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ABSTRACT17

Because cancer evolution underlies the therapeutic difficulties of cancer, it is clinically important to
understand the evolutionary dynamics of cancer. Thus far, a number of evolutionary processes have
been proposed to be working in cancer evolution. However, there exists no simulation model that can
describe the different evolutionary processes in a unified manner. In this study, we constructed a unified
simulation model for describing the different evolutionary processes and performed sensitivity analysis
on the model to determine the conditions in which cancer growth is driven by each of the different
evolutionary processes. Our sensitivity analysis has successfully provided a series of novel insights
into the evolutionary dynamics of cancer. For example, we found that, while a high neutral mutation
rate shapes neutral intratumor heterogeneity (ITH) characterized by a fractal-like pattern, a stem cell
hierarchy can also contribute to shaping neutral ITH by apparently increasing the mutation rate. Although
It has been reported that the evolutionary principle shaping ITH shifts from selection to accumulation
of neutral mutations during colorectal tumorigenesis, our simulation revealed the possibility that this
evolutionary shift is triggered by drastic evolutionary events that occur in a a short time and confer
a marked fitness increase on one or a few cells. This result helps us understand that each process
works not separately but simultaneously and continuously as a series of phases of cancer evolution.
Collectively, this study serves as a basis to understand in greater depth the diversity of cancer evolution.
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INTRODUCTION34

Cancer is regarded as a disease of evolution; during tumorigenesis, a normal cell evolves to a malignant35

population by means of mutation accumulation and adaptive Darwinian selection. Evolution allows36

cancer cells to adapt to a new environment and acquire malignant phenotypes such as metastasis and37

therapeutic resistance. Therefore, it is clinically important to understand cancer evolutionary dynamics.38

The view of cancer as an evolutionary system was established by Nowell (1976). By combining this view39

with a series of discoveries of onco- and tumor suppressor genes (hereinafter, collectively referred to as40

“driver genes”), Fearon and Vogelstein (1990) proposed a multistep model for colorectal carcinogenesis.41

Since then, cancer evolution has generally been described as “linear evolution,” where driver mutations42

are acquired linearly in a step-wise manner, generating a malignant clonal population.43

However, this simple view of cancer evolution has been challenged since the advent of the next gener-44

ation sequencing technology (Yates and Campbell, 2012; McGranahan and Swanton, 2017; Niida et al.,45
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2018b). Deep sequencing demonstrated that subclonality prevails in both blood and solid tumors, and46

multiregion sequencing of various types of solid tumor more dramatically unveiled intratumor hetero-47

geneity (ITH), which results from the branching process in a cancer cell population along with mutation48

accumulation. These genomic studies also found that subclones often harbor mutations in known driver49

genes, suggesting that at least a part of ITH is subject to Darwinian selection. In some types of cancer,50

such as renal cell carcinoma (Turajlic et al., 2018) and low-grade glioma (Suzuki et al., 2015), this Dar-51

winian selection-driven branching process is especially prominent; we observed convergent evolution in52

which different subclonal mutations are acquired in the same driver gene or pathway.53

Other types of tumors, however, show no clear enrichment of driver mutations in subclonal muta-54

tions. Consistently with this observation, several studies employing mathematical modeling have sug-55

gested that the accumulation of neutral mutations that do not affect the growth or survival of cancer56

cells mainly shapes ITH; that is, neutral mutations are the major contributors of ITH in multiple types of57

cancers (Uchi et al., 2016; Sottoriva et al., 2015; Ling et al., 2015; Niida et al., 2018a). The evolutionary58

principles shaping ITH differ not only among cancer types but also between stages of tumorigenesis.59

We and others have recently reported that ITH in the early stage of colorectal tumorigenesis involves60

selection, whereas neutral mutation plays the central role in shaping IHT in the later stages (Saito et al.,61

2018; Cross et al., 2018).62

In addition to single nucleotide mutation- and small indel-driven drivers, recent studies have demon-63

strated that, in multiple types of cancers, more drastic chromosome- and/or genome-wide evolutionary64

events producing copy number alterations and chromosomal rearrangements may have occurred in a65

short time at the early stage of cancer evolution (Gao et al., 2016; Baca et al., 2013). Such large-scale66

events could confer a marked fitness increase on one or a few cells, which expand to constitute the tumor67

mass uniformly. This type of evolution is referred to as “punctuated evolution” after the term ”punctuated68

equilibrium”, which was proposed for species evolution by Gould and Eldredge to challenge the long-69

standing paradigm of gradual Darwinian evolution (Gould and Eldredge, 1972; jay Gould and Eldredge,70

1993), although the underlying molecular mechanisms that cause rapid bursts of change are very differ-71

ent.72

Collectively, at least four scenarios of cancer evolution were proposed (Davis et al., 2017). In this73

paper, we term the four scenarios as the linear-replacing, punctuated-replacing, driver-branching, and74

neutral-branching processes (Figs. 1A-1D). The linear-replacing process applies when newly arisen75

clones repeatedly spread and replace the entire population very quickly. A special case of the linear-76

replacing process is the punctuated-replacing process, where a number of drastic changes occur in a very77

short time and a very fit clone spreads and replaces the entire population very quickly. In the driver-78

branching process, multiple subclones having distinct driver mutations coexist to shape ITH, whereas,79

in the neutral-branching process, there are no significant driver mutations when accumulating mutations80

that constitute ITH.81

To obtain an understanding of cancer evolutionary dynamics, many mathematical models of cancer82

evolution have been developed (Beerenwinkel et al., 2014; Altrock et al., 2015); in particular, agent-83

based simulation models are commonly employed for this purpose (Sottoriva et al., 2015; Waclaw et al.,84

2015; Uchi et al., 2016; Iwasaki and Innan, 2017; Minussi et al., 2019; Poleszczuk et al., 2015). In agent-85

based simulation models, each cell in a tumor correspond to an agent; the cells can divide to produce86

new cells, die, or migrate, and each cell’s behavior can be stochastically determined from its own state87

and/or the environment surrounding the cell. By applying sensitivity analysis to the simulation models,88

