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Abstract 29 

Most current analysis tools for antibody next-generation sequencing data work with primary sequence 30 
descriptors, leaving accompanying structural information unharnessed. We have used novel rapid 31 

methods to structurally characterize the paratopes of more than 180 million human and mouse B-cell 32 
receptor (BCR) repertoire sequences. These structurally annotated paratopes provide unprecedented 33 

insights into both the structural predetermination and dynamics of the adaptive immune response. We 34 
show that B-cell types can be distinguished based solely on these structural properties. Antigen-35 

unexperienced BCR repertoires use the highest number and diversity of paratope structures and these 36 
patterns of naïve repertoire paratope usage are highly conserved across subjects. In contrast, more 37 

differentiated B-cells are more personalized in terms of paratope structure usage. Our results establish 38 
the paratope structure differences in BCR repertoires and have applications for many fields including 39 

immunodiagnostics, phage display library generation, and “humanness” assessment of BCR repertoires 40 
from transgenic animals. 41 
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1. Introduction 60 

B-cells are essential components of the adaptive immune system in jawed vertebrates. They play a key 61 

role in recognizing foreign molecules (antigens) via membrane-bound B-cell receptors (BCR), and 62 
antibodies (secreted BCRs). Successful recognition of a broad array of structural motifs (epitopes) on 63 

antigens relies on the enormous sequence and structural diversity of BCR repertoires, generated by the 64 
rearrangement of V(D)J gene segments in the two variable domain chains (heavy and light), each 65 

consisting of four framework and three complementary-determining (CDR) loop regions 1,2. Upon 66 
antigen stimulation, somatic hypermutation (SHM) recursively introduces changes to the variable (Fv) 67 

domain of naïve BCR repertoires. These occur primarily in the antibody binding interface (paratope, 68 
which consists mostly of CDR residues)3, leading to structural changes. Those B-cells whose paratopes 69 

are epitope-complementary are clonally expanded, and further diversified and selected to enhance 70 
antigen binding properties. BCR diversification also happens outside the Fv domain, where 71 

immunoglobulin class switching changes the constant region of the heavy chain 4. There are five main 72 
heavy constant regions (isotypes), each with a unique profile of effector functions and antigen binding 73 

avidity. 74 

Next-generation sequencing of immunoglobulin genes (Ig-seq) has become an essential technique in 75 
immunology 5,6. For example, Ig-seq has revealed the dynamics of BCR sequence diversification across 76 

different B-cell types in healthy and antigen-stimulated B-cell donors 7–10, advanced our understanding 77 
of the adaptive immune response, and contributed to vaccine development 11 and immunodiagnostics 78 
12. 79 

Most Ig-seq analysis tools work within the remit of BCR primary sequence information 6,13. These rapid 80 
methods of measuring BCR diversity are highly scalable, an important property as Ig-seq datasets 81 

become ever larger and more numerous 2. However, the decision to avoid paratope structural 82 
descriptors could lead to inaccuracies 14–16, as it is known that similar sequences can have markedly 83 

different epitope complementarity and vice versa 13. Therefore, a computationally-efficient structure-84 
based BCR repertoire method should augment current Ig-seq analysis pipelines to deliver a clearer 85 

understanding of the process of BCR development. 86 

One of the first structural analyses of Ig-seq data was that of DeKosky et al., 14. They demonstrated that 87 
antibody models from paired-chain naïve and memory BCR repertoires displayed different 88 

physicochemical properties. However, their analysis was limited to 2,000 antibody models from three B-89 
cell donors 14. Most publicly-available BCR repertoires are unpaired, only covering either the heavy or 90 

light variable domain 17 precluding the generation of refined antibody models. Krawczyk et al., 15 showed 91 
that it was possible to annotate unpaired BCR repertoires with structural information by mapping loop 92 

sequences individually onto crystallographically-solved antibody structures. 93 

Using a similar approach, we have investigated structural diversity along the B-cell differentiation axis in 94 
humans and mice. We show that structurally annotating BCR repertoires yields unprecedented insights 95 

into both the structural predetermination and dynamics of the adaptive immune response. By 96 
approximating BCR repertoire structures with rapid homology modelling techniques, we find that 97 

different B-cell types can be distinguished by their usage of CDR loop structures. Our analysis reveals 98 
that BCR repertoires of naïve B-cells tend to contain conserved “public” CDR structure profile, whilst 99 

those of more differentiated B-cell types become more personalized. These results provide crucial 100 
information about the structural changes in antibody paratopes during B-cell differentiation, with a 101 
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plethora of prospective applications in immunodiagnostics and rational immunotherapeutic 102 

