbiome. 723 

a, Normalized pan-genome size as a function of the number of conspecific genomes. 724 

Regression curves were generated per phylum, with the corresponding coefficients of 725 

determination indicated next to each curve. b, Fraction of each species core genome 726 

(proportion of core genes out of all genes in the representative genome) according to the 727 

number of conspecific genomes (left) and as a histogram (right), coloured by phylum. 728 

Horizontal dashed line represents the median value across all species. c, Proportion of core and 729 

accessory genes from each species that was classified with various annotation schemes, 730 

alongside the percentage of genes lacking any functional annotation. ***P <0.001 d, 731 

Comparison between the functional categories assigned to the core and accessory genes. Only 732 

those statistically significant (adjusted P <0.05) are shown. A positive effect size indicates 733 

overrepresentation in the core genes. 734 
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 735 

Figure 6. Analysis of intra-species single nucleotide variation.  736 

a, Total number of SNVs detected as a function of the number of species. The cumulative 737 

distribution was calculated after ordering the species by decreasing number of SNVs. b, 738 

Number of SNVs detected only in isolate genomes, MAGs, or in both. c, Pairwise SNV density 739 

analysis of genomes of the same or different type. ***P < 0.001 d, Right panel shows the 740 

number of SNVs exclusively detected in genomes from each continent. The left panel shows 741 

the number of exclusive SNVs normalized by the number of genomes per continent. e, Pairwise 742 

SNV density analysis between genomes from Europe, the largest genome subset, and other 743 

continents. The median SNV density was calculated per species and the distribution is shown 744 

for all species. Comparison of genomes recovered from the same continent was used as 745 

reference. The SNV density between genomes of the same continent is significantly lower 746 

(adjusted P < 0.05) to that calculated for genomes from different continents.  747 
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Supplementary Figures 748 

 749 

Supplementary Figure 1. Genome quality of species representatives. 750 

a, Completeness and contamination scores for each of the 4,644 species representatives, 751 

coloured by their quality classification category. Medium quality: >50% completeness; near 752 

complete: ³90% completeness; high-quality: >90% completeness, presence of 5S, 16S and 23S 753 

rRNA genes, as well as at least 18 tRNAs. All genomes have a quality score (QS = 754 

completeness – 5 ´ contamination) above 50. b, Number of species according to different 755 

completeness and contamination criteria. 756 
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 757 

Supplementary Figure 2. Taxonomy composition of the bacterial and archaeal species. 758 

a, Taxonomic affiliation of the 4,616 bacterial species detected. Data is partitioned by 759 

taxonomic rank, with only the five most highly represented taxa per rank depicted in the legend. 760 

b, Taxonomic affiliation of the 28 archaeal species detected, partitioned by taxonomic rank.  761 
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 762 

Supplementary Figure 3. Species overlap across study sets. 763 

a, Number of species found across the three metagenome-assembled genome sets, ordered by 764 

their level of overlap. Only those genomes recovered from the 1,554 metagenomic samples 765 

used by all three studies were considered in this analysis. b, Distribution of the proportion of 766 

species recovered per sample in each study out of all species recovered across all three studies 767 

in the same samples. c, Estimated aligned fractions and average nucleotide identities (ANI) 768 

between conspecific genomes obtained in the same sample but in different MAG studies. d, 769 

Number of species identified in three culture-based studies and their degree of overlap. The 770 

NCBI study set consists mainly of genomes from the Human Microbiome Project (HMP).  771 
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 772 

Supplementary Figure 4. Quality and sample origin of uncultured singleton species. 773 

a, Genome completeness and contamination estimates of the 1,212 uncultured species 774 

represented by a single genome. b, Proportion of the 1,212 singleton species, by study set, that 775 

originated from samples analysed in one, two or three of the MAG studies (CIBIO, EBI and 776 

HGM). The CIBIO study used metaSPAdes and MetaBAT 2 for assembling and binning 777 

sequencing runs previously merged by sample; the HGM study used MEGAHIT to assemble 778 

runs merged by sample and applied a combination of MaxBin 2, MetaBAT 2, CONCOCT and 779 

DAS Tool for binning and refinement; the EBI study used metaSPAdes and MetaBAT 2 for 780 

assembling and binning individual runs without merging by sample.  781 
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 782 

Supplementary Figure 5. Species frequency and geographical diversity. 783 

a, Number of non-redundant genomes retrieved from the 50 most highly represented species 784 

in the UHGG. Each species is coloured by its assigned phylum according to the figure legend. 785 

b, Geographical diversity estimated using the Shannon index in relation to the number of non-786 

redundant genomes from each species. The Spearman's rank correlation coefficient and P value 787 

are depicted in the graph. Predicted values represent the random geographical distribution of 788 

equivalent numbers of genomes observed for each species. Dashed horizontal line indicates the 789 

maximum theoretical value of geographical diversity corresponding to equal sample 790 

proportions across the six major continents (Africa, Asia, Europe, North America, South 791 

America and Oceania).  792 
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 793 

Supplementary Figure 6. Diversity of the gut archaeal species detected. 794 

Phylogenetic tree of the 28 archaeal species detected in the human gut. Tips are labelled with 795 

the corresponding species representative code and coloured according to its cultured status. 796 

The taxonomic affiliation (family), geographical distribution, number of non-redundant 797 

genomes and total pan-genome size are represented next to the tree.  798 
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 799 

Supplementary Figure 7. Functional annotation of gut microbiome species. 800 

a, Functional profiles of the UHGG species pan-genomes (rows) according to 363 KEGG 801 

modules (columns). Numbers of genes matching each module were normalized to centred log-802 

ratios after imputing values with zero counts. Species are coloured according to phylum. 803 

KEGG modules and species were hierarchically clustered using the Ward’s criterion method. 804 

b, Proportion of each species pan-genome, partitioned by phylum, without any assignment to 805 

the eggNOG, InterPro, COG or KEGG databases (left). Proportion of the pan-genome with a 806 

match to the carbohydrate-active enzymes (CAZy) database (right).  807 
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 808 

Supplementary Figure 8. Gene frequency distribution within the species-level clusters. 809 

a, Distribution of the number of genes found per fraction of conspecific genomes. Only near-810 

complete genomes (³90% completeness) were considered in the analysis. b, Number of core 811 

genes detected based on the threshold of genomes per species used to classify as core. Vertical 812 

dashed line represents the 90% threshold used in this study. 813 
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