PLOS Neglected Tropical Diseases

1	Running title: Dengue virus serotypes co-circulation
2	
3	Co-circulation of Dengue Virus Serotypes 1 and 3 during the 2019 epidemic in
4	Dar es Salaam, Tanzania
5	
6	Gaspary Mwanyika ^{1,2,3*} , Leonard E.G. Mboera ³ , Sima Rugarabamu ^{1,3,4} , Julius
7	Lutwama ⁵ , Calvin Sindato ^{3,6} , Janusz T. Paweska ⁷ and Gerald Misinzo ^{1,3}
8	
9	¹ Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine
10	University of Agriculture, Morogoro, Tanzania
11	² Department of Health Science and Technology, Mbeya University of Science and
12	Technology, Mbeya, Tanzania
13	³ SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro,
14	Tanzania
15	⁴ Department of Microbiology and Immunology, Muhimbili University of Health and
16	Allied Sciences, Dar-Salaam, Tanzania
17	⁵ Department of Arbovirology, Emerging and Re-emerging Infectious Diseases,
18	Uganda Virus Research Institute, Entebbe, Uganda
19	⁶ National Institute for Medical Research, Tabora, Tanzania
20	⁷ National Institute for Communicable Diseases, National Health Laboratory Service,
21	Sandringham, Johannesburg, South Africa
22 23	*gaspary.mwanyika@sacids.org
24 25	
26	
27	

PLOS Neglected Tropical Diseases

28 Abstract

29 Background

30 Dengue is an important mosquito-borne viral disease in tropical and sub-tropical

- 31 countries. In this study molecular characterization was carried out to determine
- 32 dengue viruses circulating among patients at health facilities during 2019 epidemic in
- 33 Dar es Salaam, Tanzania.

34 Methods

35 The study involved outpatients seeking care for febrile illness at four health facilities

in Kinondoni and Ilala Districts of Dar es Salaam City in Tanzania. A total of 45 sera

37 from the outpatients were confirmed dengue-positive for dengue virus (DENV) non-

38 structural protein 1 (NS1) antigen and/or NS1-IgG/IgM antibodies using on-site rapid

test. The presence of the virus was detected by reverse-transcription polymerase

40 chain reaction (RT-PCR) method. Of the 45 sera, 20 samples were selected

randomly for identification of specific dengue virus serotypes using RT-PCR followed

42 by evaluation of resulting amplicons on agarose gel electrophoresis.

43 Findings and significance

44 Both Dengue virus serotypes 1 (DENV-1) and 3 (DENV-3) were detected in the

samples tested with the former being dominant. We present the first evidence of

dengue virus co-infection of DENV-1 and DENV-3 serotypes in Tanzania. The

47 emergence of DENV-1 indicates the possibility of importation of the virus to Tanzania

48 from endemic countries. Due to DENV serotype co-circulation, there is an increased

risk of severe dengue in future epidemics. Our findings advocate the importance of

50 genomic-based surveillance to provide rapid evidence of dengue virus

51 emergence/re-emergence and spread.

52 **Keywords:** Dengue virus, serotype, co-circulation, epidemic, Tanzania

PLOS Neglected Tropical Diseases

53 Author Summary

Dengue viruses are the most important mosquito-borne pathogens that pose a 54 serious global health threat. Tanzania has reported several dengue virus epidemics 55 since 2010 with the majority of the epidemics occurring in Dar-es-Salaam city. Until 56 August 2019, a total of 6,859 dengue cases have been confirmed in the country. We 57 performed molecular characterization of dengue viruses (DENV) circulating during 58 59 the 2019 epidemic phase. It was found that DENV-1 serotype was dominant during the epidemic and two samples of the tested sera were co-infected by DENV-1 and 60 61 DENV-3 serotypes. These findings emphasize the importance of genomic-based surveillance of dengue viruses in Tanzania to guide strategies for appropriate 62 interventions. 63