engineering. 103 

2. Methods: 104 

Data Selection 105 

Human Ig-seq data from Galson et al., 7 and mouse (C57BL/6 inbred strain) Ig-seq data from Greiff et al., 106 
9 were used. Galson et al., (“human”) is a longitudinal vaccination study across nine healthy human 107 

donors, in which the heavy chain of naïve, marginal zone, memory, and plasma B-cell types were 108 
interrogated 7. Greiff et al., (“mouse”) is a high depth sequencing study of the murine adaptive immune 109 

system in response to antigenic stimulation, containing heavy chain BCR repertoires from pre, naïve and 110 
plasma B-cells 18. Both studies used FACS to sort B-cells into subpopulations according to their 111 

differentiation stages. 112 

The Ig-seq amino acid sequences were downloaded from the Observed Antibody Space (OAS) 17 113 
resource, retaining their Data Unit information. Each Data Unit is a sequencing sample from a single B-114 

cell donor with a defined combination of B-cell type and isotype information, and contains sequences 115 
that are IMGT-numbered 19 and filtered for antibody structural viability. Henceforth, OAS Data Units will 116 

be referred to as B-cell receptor (BCR) repertoires. 117 

To investigate structural changes along the B-cell differentiation axis, BCR repertoires with defined B-cell 118 

type and isotype information were downloaded. Only IGHG and IGHM sequences were considered as 119 
these were the most abundant. The total number of BCR repertoires in the human and mouse data were 120 

85 and 82 respectively. 121 

Structural Annotation 122 

To annotate the human and mouse data with structural information, we developed a customized 123 

version of our SAAB pipeline 15, SAAB+ that predicts the structural shape of the IMGT-defined CDRs. 124 
CDR-H1 and CDR-H2 adopt a limited number of structural configurations, known as canonical classes 125 
16,20,21, which can be predicted accurately and rapidly from sequence 22. SAAB+ uses SCALOP 22 to 126 
annotate non-CDR-H3 loop canonical classes. Canonical class annotation should be highly accurate, with 127 

SCALOP predictions estimated to be within 1.5 Å of the true structure 90% of the time 22. The June 2019 128 
SCALOP database was used in this study. 129 

SAAB+ uses FREAD to predict CDR-H3 structural templates 23–25. Accurately modelling all the CDR-H3s in 130 

an Ig-seq dataset is challenging, owing to the vastness of structural space accessible to these loops 26–28, 131 
relative to the small number of publicly-available crystallographically-solved antibodies (many of which 132 

are highly sequence redundant) 29. In addition, structurally-solved antibodies have a CDR-H3 length 133 
distribution and sequence diversity that is different from natural Ig-seq data (Supplementary Figure 3). 134 

We tested the performance of FREAD on the Ig-seq data and, at the parameters used, the expected 135 
average RMSD of FREAD CDR-H3 template predictions for both human and mouse data is 2.5 Å (see 136 

Supplementary Methods). This is in line with current state-of-the-art CDR-H3 modelling software tools 137 
(mean RMSD of 2.8 Å) 30. In a similar manner to DeKosky et al., 14, we limited our CDR-H3 analysis to loop 138 

lengths of 16 amino acids or shorter, as far fewer structures with longer CDR-H3 loops are available and 139 
longer loops have increased structural freedom. We also excluded CDR-H3 loops shorter than five amino 140 

acids from our analysis, as only three CDR-H3 templates covered these lengths. FREAD templates were 141 
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downloaded from SAbDab (14th November 2018) 29, and consisted of all X-ray crystal structures of 142 

antibodies with a resolution better than 2.9 Å.  143 

CDR-H3 clustering 144 

To identify similar CDR-H3 loop structures, we used the DTW algorithm 16 to cluster FREAD templates by 145 
backbone RMSD. Those within 0.6 Å were placed in the same cluster, reducing our 2,943 FREAD CDR-H3 146 

templates to 1,169 CDR-H3 clusters. 147 

Filtering BCR repertoires 148 

As PCR sequencing can lead to variable amplicon amplification, we removed any BCR repertoire if its two 149 

most redundant CDR-H3 clusters contained more than 80% of all repertoire sequences (Supplementary 150 
Figure 1). We also discarded any BCR repertoire that contained fewer than 10,000 sequences with 151 

predicted CDR-H3 structures - this cutoff was selected to allow for adequate sampling of CDR-H3 152 
template usages, whilst retaining as many BCR repertories as possible (Supplementary Table 3). This 153 

reduced the number of repertoires for all subsequent structural analysis to 81 (human) and 73 (mouse). 154 
CDR-H1 and CDR-H2 loops were not taken into account in determining BCR repertoire quality, since 155 

canonical class coverage was ~95% and ~99% for the human and mouse data respectively 156 
(Supplementary Table 2). 157 