(i.e., examining the simulation results while changing the parameters of the models), it is possible to89

identify the factors affecting the cancer evolutionary dynamics (Niida et al., 2019). However, to the best90

of our knowledge, there exists no simulation work aiming to reproduce and analyze the four above-stated91

evolutionary processes in a unified manner.92

In this paper, we introduce a unified agent-based simulation model, which is simple but sufficient to93

reproduce the four evolutionary processes (Figs. 1A-1D). Although the unified model is formulated in the94

Materials & Methods section, the Results section presents a family of simulation models, each of which95

constitutes submodels of the unified model. While constructing the submodels, we explore the conditions96

leading to, and the ITH pattern from the four processes. The Results section is composed of four parts.97

In the first part, we introduce the driver model, which contains only driver mutations, and examine the98

conditions leading to the linear-replacing and driver-branching processes. In the second part, the neutral99

model, which contains only neutral mutations, is introduced to address the conditions leading to a neutral100
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pattern of ITH. We show that, although a high neutral mutation rate is necessary for the neutral pattern101

of ITH, a stem cell hierarchy can also contribute to the neutral pattern by apparently increasing the102

mutation rate. In the third part, we present a combination of these two models as a composite model and103

reproduce realistic ITH patterns, which are generated by mixing the neutral pattern with the pattern from104

the linear-replacing or driver-branching processes. In the final part, we build the punctuated model by105

incorporating the punctuated-replacing process into the composite model. Our simulation based on the106

punctuated model demonstrates that the punctuated-replacing process triggers an evolutionary shift from107

the driver- to the neutral-branching process that are commonly observed during colorectal tumorigenesis108

(Fig. 1E). This result helps us understand that each process works not separately but simultaneously and109

continuously as a series of “phases” of cancer evolution.110
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Figure 1. Illustrating the scenarios in cancer evolution. (A-D) The four typical evolutionary
processes. Red stars indicate normal driver events, which are assumed to be single nucleotide mutations
and small indels, while green stars indicate more drastic chromosome- and/or genome-wide
evolutionary events producing copy number alterations and chromosomal rearrangements. (E) Our
model explaining the temporal shift of evolutionary principles shaping ITH during colorectal
tumorigenesis.

MATERIALS & METHODS111

Simulation model112

Although we described a family of simulation models in the Results section, we here formulate the uni-113

fied model, which encompasses these models. Starting from a stem cell without mutations, the following114

time steps are repeated until the number of population size p reaches P or the number of time steps t115

reaches T . For each time step, each cell is subject to cell division with a probability g and cell death116

with a probability d. g depends on a base division rate g0, the increase in the cell division probability117
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per driver mutation f , the number of driver mutations accumulated in the cell nd , population size p, and118

the carrying capacity pc: g = g0 f nd (1− p/pc). d depends on the base death rate d0, the decrease in the119

cell death probability per driver mutation, and the number of driver mutations accumulated in the cell120

nd : d = d0e−nd . When the cell is a differentiated cell, d0 is replaced by dd
0 , which is the base death rate121

for differentiated cells: d = dd
0 e−nd . The order of the trials of cell division and death is flipped with122

probability 0.5. We also assumed that cell death occurs only in the case where p > 1, to prevent the123

simulation from halting before clonal expansion.124

In a cell division, the cell is replicated into two daughter cells. If the parent cell is a stem cell,125

one of the two daughter cells is differentiated with a probability 1− s; that is, s expresses the probabil-126

ity of symmetrical division. For each of the two daughter cells, we introduce kd driver and kn neutral127

mutations. kd and kn are sampled from Poison distributions, the parameters of which are md/2 and128

mn/2, respectively: kd ∼ Pois(md/2) and kn ∼ Pois(mn/2). Note that this means that each cell divi-129

sion generates md driver and mn neutral mutations on average. We assumed each mutation acquired130

by different division events occurs at different genomic positions and each cell can accumulate Nd131

driver and Nn neutral mutations at maximum. When each of the two daughter cells has Nd driver mu-132

tations, we further attempted to introduce an explosive driver mutation; the explosive driver mutation133

is introduced with a probability me and sets the carrying capacity pc of the cell to infinite. The pseu-134

docode for the unified model is provided as Algorithm 1. The variables and parameters employed in135

the unified model are listed in Tables 1 and 2. The simulation code used in this study is available from136

https://github.com/atusiniida/canevosim.137

Table 1. Variables

Symbol Description
kd Number of driver mutations obtained in a cell division
nd Number of driver mutations accumulated in a cell
kn Number of neutral mutations obtained in a cell division
p Population size
t Number of time steps
g Cell division probability
d Cell death probability

Table 2. Parameters

Symbol Description
md Expected number of driver mutations generated per cell division
mn Expected number of neutral mutations generated per cell division
me Probability of acquiring an explosive mutation
Nd Maximum number of driver mutations accumulated in a cell
Nn Maximum number of neutral mutations accumulated in a cell
f Increase of the cell division probability per driver mutation
e Decrease of the cell death probability per driver mutation
g0 Base cell division probability
d0 Base cell death probability for stem cells
dd

0 Base cell death probability for differentiated cells
s Symmetrical division probability
pc Carrying capacity
P Maximum population size
T Maximum number of time steps

Post-processing of simulation results138

To evaluate the simulation results quantitatively, we calculated summary statistics based on 1000 cells139

randomly sampled from each simulated tumor. these summary statistics are listed in Table 3. time140
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Algorithm 1 Unified model

1: prepare a stem cell without mutations
2: while p < P or t < T do
3: for each cell do
4: g = g0 f nd (1− p/pc)
5: d = d0e−nd