64

65 Introduction

In recent years, Dengue has become the major mosquito-borne viral disease in 66 tropical and subtropical regions affecting people of all age groups in over 128 67 68 countries with 50-100 million infections annually [1]. In Africa, dengue is endemic in 34 countries with recent epidemics reported mostly in East Africa [2]. Recent dengue 69 outbreaks have been reported in Tanzania, Mozambique, Ghana, Benin, Ivory Coast 70 and Mauritius [3]. Population growth, increased rate and volume of movement of 71 people, uncontrolled urbanization and climate variability/change have been 72 described to be responsible for global spread of dengue virus (DENV) [4]. 73

In Tanzania, dengue was first described in 1823 by Spanish sailors in the
southern coastal region [5]. Since 2010, four dengue outbreaks have been reported
in Tanzania [6–9]. To date, the 2019 epidemic seems to be the worst one in the
country. From January to August 2019, a total of 6,859 dengue fever cases and 13
deaths have been reported in the country with a large proportion from Dar es Salaam

PLOS Neglected Tropical Diseases

region. Other affected regions include Tanga, Pwani, Lindi, Morogoro, Kagera,

80 Arusha and Ruvuma [9,10].

There are five antigenic distinct serotypes of dengue virus (DENV-1 to 5) 81 [11,12] that can cause mild dengue fever (DF) to life-threatening dengue 82 haemorrhagic fever (DHF) and dengue shock syndrome (DSS) often presented with 83 atypical clinical manifestations like organ impairment [13,14]. Since 1960, four DENV 84 serotypes (DENV-1 to 4) have been reported in Africa with DENV-2 responsible for 85 most of epidemics followed by DENV-1 [15]. In Tanzania, the presence of DENV-3 86 87 and DENV-2 serotypes have been documented during the previous epidemics [6-8,15]. 88

Although dengue is endemic in Africa, molecular epidemiology of circulating DENV is not well documented [17,18]. The increasing number of dengue outbreaks and improved access to laboratory diagnostic tools have allowed for more effective recognition of outbreaks through genomic-based surveillance [17,19]. The genomicbased surveillance can help to identify the specific pathogen causing epidemics, track sources and inform the public health authorities for appropriate interventions.

In Tanzania, few studies have reported molecular epidemiology of dengue 95 virus [6,7]. In 2014, Jaswant performed partial sequencing of core pre-membrane 96 97 junction region of DENV detected in patients during the 2013-2014 outbreak in Dar-98 es-salaam region and confirmed that DENV-2 serotype genetically close to isolates reported in China and Singapore was responsible for the epidemic [20]. However, 99 genomic-based data are missing for DENV detected in the country during the 100 101 subsequent epidemics in 2018 and 2019. The objective of this study was to perform molecular characterization of dengue viruses during the 2019 epidemic phase in 102 Dar-es-Salaam, Tanzania. 103

PLOS Neglected Tropical Diseases

104 Methods

105 Study area

This cross-sectional health facility-based study was carried out in Kinondoni and Ilala districts in Dar-es-Salaam, Tanzania (Fig 1). Dar-es-Salaam is usually hot and humid throughout the year with the main dry season from June to September and the short rainy season from October to December followed by long rainy season between March and May. The average daily temperature is 26 °C and total annual rainfall averages 1100 mm with relative humidity of 100% and 60% during the night and day time, respectively [21].

113

114 Patients and sample collection

115 Dengue-suspected patients were recruited from outpatients at four health facilities. International School of Tanganyika (IST) Clinic and Premier Care Clinic in Kinondoni 116 and Doctors Plaza Hospital and Regency Medical Centre in Ilala district between 117 March and May 2019. A total of 110 dengue-suspected outpatients were enrolled in 118 the study. The inclusion criteria included patients with dengue-like illness and fever 119 (body temperature > 38 °C) prior to onset of clinical manifestations presenting with at 120 least one of the following clinical manifestations namely, retro-orbital pain, rash. 121 arthralgia, malaise, signs of haemorrhaging and organ failure. Fever patients with 122 bacterial infections and those unwilling to participate in this study were excluded. 123 Haematology data were obtained from routine blood tests performed by the 124 hospitals. All dengue positive cases were categorized clinically either as dengue 125 126 fever (DF), dengue haemorrhagic fever (DHF), dengue shock syndrome (DSS), or expanded dengue syndrome (EDS), according to the World Health Organization 127 guidelines [22]. 128