Patterns of CDR-H3 cluster usage 158 

We analyzed the pattern of CDR-H3 cluster frequencies in the human and mouse data, to identify 159 
clusters whose usages were over-represented (Structural Stems), random (Randomly-Used) and under-160 

represented (Under-Represented) within a given B-cell type. 161 

The structurally-annotated human and mouse data was split into individual groups based on unique B-162 
cell type and isotype combinations. Within these groups, we calculated the CDR-H3 length distributions 163 

and the proportion modellable by FREAD for each CDR-H3 length. Next, we randomly selected CDR-H3 164 
templates from our FREAD library (with replacement) according to these distributions, to generate a 165 

randomized dataset for each BCR repertoire. Sampling was performed across the set of FREAD 166 
templates already present in each BCR repertoire. The randomized dataset sizes were set to one million 167 

sequences and the total number of randomized datasets was matched to the number of the BCR 168 
repertoires within the corresponding groups (Supplementary Table 3). 169 

A one-sided Mann-Whitney rank test (p = 0.05) was performed on the relative usage of each CDR-H3 170 

cluster in the grouped BCR repertoires and the corresponding randomized datasets, to categorize them 171 
as Structural Stem, Random-Usage or Under-Represented CDR-H3 clusters. 172 

Statistical Analysis 173 

Statistical analyses were performed in Python using the scikit-learn31 and scipy packages. Detailed 174 
information on statistical tests is outlined in the figure legends. Data visualization was performed with 175 

the seaborn package. 176 
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3. Results 177 

Structural annotation of Ig-seq data 178 

We searched the Observed Antibody Space (OAS) resource 
17

 for heavy chain Ig-seq studies that179 

contained at least three different B-cell types, had sequences with defined isotype information and180 

consisted of at least 50 BCR repertoires, and identified two studies: Galson et al., (“human”) 
7
 and Greiff181 

et al., (“mouse”) 
9
. 182 

Annotating the antibody CDR sequences in these human and mouse Ig-seq studies with structura183 

information allows us to investigate how the three-dimensional shape of CDR-H1, CDR-H2 and CDR-H3184 

loops vary across BCR repertoires (Figure 1). To achieve this, we developed the SAAB+ pipeline. 185 

In SAAB+, SCALOP annotates CDR-H1 and CDR-H2 sequences with structural canonical classes 
22

, and186 

FREAD predicts whether CDR-H3s from the Ig-seq data share a similar structure to a crystallographically-187 

solved CDR-H3 structure 
24

. We annotate predicted by FREAD the CDR-H3 sequence with the PDB code188 

of the crystallographically-solved CDR-H3 structure (template). To find structural templates with similar189 

CDR-H3 loop shapes (analogous to canonical loop shapes), we structurally clustered them based on their190 

backbone atom RMSD values (see Methods). 191 

192 

Figure 1. Structural annotation of BCR repertoires. BCR repertoires are sourced from the OAS resource.193 

For each BCR sequence, CDR loop sequences are extracted, and the closest structural framework match 194 

is found, which is used in CDR-H3 loop grafting 
15

. Next, SCALOP is used to identify canonical classes for 195 

non-CDR-H3 sequences, and FREAD is used to identify whether a CDR-H3 sequence shares a structure 196 

with any FREAD crystallographically-solved structures (templates). SCALOP returns a canonical class 197 

cluster identification (e.g. H1-8-A); FREAD returns the PDB code of an antibody structure with a protein 198 

chain specified (e.g. 5myx_B) 
32

, a CDR-H3 structural template. 199 
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Structural CDR-H3 coverage and template usage 200 

We investigated the structures of CDR-H3s used across BCR repertoires of different B-cell types in the 201 

human and mouse data. Table 1 shows the coverage achieved by FREAD for each species.  202 

Data Total sequences 
CDR-H3 template 

predicted 

Mean 
coverage with 

std 

Human 5,712,939 2,750,469 (48.1%) 47.2±11% 

Mouse 206,680,496 182,309,575 (88%) 88.1±4% 

Table 1. FREAD coverage of Ig-seq data. The human data contained 5.7 million sequences with CDR-H3 203 

loop lengths of 16 amino acids or shorter (see Methods). FREAD generated predictions for 48.1% of CDR-204 
H3s in the human data, with an average coverage of 47.2% across BCR repertoires. The total number of 205 

mouse sequences was ~207 million, of which 88% were structurally-annotated with FREAD. The average 206 
structural coverage across mouse BCR repertoires was 88.1%. 207 