6: if the cell is a differentiated cell then
7: d = dd

0 e−nd

8: if rand < 0.5 then
9: if rand() < g then

10: divide(the cell)
11: if p > 1 and rand() < d then
12: kill the cell (accordingly, p = p−1 )
13: # in the case that the cell is replicated, kill one of the two daughter cells
14: else
15: if p > 1 and rand() < d then
16: kill the cell (accordingly, p = p−1)
17: if rand() < g then
18: divide(the cell)
19: t = t +1
20:
21:
22: function rand()
23: return a random number ranging from 0 to 1
24:
25: function divide(a cell)
26: replicate the cell into two daughter cells (accordingly, p = p+1)
27: if the parent cell is a stem cell then
28: if rand() > s then
29: differentiate one of the daughter cells
30: for each of the daughter cells do
31: introduce kd ∼ Pois(md/2) driver mutations
32: introduce kn ∼ Pois(mn/2) neutral mutations
33: if nd = ∑kd reaches the upper limit Nd then
34: if rand() < me then
35: set pc of the cell to infinite
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and population size indicate the numbers of time steps and cells, respectively, when the simulation is141

complete. mutation count per cell represents the mean number of mutations accumulated in each of the142

randomly sampled 1000 cells. By combining the mutations of the 1000 cells, we defined the mutations143

that occur in 95% or more of the 1000 cells as clonal mutations, and the others as subclonal mutations.144

The numbers of clonal, subclonal, and both types of mutations were then defined as clonal mutation145

count, subclonal mutation count, and total mutation count, from which clonal mutation proportion146

and subclonal mutation proportion were further calculated. The degree of ITH was also measured by147

Shannon and Simpson indices, which were calculated based on the proportions of different subclones148

(i.e., cell subpopulations with different mutations) after removing mutations having a frequency less of149

than 5% or 10%: Shannon index 0.05, Shannon index 0.1, Simpson index 0.05, and Simpson150

index 0.1. Similarly, after removing mutations having a frequency of less than 5% or 10%, we also151

checked whether multiple subclones harboring different driver mutations coexist, which is represented152

as binary statistics, driver-branching 0.05, and driver-branching 0.1. When the simulated tumor had153

differentiated cells or subclones with explosive driver mutations, the proportion of the subpopulation was154

calculated as subpopulation proportion .155

The single-cell mutation profiles of the 1000 cells are represented as a binary matrix, the row and156

column indices of which are mutations and samples, respectively. To interpret the simulation results157

intuitively, we also visualized the binary matrix by utilizing the heatmap function in R after the following158

pre-processing, if necessary. When the number of rows was less than 10, empty rows were added to the159

matrix so that the number of rows was 10. When the number of rows was more than 300, we extracted160

the 300 rows with the highest mutation occurrence so that the number of rows was 300. In the neutral161

and neutral-s models, we exceptionally set the maximum row number to 1000 in order to visualize162

low-frequency mutations. The visualized matrix is accompanied by a left-side blue bar indicating the163

driver mutations. When the simulated tumor had differentiated cells or subclones with explosive driver164

mutations, the subpopulation is indicated by the purple bar on the top of the visualized matrix.165

Table 3. Summary statistics

Name Description
time Number of time steps when simulation

is finished
population size Number of cells when simulation

is finished
mutation count per cell Mean number of mutations accumulated in each cell
clonal mutation count Number of clonal mutations
subclonal mutation count Number of subclonal mutations
total mutation count clonal mutation count + subclonal mutation count
clonal mutation proportion clonal mutation count / total mutation count
subclonal mutation proportion subclonal mutation count / total mutation count
Shannon index 0.1 Shannon index calculated with

a mutation frequency cutoff of 0.1
Shannon index 0.05 Shannon index calculated with

a mutation frequency cutoff of 0.05
Simpson index 0.1 Simpson index calculated with

a mutation frequency cutoff of 0.1
Simpson index 0.05 Simpson index calculated with

a mutation frequency cutoff of 0.05
driver-branching 0.05 Binary statistic indicating that multiple subclones

harboring different driver mutations coexist,
calculated with a mutation frequency cutoff of 0.05

driver-branching 0.1 Binary statistic indicating that multiple subclones
harboring different driver mutations coexist,
calculated with a mutation frequency cutoff of 0.1

subpopulation proportion proportion of differentiated cells
or subclones with explosive driver mutations
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Sensitivity analysis based on MASSIVE166

To cover a sufficiently large parameter space in the sensitivity analysis, we employed a supercomputer,167

SHIROKANE4 (at Human Genome Center, The Institute of Medical Science, The University of Tokyo).168

The simulation and post-processing steps for different parameter settings were parallelized on Univa169

Grid Engine. For each model, we employed a full factorial design involving four parameters (i.e, we170

tested every combination of candidate values of the four parameters) while other parameters were fixed.171

The parameter values used for our analysis are listed in Table 2. For each parameter setting, 50 Monte172

Carlo trials were performed and the summary statistics were averaged over the 50 trials. The averaged173

summary statistics calculated for each parameter setting were visualized by interactive heat maps on a174

web-based visualization tool, the MASSIVE viewer. The MASSIVE viewer also displays single-cell175

mutation profiles from 5 of the 50 trial with the same parameter setting. For details, please refer to our176

methodological report (Niida et al., 2019). All the results in this study can be interactively explored in the177

MASSIVE viewer on our website (https://www.hgc.jp/˜niiyan/canevosim). Parameter178

values used for the MASSIVE analysis are provided in Table S1.179

RESULTS180

Driver model181

First, we constructed the “driver” model, which contains only driver genes, aiming to study the two182

Darwinian selection processes: linear-replacing and driver-branching. We employed an agent-based183

model where each cell in a tumor is represented by an agent. The model starts from one cell without184

mutations. In a unit time, a cell divides into two daughter cells with a probability g. This model assumes185

that immortalized cell, which just divides without dying. In each cell division, each of the two daughter186

cells acquires kd driver mutations. Here, kd is sampled from a Poisson distribution with the parameter187

md/2, i.e., kd ∼ Pois(md/2), which means that one cell division generates md mutations on average. We188

assumed that driver mutations acquired by different division events occur at different genomic positions189

and each cell can accumulate Nd mutations at maximum. In this study, we assumed that all mutations190

are driver mutations, which increase the cell division rate. When the cell acquires mutations, the cell191

division rate increases f fold per mutation; that is, when a cell has nd (= ∑kd) mutations in total, the192

cell division probability g is defined as g = g0 f nd , where g0 is a base division probability. In each time193