PLOS Neglected Tropical Diseases

129	Peripheral venous blood was collected into serum separator tubes for serum
130	separation and testing. The on-site duo dengue NS1-IgG/IgM rapid test (CTK
131	BIOTECH Inc, CA, USA) was used to detect the presence of NS1 antigen and
132	IgG/IgM antibodies against DENV NS1. Aliquots of a total of 45 positive sera
133	samples were kept in well-labeled cryotubes stored at -80 °C. Thereafter, sera
134	samples were transported in a cool box with dry-ice to Sokoine University of
135	Agriculture (SUA) molecular biology laboratory in Morogoro and kept at -80 °C until
136	genomic analysis.

137

138 **RNA extraction**

Out of 45 sera samples, we focused on 20 samples that were selected randomly. A 139 total of 60 µL viral nucleic acid (RNA) was extracted from 140 µL of each test sample 140 using QIAamp RNA mini kit (Qiagen, Hilden, Germany) following the manufacturer's 141 instructions. The extracted RNA was stored immediately in aliquots at -20 °C to avoid 142 freeze-thawing cycles that could damage RNA stability. We also assessed the 143 quality of extracted RNA by measuring absorbance at 260 and 280 nm using the 144 NanoDrop ND1000 spectrophotometer (GE Healthcare UK Limited, 145 Buckinghamshire, UK). The A260/280 ratio of ~2.0 was accepted as pure RNA [23]. 146 147 148 **Detection of DENV RNA** Dengue virus nucleic acid (RNA) was detected by RT-PCR using SuperScript III 149

150 Platinum *Taq* DNA polymerase (Invitrogen, Carlsbad, CA, USA) One-Step RT-PCR

151 following the manufacturer's instructions. RT-PCR amplification was performed with

primers as previously described [24]. We prepared a 25 µL RT-PCR reaction

153 containing 12.5 μL of 2x reaction mix, 1 μL of SuperScript III RT/Platinum *Taq* mix,

PLOS Neglected Tropical Diseases

154	0.5 μL of 10 μM sense primer (D1), 0.5 μL of 10 μM anti-sense primer (D2), 0.5 μL
155	Magnesium salt (Invitrogen, CA, USA), 6 μL of nuclease-free water and 4 μL of RNA
156	template. Reverse-transcription reaction was performed in 1 cycle at 48 °C for 30
157	minutes, followed by one cycle of initial denaturation at 94 °C for 2 minutes. PCR
158	amplification was done for 35 cycles of denaturation at 94 °C for 15 seconds,
159	annealing at 55 °C for 30 seconds and elongation at 68 °C for 1 minute. This was
160	followed by a final extension at 68 $^{\circ}$ C for 5 minutes. The RT-PCR products with the
161	expected band size 511 base pairs (bp) were evaluated on 1.5% agarose gel stained
162	with Gel Red (Biotium Inc, CA, USA) against 100 bp DNA ladder (Bio-Rad
163	Laboratories, Hercules, CA, USA) at 100 V for 45 minutes. The specific PCR bands
164	were visualized using Gel Doc EZ Imager system (Bio-Rad Laboratories, Hercules,
165	CA, USA).

166

167 Identification of DENV serotypes

Reverse-transcription polymerase chain reaction (RT-PCR) was performed to detect 168 DENV serotypes using serotype-specific primers. The amplification of serotype-169 specific nucleotide sequences was done in a 25 µL RT-PCR reaction of each 170 serotype test containing 12.5 µL of 2x reaction mix, 1 µL of SuperScript III 171 RT/Platinum Taq mix (Invitrogen, CA, USA), 0.5 µL of 10 µM forward primer (D1), 172 173 0.5 µL of 10 µM reverse primer (TS1/TS2/TS3/TS4) (Table 1), 0.5 µL Magnesium salt (Invitrogen, CA, USA), 6 µL of nuclease-free water and 4 µL of RNA template. 174 Reverse-transcription was performed in 1 cycle at 50 °C for 10 minutes, followed by 175 initial denaturation at 94 °C for 2 minutes. PCR was done for 35 cycles of 176 denaturation at 94 °C for 15 seconds, annealing at 55 °C for 30 seconds, elongation 177 at 72 °C 1 minute and a final extension at 72 °C for 7 minutes. The expected sizes of 178