CDR-H3 structural coverages of BCR repertoires were similar across different B-cell types in the human 208 

data (Kruskal-Wallis test, p= 0.37), but varied in the mouse data (Kruskal-Wallis test, p< 0.001). In both 209 
species, the variance of coverage was lower in the BCR repertoires of antigen-unexperienced B-cells 210 

(Supplementary Figure 2). The mean structural coverage was higher for mouse CDR-H3s than for human 211 
CDR-H3s (Table 1). Differences in length distributions could be a major cause of this discrepancy, as CDR-212 

H3 structures are harder to predict for longer lengths, and the most common lengths were 11 and 12 213 
residues in the mouse data, compared to 15 residues in the human data (Supplementary Figure 3). 214 

Human and mouse BCR repertoires are the effector products of two different sets of germline genes. 215 

We therefore investigated whether species germline genes might also translate into preferred CDR-H3 216 
structure usage. We used reported species origin information from SAbDab 29 to calculate the usages of 217 

different species CDR-H3 templates across our BCR repertoires (Supplementary Figure 4). As expected, 218 
human and mouse data used different frequencies of species CDR-H3 templates. The human BCR 219 

repertoires tended to use more human CDR-H3 templates as compared to uniform CDR-H3 template 220 
sampling, with mouse CDR-H3 templates appearing about as often as would be expected at random. In 221 

the mouse data, usage of mouse CDR-H3 templates was enriched, whilst usage of human CDR-H3 222 
templates was reduced. These usages were roughly similar across B-cell types in both human and mouse 223 

data, suggesting a species bias towards CDR-H3 structural sampling largely independent of B-cell 224 
maturation. Interestingly, 109 (or ~4%) of all FREAD templates were never used in neither the human 225 

nor mouse data. Eighty eight of these templates were derived from nanobodies (Supplementary Data). 226 

Together, these results confirm a structural basis for species self-tolerance. They also suggest that 227 
different species may engage different epitopes on the same antigen through inherent structural biases. 228 

CDR-H3 cluster profiles along the B-cell differentiation axis 229 

The adaptive immune system responds to antigen exposure by selecting and optimizing the most 230 

efficacious BCRs. Therefore, B-cells at different maturation stages may possess discrete paratope 231 
structural properties. 232 

Galson et al., 7 demonstrated that different B-cell types could be separated using three heterogeneous 233 

sequence descriptors (clonality, average CDR-H3 loop length and percentage of V gene mutations) in a 234 
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principal component analysis (PCA). We repeated their experiment on our human and mouse data235 

(Figure 2a,b). In the human data, their sequence descriptors distinguished B-cell types. In the mouse236 

data, pre, naïve, and plasma IGHM BCR repertoires clustered together, whilst plasma IGHG were clearly237 

distinguishable from other B-cell types. 238 

We investigated whether the structural annotation of CDR-H3s on its own could distinguish the BCR239 

repertoires of different B-cell types, by performing PCA on CDR-H3 cluster usages across BCR240 

repertoires. We found a clear separation of B-cell types in both the human and mouse data (Figure241 

2c,d), with a sequential pattern of B-cell differentiation in the human data (Naïve → Marginal →242 

Memory → Plasma). Mouse IGHM and IGHG plasma BCR repertoires can be distinguished by CDR-H3243 

cluster usages, whereas neither we nor Galson et al., 
7
 observe the same separation in the human244 

plasma BCR repertoires. The variance of CDR-H3 cluster usages in plasma IGHM were, in fact, more245 

similar to antigen-unexperienced than to plasma IGHG BCR repertoires in the mouse data. Inaccuracies246 

arising during B-cell sorting could cause improper B-cell labeling, adding noise to the B-cell type247 

separation seen in Figure 2. In laboratory mice, the range and degree of antigen exposure is limited by248 

pathogen-free housing conditions and low organism ages. This “purity” could account for the finer249 

separation of B-cell types. 250 

251 

Figure 2. PCA on the human and mouse data. Features included in the PCA were either average CDR-H3252 

length, clonality and percentage of SHMs in V genes (a, b) or CDR-H3 cluster usages (c, d). The human 253 

data is shown in a and c, whilst the mouse data is in b and d. The first two principal components are 254 

used to visualize the separation of BCR repertoires. Colours represent different B-cell types. 255 

To quantify the behavior seen in Figure 2, we employed the DBSCAN clustering algorithm with increasing256 

maximum distance to closest neighbors (ε) to interrogate the densities of CDR-H3 cluster usages across257 