step, every cell is subject to a cell division trial, which is repeated until population size p reaches P or194

the number of time steps t reaches T .195

To examine the manner in which each parameter affects the evolutionary dynamics of the simula-196

tion model, we performed a sensitivity analysis utilizing MASSIVE (Niida et al., 2019), for which we197

employed a supercomputer. MASSIVE first performs a very large number of agent-based simulations198

with a broad range of parameter settings. The results are then intuitively evaluated by the MASSIVE199

viewer, which interactively displays heat maps of summary statistics and single-cell mutation profiles200

from the simulations with each parameter setting. In Figs. 2A-2C and Fig. S1, the heat maps of three201

representative summary statistics, the proportion of clonal mutations (clonal mutation proportion), a202

measure for ITH (Shannon index 0.05), and an indicator for the occurrence of the driver-branching203

process (driver-branching 0.05), are presented for a part of the parameter space examined. To cal-204

culate clonal mutation proportion, we defined the mutations having a frequency of 95% or more as205

clonal mutations. Shannon index 0.05 is the Shannon index calculated based on the proportions of206

different subclones (i.e., cell subpopulations with different mutations) after removing the mutations hav-207

ing a frequency less of than 5%. The Shannon index is commonly used to measure species richness in208

community ecology, and it has a positive correlation with diversity. Similarly, after removing mutations209

having a frequency of less than 5%, we also checked whether multiple subclones harboring different210

driver mutations coexist, which is represented as a binary statistic, driver-branching 0.05. For each211

parameter setting, 50 Monte Carlo trials were performed and the summary statistics were averaged over212

the 50 trials. To examine ITH visually, we sampled 1000 cells from a simulated tumor and obtained a213

single-cell mutation profile matrix. The mutation profile matrix was visualized after reordering its rows214

and columns based on hierarchical clustering. The rows and columns index mutations and samples, re-215

spectively (Figs. 2D-2F). All the results can be interactively explored in the MASSIVE viewer on our216

website (https://www.hgc.jp/˜niiyan/canevosim/driver).217

The results of the MASSIVE sensitivity analysis demonstrated that the strength of driver mutations218

f is the most prominent determinant of the Darwinian selection processes (Fig. 2). A smaller value219
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of f (e.g., f = 100.3), which indicates weaker driver mutations, is generally associated with the driver-220

branching process, which is characterized by large driver-branching 0.05, corresponding to parameter221

setting D in Figs. 2A-2C. However, in the case of a low mutation rate (e.g., md = 10−3), a small f value is222

insufficient to cause expansions of multiple clones, corresponding to parameter setting F in Figs. 2A-2C.223

When the value of f is large (e.g., f = 100.9), driver-branching 0.05 is small, but the clonal mutation224

proportion is large, which suggests that the linear-replacing process generates a homogeneous tumor,225

corresponding to parameter setting E in Figs. 2A-2C. By considering these results with time-course226

snapshots of the simulations, mechanisms driving the linear-replacing and driver-branching processes227

were intuitively interpreted (Fig. 3). Under the assumption of weak driver mutations, before a clone228

that has acquired the first driver mutation becomes dominant, other clones that have acquired different229

mutations expand, leading to the driver-branching process (Figs. 3A and 3B). In contrast, under the230

assumption of strong driver mutations, a clone that has acquired the first driver mutation rapidly expands231

to obtain more driver mutations serially, leading to the linear-replacing process (Figs. 3C and 3D).232

The linear-replacing process is very similar to the fixation and selective sweep described in the stan-233

dard population genetics framework (Maynard Smith and Haigh, 1974; Ohta and Kimura, 1975). Note234

that, in a strict sense, fixation does not occur under the assumption that cancer cells are immortal235

(Sidow and Spies, 2015; Ohtsuki and Innan, 2017; Niida et al., 2018a); even if a tumor appears to be236

monoclonal in a mutation profile for 1000 randomly sampled cells, it is possible that minor clones hav-237

ing less fitness coexist in the actual population. In the driver-branching process, we observe various238

subclones that coexist in the population. They could compete with each other depending on their fitness.239

If different subclones obtain distinct driver mutations with very similar fitness effects independently, the240

competition between them will be neutral so that none of them can be fixed and they will keep compet-241

ing. This situation is similar to the phenomenon called “clonal interference” in an asexual population242

(Gerrish and Lenski, 1998).243

In actual tumors, driver mutations can not only increase the growth rate but also decrease the death244

rate. To test the effect of driver mutations decreasing the death rate, we also created a modified ver-245

sion of the driver model, the “driver-d” model . In the driver-d model, each cell divides with a constant246

probability g0 and dies with a probability d. Driver mutation decreases the cell death probability by247

f fold: d = d0e−nd , where d0 is the base death probability. Moreover, we assumed that cell death oc-248

curs only in the case of p > 1, to prevent the simulation from halting before clonal expansion. We249

applied the MASSIVE analysis to the driver-d model to find that, if a high mutation rate is assumed (i.e.,250

md = 10−2), the driver-branching process is pervasive, irrespective of the strength of the driver mutations251

(Fig. S2; https://www.hgc.jp/˜niiyan/canevosim/driver_d). This observation is pre-252

sumably ascribed to the fact that a driver mutation that decreases the death rate cannot provide a cell with253

the strong growth advantage necessary for the linear-replacing process. Even if the mutation rate is low254

(i.e., md = 10−4), multiple clones appear after the simulation proceeds to reach a sufficient population255

size. We also examined the evolutionary dynamics of the driver-d models with different mutation rates256

by taking time-course snapshots of the simulations (Fig. S3).257

In both the driver and driver-d models, we do not consider spatial information. However, it should258

be noted that, by simulating tumor growth on a one-dimensional lattice, we demonstrated that the spatial259

bias of a resource necessary for cell divisions could prompt the driver-branching process (Niida et al.,260

2019).261

Neutral model262

Next, we examined the neutral-branching process by analyzing the “neutral” model, where we considered263

only neutral mutations that do not affect cell division and death. In a unit time, a cell divides into two264

daughter cells with a constant probability g0 without dying. Similarly to driver mutations in the driver265

model, in each cell division, each of the two daughter cells acquires kn ∼ Pois(mn/2) neutral mutations.266