BCR repertoires. Clustering at lower ε distances indicates a more similar distribution of CDR-H3 cluster258 

usages. In the human data, all naïve BCR repertoires clustered at low ε distances along with one259 

marginal zone BCR repertoire. As the value of ε was increased, all marginal zone BCR repertoires merged260 
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with the naïve BCR repertoire cluster, followed by memory and finally plasma BCR repertoires261 

(Supplementary Figure 5). In the mouse data, pre and naïve BCR repertoires initially formed two262 

separate clusters at low ε distances. As ε was increased, antigen-unexperienced (pre and naïve) BCR263 

repertoire merged into a single cluster, followed by plasma IGHM and plasma IGHG repertoires264 

respectively (Supplementary Figure 6). 265 

BCR repertoires of different B-cell types are known to have their own characteristic distributions of CDR-266 

H3 lengths 
7,33

. To see whether this alone was driving the separation, we repeated our PCA experiment267 

at specific lengths of CDR-H3, again employing DBSCAN to interrogate the densities of CDR-H3 cluster268 

usages. For each length, we observed the same patterns, confirming that our separation of BCR269 

repertoires was not solely an artifact of CDR-H3 loop length (Supplementary Figure 7). 270 

These findings give structural confirmation to our understanding of B-cell development from antigen-271 

unexperienced to terminally-differentiated plasma B-cells. The collection of CDR-H3s in a terminally-272 

differentiated BCR repertoire should be reflective of individual’s complex history of antigenic273 

stimulations yielding highly specialized, high-affinity antibodies 
2
. These results demonstrate a mode of274 

structural BCR repertoire ontogeny, where antigen-unexperienced BCR repertoires have the most275 

conserved “public” frequencies of CDR-H3 structural clusters across individuals. Upon antigenic276 

stimulation, the somatic hypermutation (SHM) machinery of B-cells recursively introduces point277 

mutations, primarily to the antibody CDR regions 
3,34

. Our DBSCAN analysis shows that BCR repertoires278 

of different B-cell types do not use equal frequencies of CDR-H3 clusters, suggesting that affinity279 

maturation leads to discernable structural changes in the paratope. As B-cells differentiate to the next280 

developmental stage, their repertoires become more personalized; a fine-tuning of antibody paratope281 

structure along the differentiation axis. 282 

Next, we checked whether above results were caused by varying numbers of utilized CDR-H3 clusters283 

We evaluated the total number of CDR-H3 clusters represented across different B-cell types in the284 

human and mouse data (Figure 3a,b). None of the BCR repertoires used the maximum number of CDR-285 

H3 clusters (1,169), and the numbers varied between BCR repertoires, with antigen-unexperienced286 

repertoires using the most. The average number of CDR-H3 clusters in plasma IGHG BCR repertoires was287 

3-4 times smaller than in naïve repertoires. 288 
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Figure 3. Average number of CDR-H3 clusters in the human and mouse data. The top boxplots depict 290 

the total number of CDR-H3 clusters in human (a) and mouse (b) BCR repertoires. In the bottom 291 
boxplots, every human (c) and mouse (d) BCR repertoire was subsampled 100 times for 10,000 292 

sequences, with the average number of CDR-H3 clusters recorded. Colors represent different B-cell 293 
types. The horizontal blue line shows the total number of CDR-H3 clusters in our FREAD library, and 294 

therefore the theoretical maximum. 295 

This difference could potentially be explained by a smaller number of isolated plasma B-cells. To account 296 

for the varying sizes of BCR repertoires, we subsampled 10,000 sequences from each of them 100 times 297 
and recorded the average number of CDR-H3 clusters. The subsampling gave a similar pattern to the 298 

complete data, with the average number of CDR-H3 clusters being highest in antigen-unexperienced 299 
BCR repertoires (Figure 3c,d), and total numbers of represented clusters decreasing along the B-cell 300 

differentiation axis. This drop in the number of CDR-H3 clusters is not caused by poorer structural 301 
coverage of more differentiated BCR repertoires, as we have already shown that the coverage is not 302 

significantly different across B-cell types in the human data, and increases for more differentiated cells 303 

in the mouse data (Supplementary Figure 2). Therefore, we suspect that this decrease in the number of 304 
represented CDR-H3 clusters along the differentiation axis was the result of only specific CDR-H3 305 

structures transitioning to the next development stage. 306 

To confirm this hypothesis, we investigated whether the decreased numbers of CDR-H3 clusters in 307 

antigen-experienced BCR repertoires are also accompanied by structural specialization i.e. personalized 308 
CDR-H3 cluster usage. We employed Shannon entropy to investigate the structural diversity of CDR-H3s 309 

across our BCR repertoires. High entropy demonstrates a high diversity of CDR-H3 structures, whilst low 310 
entropy indicates the over-representation of one or more CDR-H3s. To account for the decreasing 311 

number of represented CDR-H3 structures, we calculated the proportion of theoretical maximum 312 
entropy for each BCR repertoire to yield a normalized estimate of the diversity of CDR-H3 clusters used 313 