We assumed that neutral mutations acquired by different division events occur at different genomic267

positions and each cell can accumulate Nn mutations at maximum. In this study, we set Nn = 1000,268

which is sufficiently large that no cell reaches the upper limit, except in a few exceptional cases. The269

simulation started from one cell without mutations and ended when population size p reached P or time270

t reached T .271

The MASSIVE analysis of the neutral model demonstrated that, as expected, the mutation rate is the272

most important factor for the neutral-branching process (Fig. 4; https://www.hgc.jp/˜niiyan/canevosim/neutral_s;273
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Figure 2. Sensitivity analysis of the driver model. While changing the driver mutation rate md and
the strength of driver mutations f , heat maps of the summary statistics were prepared for the proportion
of clonal mutations, clonal mutation proportion (A), a measure for ITH, Shannon index 0.05 (B),
and an indicator for the occurrence of the driver-branching process, driver-branching 0.05 (C). Nd and
P were set to 3 and 105, respectively. (D-F) Single-cell mutations profiles obtained from four Monte
Carlo trials with each of the three parameter settings, which are indicated on the heat maps presented in
A-C. Rows and columns of the clustered single-cell mutations profile matrices denote mutations and
cells, respectively. Blue side bars indicate driver mutations.
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Figure 3. Time-course snapshots of simulations based on the driver model. Growth curve (A) and
time-course snapshots of mutation profiles (B) simulated from the driver model with Nd = 3, P = 106,
f = 100.3, and md = 10−1.5 (corresponding to parameter setting D in Figs. 2A-2C). Growth curve (C)
and time-course snapshots of mutation profiles (D) simulated from the driver model with Nd = 3,
P = 106, f = 100.9, and md = 10−1.5 (corresponding to parameter setting E in Fig. 2A-2C). The time
points when snapshots were obtained are indicated by empty circles on the growth curves.
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note that the neutral model is included by the neutral-s model, which is described below). When the mean274

number of mutations generated by per cell division, mn, was less than 1, the neutral model just gener-275

ated sparse mutation profiles with relatively small values of the ITH score, Shannon index 0.05. In276

contrast, when mn exceeded 1, the mutation profiles presented extensive ITH, which are characterized277

by a fractal-like pattern and large values of the ITH score (hereinafter, this type of ITH is referred to278

as “neutral ITH”). According to these results, it is intuitively supposed that neutral ITH is shaped by279

neutral mutations that trace the cell lineages in the simulated tumors. Note that the mutation profiles280

were visualized after filtering out low-frequency mutations. Under the assumption of a high mutation281

rate, more numerous subclones having different mutations should be observed if we count the mutations282

existing with lower frequencies.283
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Figure 4. Sensitivity analysis of the neutral model. (A) Heap map obtained by calculating Shannon
index 0.05 while changing the neutral mutation rate mn and the maximum population size P. (B-H)
Single-cell mutations profiles obtained for seven parameter settings, which are indicated on the heat
map in A.

To verify this speculation, we counted the number of subclones generated from a simulated tumor,284

while varying the frequency cutoffs for filtering out mutations. Fig. S4 shows the plot of the relationship285

between the number of subclones and the frequency cutoffs. As expected, the results indicate that the286

simulated tumor presents an increasing number of subclones as the frequency cutoff is lowered. The lin-287

earity of the log-log plot demonstrates that the power law is hidden in the mutation profile, consistently288

with its fractal-like pattern (Brown et al., 2002). Note that, although the ITH score does not depend289

on population size P and the fractal-like pattern shaped in the earliest stage appears to be subsequently290

unchanged in the time-course snapshots (Fig. 5), these are also because low-frequency mutations were291

filtered out before visualization; the simulated tumor in fact expands neutral ITH by accumulating nu-292

merous low-frequency mutations as it grows.293

Thus far, several theoretical and computational studies have shown that a stem cell hierarchy can294

boost the neutral-branching process (Sottoriva et al., 2010; Solé et al., 2008), which prompted us to ex-295

tend the neutral model to the “neutral-s” model such that it contains a stem cell hierarchy (Fig. S5). The296

neutral-s model assumes that two types of cell exist: stem and differentiated. Stem cells divide with a297

probability g0 without dying. For each cell division of stem cells, a symmetrical division generating two298

stem cells occurs with a probability s, while an asymmetrical division generating one stem cell and one299

differentiated cell occurs with a probability 1− s. A differentiated cell symmetrically divides to generate300

two differentiated cells with a probability g0 but dies with a probability dd
0 . The means of accumulating301

neutral mutations in the two types of cell is the same as that in the original neutral model, which means302

that the neutral-s model is equal to the original neutral model when s = 0 or dd
0 = 0. For convenience,303

we define δ = log10(d
d
0/g0) and hereinafter use δ instead of dd

0 .304

The MASSIVE analysis of the neutral-s model confirmed that the incorporation of the stem cell hi-305

erarchy boosts the neutral-branching process306

(https://www.hgc.jp/˜niiyan/canevosim/neutral_s). To obtain the heat map in Fig. 6A,307

the ITH score was measured while dd
0 and δ were changed, but mn = 0.1 and P = 1000 were constantly308

set. In the heat map, a decrease of s leads to an increase in the ITH score when δ ≥ 0 (i.e., dd
0 ≥ g0). A309
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Figure 5. Time-course snapshots of simulations based on the neutral model. Growth curve (A)
and time-course snapshots of mutation profiles (B) simulated from the driver model with P = 106 and
mn = 10 (corresponding to parameter setting H in Fig. 4A). The time points when snapshots were
obtained are indicated by empty circles on the growth curves.

smaller value of s means that more differentiated cells are generated per stem cell division, and δ ≥ 0310

means that the population of the differentiated cells cannot grow in total, which is a valid assumption311

for typical stem cell hierarchy models. That is, this observation indicates that the stem cell hierarchy312

can induce neutral ITH even with a relatively low mutation rate setting (i.e., mn = 0.1), with which the313

original neutral model cannot generate neutral ITH.314
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Figure 6. Sensitivity analysis of the neutral-s model. (A) Heat map obtained by calculating
Shannon index 0.05 while changing the relative death rate of differentiated cells δ = log10(d

d
0/g0)

and the symmetrical division rate s. The neutral mutation rate mn and the maximum population size P
set to 10−1 and 105, respectively. (B-J) Single-cell mutation profiles obtained for nine parameter
settings, indicated on the heat map presented in A.