(Supplementary Figure 8). This confirmed that the structural diversity of CDR-H3 gradually decreased 314 
along the B-cell differentiation axis. Antigen-unexperienced BCR repertoires had the highest structural 315 

diversity of CDR-H3s, as well as the lowest variance in entropy across B-cell types. Marginal and memory 316 
IGHM BCR repertoires utilized the same number of CDR-H3 structures (p=0.66, Mann-Whitney U-Test), 317 

whilst the structural diversity was significantly lower in memory B-cells (p=0.005, Mann-Whitney U-318 

Test). Our results again give structural confirmation of the affinity maturation process, where only 319 
paratope structures that are specific to cognate antigens are retained. 320 

Overall, the above results demonstrate that B-cell types can be distinguished based on the profile of 321 
CDR-H3 structural descriptors alone and that antigen-unexperienced BCR repertoires utilized the highest 322 

number and the highest entropy of CDR-H3 clusters. Cluster frequencies in naive BCR repertoires were 323 
conserved across different B-cell donors. As B-cells differentiate, their CDR-H3 cluster usage becomes 324 

narrower and more distinct between individuals, which is reflective of both affinity maturation and a 325 
personalized history of B-cell selection. These results provide us with the first structural insight into 326 

fundamental processes that govern BCR repertoire differentiation across B-cell donors. 327 

Canonical class characterization 328 

Our analysis so far has focused on CDR-H3, but CDR-H1 and CDR-H2 also play a key role in shaping the 329 

antibody paratope 35. Most CDR-H1 and CDR-H2 loops are found in a small set of structures known as 330 
canonical classes. This allows prediction of their structure from sequence with high confidence 22. 331 
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A single V gene encodes for both CDR-H1 and CDR-H2 loops and it is known that SHMs preferentially 332 

take place in these loops during B-cell differentiation 3,34. As the level of SHMs increases with B-cells 333 
differentiation, the number of mutations in the V gene has often been used as a proxy to study B-cell 334 

development 7,36.  335 

Here, we investigated whether SHMs in the V gene lead to structural changes in CDR-H1 and CDR-H2 in 336 

humans and mice. We calculated the percentage of sequences across BCR repertoires where either the 337 
CDR-H1 or CDR-H2 canonical class diverged from its parent germline. Sequences with unassigned 338 

canonical class information were retained in the analysis as their number was low (Supplementary Table 339 
1), and SHMs can still change loop conformation to a yet uncharacterized canonical class. As of June 340 

2019, only one human and six mouse V genes contained either a CDR-H1 or a CDR-H2 shape that did not 341 
fall into a SCALOP canonical classes 22. 342 

Canonical class divergence from germline occurred in all B-cell types, but was observed to increase along 343 

the B-cell differentiation axis in the human data (Supplementary Figure 9). This was less clear in the 344 
mouse data. Pre and naïve B-cells had less canonical class divergence from the germline, whereas 345 

memory and plasma B-cells had a higher divergence. These results place structural information on the 346 
knowledge that the percentage of V gene mutations increases with B-cell differentiation 7. The average 347 

percentage of canonical class divergence across B-cell types were consistently higher in human than 348 
mouse data. This is in agreement with previously-reported results showing that human V genes tend to 349 

accumulate a larger number of SHMs than mouse 37. 350 

CDR-H1 and CDR-H2 loops had different levels of canonical class divergence in both human and mouse 351 
data, with CDR-H1s changing their germline loop shapes more often than CDR-H2s (Supplementary 352 

Figure 10). This can probably be directly attributed to the different number of canonical classes 353 
accessible to CDR-H1 and CDR-H2 (7 versus 4), which implies CDR-H1 loops have a greater degree of 354 

structural freedom. 355 

Both Galson et al., 7 and Greiff et al., 9 studies showed that the V gene usages varied across B-cell types. 356 
Here, we investigated whether canonical class usages could provide a structural explanation for the 357 

observed alterations in V gene utilization during B-cell differentiation. As with CDR-H3, we performed 358 
PCA on combinations of canonical class usages across BCR repertoires (Supplementary Figure 11). In the 359 

human data, we found a separation between naïve and more differentiated B-cell types, with naïve BCR 360 
repertoires utilizing more similar canonical class usages. In the mouse data, BCR repertoires were 361 

separated into different B-cell types with the sequential pattern of B-cell differentiation. 362 

Our results demonstrate that canonical class usages are not static during B-cell differentiation, with 363 
more mature B-cells exhibiting a higher level of canonical class divergence from the parent germline. 364 

CDR-H1 and CDR-H2 structures are clearly modulated to help refine the antibody paratope configuration 365 
against the cognate antigen. 366 

Patterns of CDR-H3 cluster usage 367 

Biased usage of CDR-H3 clusters is observed in different BCR repertoires along the differentiation axis. 368 
For instance, antigen-unexperienced B-cells share the closest frequencies of CDR-H3 clusters (Figure 2). 369 

A detailed understanding of biased CDR-H3 structure usage would significantly advance our knowledge 370 
of the adaptive immune system development and maturation. 371 
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To investigate patterns of biased CDR-H3 cluster usage, we split CDR-H3 clusters into three groups for372 

each B-cell type based on frequencies of CDR-H3 clusters used across these BCR repertoires. “Structura373 

Stems”, which were defined as CDR-H3 clusters, whose frequencies were significantly over-represented374 

across the BCR repertoires of a given B-cell type, “Under-Represented” which describes under-375 

represented CDR-H3 clusters. And CDR-H3 clusters, whose frequencies were not significantly different376 

from random uniform sampling -“Random-Usage” (Figure 4). 377 

378 

Figure 4. Pattern of CDR-H3 cluster usage within a specific B-cell type. A schematic representation of 379 

how we grouped CDR-H3 clusters based on their pattern of usage. (a) In this mock example, only four 380 

CDR-H3 clusters are found in (b) four naïve BCR repertoires. (c) In the case of random uniform sampling,381 

each of these clusters would constitute approximately 25% of a simulated BCR repertoire. (d) Structural 382 

Stems are defined as CDR-H3 clusters, which are over-represented across BCR repertoires when 383 

compared to random cluster usage. Under-represented are clusters that are under-represented across 384 

repertoires. CDR-H3 clusters, which usages are not significantly different from random sampling, were 385 

termed Random-Usage. 386 

First, we looked at the average number of CDR-H3 clusters found in our three groups (Structural Stems,387 

Random-Usage and Under-Represented) across the different B-cell types. In all BCR repertoires, Under-388 

Represented always contained the largest number of CDR-H3 clusters (Supplementary Figure 12),389 

however, this does not translate to dominance in terms of coverage (Figure 5). This is because, in most390 

cases, Under-Represented CDR-H3 clusters tend to have only a few sequences in a repertoire that share391 

that shape, whereas Structural Stems will have far higher numbers. 392 

In the human data, the number of Structural Stems was largest in naïve BCR repertoires and gradually393 

decreased along the B-cell differentiation axis. The number of Random-Usage CDR-H3 clusters was394 

lowest in the naïve repertoires. This number increased in marginal BCR repertoires followed by a gradua395 
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decline along the B-cell differentiation axis. Similar to the human data, the number of Structural Stems396 

was the highest in antigen-unexperienced BCR repertoires in the mouse data. The number of Structura397 

Stems declined in plasma IGHM and were completely absent in plasma IGHG repertoires. 398 

Next, we investigated the proportional composition of BCR repertoires across B-cell types with399 

Structural Stem, Random-Usage and Under-Represented CDR-H3 clusters. The distribution of repertoire400 

coverages differed between B-cell types in both human and mouse data (Figure 5). Structural Stems401 

cover ~70-80% of antigen-unexperienced BCR repertoires, with coverage declining along the B-cel402 

differentiation axis. In contrast, coverage with Under-Represented clusters gradually increased as B-cells403 

matured. Pre and naïve BCR repertoires were least covered with Random-Usage CDR-H3 clusters (only 5-404 

10%). In the human data, coverage with Random-Usage CDR-H3 clusters showed a transient increase in405 

memory BCR repertoires followed by a decline in plasma repertoires, though this trend was less evident406 

in the mouse data. The same CDR-H3 clusters are preferentially over-represented across different B-cel407 

types with the number of these over-represented CDR-H3 clusters diminishing to none along the B-cel408 

development axis (Supplementary Data 1).  409 

410 

Figure 5. Coverage of BCR repertoires with CDR-H3 clusters based on their pattern of usage in the411 

human and mouse data. The X-axis shows different B-cell types in the order of the B-cell differentiation412 

axis. The Y-axis shows the proportion coverage of BCR repertoire sequences with CDR-H3 clusters. 413 