The underlying mechanism boosting the neutral-branching process can be explained as follows. We315

here consider only stem cells for an approximation, because differentiated cells do not contribute to tumor316

growth with δ ≥ 0. While one cell grows to a population of P cells, let cell divisions synchronously317

occur across x generations during the clonal expansion. Then, (1+ s)x = P holds, because the mean318

number of stem cells generated per cell division is estimated as 1+ s. Solving the equation for x gives319
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x = logP/ log(1+ s); that is, it can be estimated that, during the clonal expansion, each of the P cells320

experiences logP/ log(1+ s) cell divisions and accumulates mn logP/2log(1+ s) mutations on average.321

We confirmed that the expected mutation count based on this formula is well fit with the values observed322

in our simulation, except in the exceptional cases where the mutation counts reached the upper limit,323

Nn = 1000 (Fig. S6). These arguments mean that a tumor with a stem cell hierarchy accumulates more324

mutations until reaching a fixed population size than does a tumor without a stem cell hierarchy. That is,325

a stem cell hierarchy increases the apparent mutation rate by log2/ log(1+ s) folds, which induces the326

neutral-branching process even with relatively low mutation rate settings.327

Similarly, we can also show that the introduction of cell death to the neutral model boosts the neutral-328

branching process. In the neutral model having a non-zero death rate d0, we estimate that the mean329

number of cells generated per cell division is 2−d0/g0. Through arguments similar to the one above, we330

can also show that the apparent mutation rate is increased by log2/ log(2−d0/g0). Collectively, although331

the mutation rate is the most important determinant for generating neutral ITH, the introduction of cell332

death as well as stem cell hierarchy also contribute to the neutral-branching process by increasing the333

apparent mutation rate.334

Combining the driver and neutral model335

We now present the “composite” model that was constructed by combining the driver and neutral model,336

aming to reproduce ITH more similar to those in real tumors. In a unit time, a cell divides into two daugh-337

ter cells with a constant probability g without dying. In each cell division, each of the two daughter cells338

acquires kd ∼ Pois(md/2) driver mutations and kn ∼ Pois(mn/2) neutral mutations. For each type of mu-339

tation, Nd and Nn mutations can be accumulated at maximum. For a cell that has nd (= ∑kd) mutations,340

cell division probability g is defined as g = g0 f nd , where g0 is a base division probability. The simula-341

tion started from one cell without mutations and ended when the population size p reached P or time t342

reached T . As expected from the MASSIVE analyses of the driver and neutral model that were performed343

separately, our MASSIVE analysis of the composite model confirmed that, depending on the parameter344

setting, behaviors of the composite model and the resultant mutation profiles are roughly categorized into345

the following six classes (Fig. 7; https://www.hgc.jp/˜niiyan/canevosim/composite) :346

• With small md and small mn, i.e., with low driver and neutral mutation rates, no evolutionary347

process involving driver and neutral mutations occurs.348

• With large md , small mn, and small f (i.e., with high driver and low neutral mutation rates, and349

weak driver mutations), the driver-branching occurs while the neutral-branching process does not350

occur.351

• With large md , small mn, and large f (i.e., with high driver and low neutral mutation rates, and352

strong driver mutations), the linear-replacing process occurs while the neutral-branching process353

does not occur..354

• With small md and large mn (i.e., with low driver and high neutral mutation rates), the neutral-355

branching process occurs while no evolutionary process involving driver mutations occurs.356

• With large md , large mn, and small f (i.e., with low driver and high neutral mutation rates, and357

weak driver mutations), the driver-branching and neutral-branching processes occur simultane-358

ously.359

• With large md , large mn, and large f (i.e., with high driver and high neutral mutation rates, and360

strong driver mutations), the linear-replacing and neutral-branching processes occur simultane-361

ously.362

Note that, because tumors having high driver mutation rates must have high neutral mutation rates363

also, the linear-replacing and driver-branching processes must in general be accompanied by the neutral-364

branching process. Therefore, the last three behaviors are supposed to constitute the process that can365

actually occur in real tumors (note that, since different processes work simultaneously and continuously366

as a series of phases of cancer evolution in real tumors as described below, the situation is not so simple).367

14/25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 28, 2020. ; https://doi.org/10.1101/762997doi: bioRxiv preprint 

https://doi.org/10.1101/762997
http://creativecommons.org/licenses/by/4.0/


without the
Darwinian
 processes

the driver-
branching
process

without  
the neutral-
branching
process

the neutral-
branching
process

the linear-
replacing
process

(with large m
d 
and large f )(with large m

d
and small f )

(with large m
n
)

(with small m
n
)

(with small m
d
)

Figure 7. Six classes of mutation profiles simulated by the composite model. Our sensitivity
analysis demonstrated that, depending on the parameter setting, behaviors of the composite model are
roughly categorized into the six classes. Representative mutation profiles of the six classes are
presented.