These results demonstrate that antigen-unexperienced BCR repertoires display CDR-H3 structura414 

conservatism. Naive BCR repertoires are largely composed of “public” sets of over-represented CDR-H3415 

clusters. During B-cell selection, CDR-H3 cluster usages become less conserved across individuals as the416 

coverage with Random-Usage and Under-Represented CDR-H3 clusters rise. In terminally-matured417 

plasma IGHG BCR repertoires, none of CDR-H3 clusters was significantly over-represented across418 

individuals. This reflects how the history of antigenic stimulations structurally shapes BCR repertoires,419 

which become increasingly specialized as B-cells differentiate. 420 

4. Discussion 421 

We have carried out the first systematic study of structural diversity in the BCR repertoires of multiple422 

donors and species along the B-cell differentiation axis. By mapping sequences to solved antibody423 

structures, we show the structural transformation occurring as BCR repertoires develop in humans and424 

mice. 425 

Our data show that B-cell types can be distinguished based solely on the structural diversity of CDR-H3426 

loops. Antigen-unexperienced (pre and naïve) BCR repertoires contain conserved “public” CDR-H3427 

cluster frequencies across individuals. As B-cells differentiate, their structural repertoires become428 
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increasingly personalized, as a reflection of each individual’s history of antigen exposure. Antigenic 429 

stimulation induces marked changes in the pattern of CDR-H3 cluster usage in BCR repertoires. The 430 
repertoires utilize a smaller number of available CDR-H3 configurations, CDR-H3 structural diversity is 431 

reduced, and CDR-H3 cluster usage becomes increasingly divergent from naïve BCR repertoires. 432 
Structural changes also take place in non-CDR-H3 loops, highlighting the importance of canonical loops 433 

in paratope shaping. This shows how structure changes as B-cells, whose paratopes are complementary 434 
to cognate antigens, are positively selected. 435 

Our work was limited to the three CDRs encoded by heavy chain genes prohibiting generation of refined 436 
antibody models. Increased availability of paired heavy/light BCR data 38 and improvements in antibody 437 

modelling speed 13 will facilitate further studies, allowing performance of statistical analyses on antibody 438 
structure usage at the scale of an entire BCR repertoire. Structural descriptors harvested from these 439 

models will push forward the resolution of our current work, enabling calculations of paratope charge 440 
and hydrophobicity, as well as antibody developability profiles 39. 441 

In our analysis, we achieved structural coverage for ~48% and ~88% of CDR-H3s in the human and 442 

mouse BCR repertoires respectively. As more structural data becomes available and homology modelling 443 
technology continues to improve, this can only add to power of these structural analyses. 444 

Structural characterization of Ig-seq data can augment existing analysis pipelines 13. Current Ig-seq data 445 

clustering approaches work on the premise that CDR-H3 sequence identity alone can capture structural 446 
features of the paratope 6. However, sequences with low CDR-H3 sequence identity can adopt close 447 

shapes and vice versa 13. Hence, the development of structure-aware clustering methods such as SAAB+ 448 
allows for the direct grouping of structurally/functionally related BCR sequences 40, as well as enables 449 

structural changes to be traced within individual B-cell linages. 450 

A set of CDR-H3 clusters was consistently over-represented across all B-cell donors (“Structural Stems”) 451 
within the specific B-cell types. These clusters encompassed 70-80% of all sequences in antigen-452 

unexperienced BCR repertoires. This shows that humans and mice largely rely on a conserved “public” 453 
set of CDR-H3 clusters to initiate antigen recognition. This knowledge could be leveraged to study 454 

immune system disorders, including immunosenescence, where distortions in the conserved public 455 
pattern of CDR-H3 cluster usage in antigen-unexperienced BCR repertoires could signal disease states. 456 

Furthermore, the knowledge of over-represented CDR-H3 clusters in naïve BCR repertoires could be 457 
applied in rational phage display library engineering, with Structural Stem cluster sequences used as 458 

starting points for library diversity generation. 459 

Recently, transgenic mouse models with human adaptive immune system have been created to raise 460 
“naturally human” antibodies in non-human systems 41. However, their BCR repertoires are shaped 461 

inside the murine environment, which could potentially select for BCR paratopes non-native to the 462 
human body. Hence, our structural diversity analysis could also be employed in the paratope 463 

“humanness” assessment of BCR repertoires derived from transgenic animals. 464 

5. Data availability 465 

SAAB+ is distributed under a “BSD 3-Clause” license, and can be downloaded from 466 

https://github.com/oxpig/saab_plus 467 
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