Adding the punctuated-replacing process368

Previously, we analyzed multiregion sequencing data of advanced colorectal cancer and precancerous369

lesions jointly to demonstrated that the evolutionary principle generating ITH shifts from the driver- to370

neutral-branching process during colorectal tumorigenesis (Saito et al., 2018). We also demonstrated371

that the number of copy number alterations drastically increases during the progression from colorectal372

precancerous lesions to advanced colorectal cancer, which prompted us to suspect that the punctuated-373

replacing process underlies the evolutionary shift from branching to the neutral-branching process (Fig. 1E).374

To examine this possibility, we additionally incorporated the punctuated-replacing process into the com-375

posite model to build the “punctuated” model.376

For the models considered thus far, we assumed that a cell can infinitely grow without a decrease377

in their growth speed. However, it is more natural to assume that there exists a limit of population size378

because of the resource limitation and that the growth speed gradually slows down as the population379

size approaches the limit. The limit of population sizes is called the carrying capacity and employed380

in the well-known logistic equation (Verhulst, 1838). By mimicking the logistic equation, we modified381

the division probability as g = g0 f nd (1− p/pc), where pc is the carrying capacity. To reproduce the382

punctuated-replacing process, we additionally employ an “explosive” driver mutation, which negates383

the effect of the carrying capacity. After a cell accumulates driver mutations up to the maximum Nd ,384

the explosive driver mutation is introduced at a probability me after cell division. For a cell that has385

the explosive driver mutation, the carrying capacity pc is set to infinite; That is, it is assumed that the386

explosive driver mutation rapidly evolves the cell so that it can conquer the growth limit and attain infinite387

proliferation ability.388

Next, we searched for parameter settings that lead the punctuated model to reproduce the punctuated-389

replacing process. The MASSIVE analysis confirmed that, with sufficiently large me (i.e., me > 10−4),390

the punctuated-replacing process is reproducible in the punctuated model (https://www.hgc.jp/˜niiyan/canevosim/punctuated;391

note that, for simplicity, we omitted neutral mutations by setting mn = 0 in the MASSIVE analysis). We392

also examined time-course snapshots of simulations conducted with these parameter settings. In the393

example shown in Figs. 8A and 8B, we observed that multiple subclones having different driver genes394

coexist; that is, the driver-branching process, with which the neutral-branching process occurs simulta-395

neously, is prominent during the early phase of the simulation. Note that a growth curve plot indicates396
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that, as the population size approaches the carrying capacity, the growth speed slows down; however,397

the tumor regrows after the appearance of a clone that has acquired an explosive driver mutation. The398

clone with the explosive driver mutation is then subjected to a selective sweep, which causes subclonal399

driver mutations in the clone to shift to clonal mutations. Then, only neutral mutations are accumulated400

as subclonal mutations; That is, ITH is finally generated by the neutral-branching process.401

We also found that two subclones having different subclonal driver mutations sometimes appear402

by obtaining two independent explosive driver mutations (Figs. 8C and 8D). This observation recalls403

to mind the multiverse model, which was proposed for glioblastoma evolution (Lee et al., 2017). The404

multiverse model is derived from the Big-Bang model, a model for jointly describing punctuated and the405

neutral-branching process during colorectal tumorigenesis (Sottoriva et al., 2015). The Big-Bang model406

assumes that a single clone explosively expands from a precancerous lesion while generating neutral407

ITH, consistently with our evolutionary shift model. However, in the multiverse model, it is assumed408

that multiple subclones are subject to explosive expansion. Collectively, our simulation based on the409

punctuated model not only supports our hypothesis that the punctuated-replacing process underlies the410

evolutionary shift during colorectal tumorigenesis, but also can reproduce multiple types of punctuated411

models proposed thus far.412

Our simulation based on the punctuated model also demonstrated a dramatic evolution of cancer,413

during which multiple processes could go on simultaneously and continuously, and we observed different414

phases along the evolution. Consequently, the mutation profile records the history of the processes415

such that a series of multiple phases arises with different patterns of mutation profiles. It is possible416

that we infer the history from the mutation profile at the end point to some degree; for example, the417

accumulation of clonal driver mutations suggests that the tumor has been subjected to the linear- or418

punctuated-replacing process. However, our result emphasizes the importance of having a time-series419

data to fully understand the detailed process behind cancer evolution (Sato et al., 2019).420

DISCUSSION421

In the Results section, we introduced a family of simulation models that reproduce the four types of422

cancer evolutionary processes: linear-replacing, driver-branching, neutral-branching, and punctuated-423

replacing. Our sensitivity analysis of these models successfully identified the conditions leading to424

each of the evolutionary processes. For example, under the assumption of a sufficiently high mutation425

rate, the driver-branching process occurs with strong driver mutations, whereas linear evolution occurs426

with weak driver mutations. However, a major concern about our sensitivity analysis is whether the427

ranges of parameter values examined is realistic. Although dependent on tumor types, the number of428

driver mutations were previously estimated as in the low single digits for most tumor types, consistently429

with our settings for d. As the increase in the cell division probability per driver mutation f , which is430

interpreted as the strength of driver mutations, we examined values ranging from 100.1 to 101.0. Although431

the value of f has not been the subject to extensive experimental determination, it has been reported that432

the induction of K-rasG12D in murine small intestine increases growth rate from one cell cycle per 24 hr433

to one cell cycle per 15 hr, from which f is estimated as 100.204 (Snippert et al., 2014).434

The driver mutation rate md and population size P appear to be problematic. Although the driver mu-435

tation rate was previously estimated as ∼ 3.4×10−5 per cell division (Bozic et al., 2010), our sensitivity436

analysis examined values from 10−4 to 10−1, which are above the estimated value by orders of magni-437

tude. It should also be noted that, in our simulation, it was assumed that a tumor contains 106 cells at438

maximum, whereas the number of cancer cells in one gram of tumor tissue is reportedly 109 or one order439

less (Del Monte, 2009). Clearly, for md and P, the parameter space we examined does not cover those440

for a real tumor. However, the results of the MASSIVE analysis allow the behaviors of the driver model441

to be envisioned in a realistic parameter space. When P is small, neither the linear-replacing process nor442

the driver-branching process occurs. As P increases, we observe the linear-replacing or driver-branching443

process with smaller md , although the range of f that leads to the driver-branching process shifts to larger444

values. Moreover, as shown by the sensitivity analysis of the neutral-s model, the presence of a stem cell445

hierarchy increases the apparent mutation rate. Therefore, a real tumor having a a stem cell hierarchy446

apparently should have a higher md value. Collectively, it is natural to assume that a real tumor having447

large P and small md can be similarly generated by the linear-replacing or driver-branching process ,448

although, in such cases, the actual value of f might be larger than those that we examined.449

The sensitivity analysis of the neutral model showed that neutral ITH is generated if the expected450
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Figure 8. Time-course snapshots of simulations based on the punctuated model. Growth curve
(A) and time-course snapshots of mutation profiles (B) simulated from the punctuated model with
P = 106, pc = 103.5, md = 10−1, mp = 100.5, and me = 10−4. Growth curve (C) and time-course
snapshots of mutation profiles (D) simulated from the punctuated model with P = 106, pc = 103.5,
md = 10−1, mp = 100.5, and me = 10−3. The time points when snapshots were obtained are indicated
by empty circles on the growth curves.

17/25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 28, 2020. ; https://doi.org/10.1101/762997doi: bioRxiv preprint 

https://doi.org/10.1101/762997
http://creativecommons.org/licenses/by/4.0/


number of neutral mutations generated per cell division, mn, exceeds 1. In a recent report, the estimated451

somatic mutation rate was given as 2.66× 10−9 mutations per base pair per mitosis. Given that most452

mutations are neutral on the human genome comprised of 3×109 bases, even a cell division of normal453

cells generates more than 1 neutral mutation. As cancer cells should have higher mutation rates, which454

can be further accelerated by stem cell hierarchies, it is reasonable to assume that a tumor in general455

satisfies the conditions to generate neutral ITH. However, not every tumor necessarily has neutral ITH;456

neutral ITH is distorted by natural selection if the tumor additionally satisfies the conditions for the457

driver-branching process, as shown by the analysis employing the composite model.458

A highlight of this work is that the punctuated model demonstrated that the punctuated-replacing pro-459

cess triggers the evolutionary shift from branching to the neutral-branching process. For carrying capac-460

ity pc and the probability of acquiring an explosive mutation me in the punctuated model, the parameter461

values that we examined are clearly outside realistic ranges. Similarly to P, pc should take a larger value.462

Although it cannot easily to be experimentally determined, me also appears to be overestimated; al-463

though the human body in fact potentially harbors numerous precancerous lesions (Brunner et al., 2019;464

Yokoyama et al., 2019), which are assumed not to have acquired explosive driver mutations yet, only a465

tiny fraction of cases progresses to advanced stages by acquiring explosive driver mutations. However, it466

is intuitively understandable that the behaviors of the punctuated model, as well as of the driver model,467

are not dependent on precise values of these parameters, and in our opinion our analysis is sufficient to468

provide a semi-quantitative understanding of cancer evolution.469

The models we introduced in the Results section can be described collectively as the unified model,470

a formal description of which is provided in the Materials & Methods section. The unified model is471

very simple but sufficient to reproduce the linear-replacing, driver-branching, neutral-branching, and472

punctuated-replacing processes. Of course, the unified model harbors many limitations, which should473

be addressed in future studies. Our current version of the model completely ignores spatial information,474

which potentially influences evolutionary dynamics. Recently reported studies have shown that spatial475

structures regulate evolutionary dynamics in tumors (Noble et al., 2019; West et al., 2019). We also476

determined that resource bias prompts the driver-branching process, by simulating tumor growth on a477

one-dimensional lattice (Niida et al., 2019). Moreover, Iwasaki and Innan (2017) recently developed478

a realistic simulator called tumopp to show that the three-dimensional pattern of ITH is affected by479

the local cell competition and asymmetric stem cell division. Although our model assumed that driver480

mutations independently have effects of equal strength, different driver mutations should have different481

strengths and might work synergistically (Castro-Giner et al., 2015). Similarly, although we assumed482

that the punctuated-replacing process occurs only once in the course of cancer evolution, it is possible483

that a tumor is confronted with different types of resource limitations during the tumor progression and484

undergoes the punctuated-replacing process multiple times to conquer them (Aktipis et al., 2013).485

CONCLUSION486

Although the unified model harbors the above-described limitations, the application of sensitivity anal-487

ysis to the model has successfully provided a number of insights into cancer evolutionary dynamics.488

In our opinion the unified model serves as a starting point for constructing more realistic simulation489

models to understand in greater depth the diversity of cancer evolution, which is being unveiled by the490

ever-growing amount of cancer genomics data.491
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Figure S1. Sensitivity analysis of the driver model. While changing the driver mutation rate md , the
strength of driver mutations f , and the maximum population size P, heat maps of the summary statistics
were prepared for the proportion of clonal mutations, clonal mutation proportion (A), a measure for
ITH, Shannon index 0.05 (B), and an indicator for the occurrence of the driver-branching process,
driver-branching 0.05 (C). Nd was set to 3.
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Figure S2. Sensitivity analysis of the driver-d model. While changing the driver mutation rate md ,
the strength of driver mutations e, and the maximum population size P, heat maps of the summary
statistics were prepared for the proportion of clonal mutations, clonal mutation proportion (A), a
measure for ITH, Shannon index 0.05 (B), and an indicator for the occurrence of the driver-branching
process, driver-branching 0.05 (C). Nd was set to 3.
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Figure S3. Time-course snapshots of simulations based on the driver-d model. Growth curve (A)
and time-course snapshots of mutation profiles (B) simulated from the driver model with Nd = 3,
P = 106, e = 100.5, and md = 10−4 (a low mutation rate setting). Growth curve (C) and time-course
snapshots of mutation profiles (D) simulated from the driver model with Nd = 3, P = 106, e = 100.5,
and md = 10−2 (a high mutation rate setting). The time points when the snapshots were obtained are
indicated by empty circles on the growth curves.
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Figure S4. Self-similarity of neutral ITH. (A) Illustrative explanation of the preparation of the
log-log plot presented in (B). After mutations having frequencies less than r are filtered out, the number
of subclones c is counted based on the mutation profiles. (B) Log-log plot for r and c obtained from a
simulation with P = 105 and mn = 10. Similar linearity holds when mn ≥ 1.
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Figure S6. Observed and expected mutation counts from the neutral-s model. The observed
mutation counts (obs) were prepared from values of mutation count per cell in the MASSIVE
analysis, while the expected mutation counts (exp) were analytically estimated as mn logP/2log(1+ s)
under the assumption that δ ≥ 0. Each cross representing each parameter setting was plotted in log10
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