PLOS Neglected Tropical Diseases

179	serotype-specific amplicons were 482 bp (DENV-1), 119 bp (DENV-2), 290 bp
180	(DENV-3) and 392 bp (DENV-4). The PCR bands were analysed on 1.5% agarose
181	gel against 100 bp DNA ladder (Bio-Rad Laboratories, Hercules, CA, USA) at 100 V $$
182	for 45 min and visualized using Gel Doc EZ Imager system (Bio-Rad Laboratories,
183	Hercules, CA, USA).
184	
185	Data analysis
186	Socio-demographic data were entered in Miscrosoft Execel spreadsheet (MS-Excel
187	2010, Microsoft Corp., and Redmond, WA, USA) and descriptive statistics [counts,
188	percentages, median and interquartile range (IQR)] and relevant tables were used to
189	summarize information. RT-PCR bands were analysed using Image Lab Software
190	version 6.0.1 (Bio-Rad Laboratories, Hercules, CA, USA) and presented by gel
191	images.

192

193 Ethical consideration

194 The study was approved by the Medical Research Coordinating Committee of the

195 National Institute for Medical Research in Tanzania (Ref. No.

196 NIMR/HQ/R.8a/Vol.IX/2974). Witten consent was sought and obtained from all adults

- 197 (≥ 18 years) and assent was obtained from parents/guardians of children (<18years
- old) for screening of dengue virus infection. Oral consent was sought from dengue-
- 199 positive individuals for further identification and genomic analysis and it was
- 200 documented through tracking forms.

201

202 **Results**

203 Patient characteristics and dengue diagnosis

PLOS Neglected Tropical Diseases

204	A total of 110 sera samples was collected from dengue-suspected outpatients
205	presented at health facilities with dengue-like illiness . Among them, 45 (41%) were
206	confirmed positive for dengue infection by NS1 antigen and/or DENV RNA detection
207	with RT-PCR (95.5% positivity by RT-PCR and/or NS1 and 4.5% positivity by NS1
208	only). The age of the patients ranged from 16-75 years old (median = 35, IQR= 18).
209	Two-thirds of the patients (66.7%) were males; 62.2% had post-secondary education
210	and the majority (46.7%) had formal employment (Table 2).

211

212 Detection of DENV RNA and serotypes

Dengue virus (DENV) nucleic acid (RNA) was detected in 17 of 20 tested samples
while three samples were negative. Serotype-specific RT-PCR test was positive for
DENV-1 (Fig 2A) and DENV-3 (Fig 2B) serotypes. Of the 17 positive samples, 17
were positive for DENV-1, of which two samples were also positive for DENV-3. RTPCR results for DENV-2 and DENV-4 serotypes were all negative. The overall
results for RNA quality and RT-PCR amplification of the tested samples are
summarized in Table 3.

220

221 Discussion

This study reports for the first time occurrence of dengue virus serotype 1 (DENV-1) in Tanzania. The occurrence of DENV-2 and DENV-3 has been reported during the previous outbreaks in 2010 and 2014 [6,7,25]. Our results indicate that DENV-1 was dominant serotype during the 2019 outbreak in Tanzania. DENV-1 has also been detected in Japan in a patient with a history of travel to Tanzania in May 2019 [26]. The subsequent phylogenetic analysis indicated that the DENV-1 isolate detected in the Japanese traveller was genetically related to Singapore 2015 strain, suggesting

PLOS Neglected Tropical Diseases

that the recent DENV-1 epidemic in Tanzania may have been imported fromendemic countries.

The evidence of DENV-1 predominance in the East Africa region is 231 increasingly been reported. In a recent study in Kenva, DENV-1 was found to 232 account for 44% of all the serotypes that were detected in febrile patients [27]. The 233 results from this study demonstrated that DENV-1 isolates were genetically close to 234 235 isolates reported in endemic South-East Asian countries like Indonesia and India. Nevertheless, the risk of DENV-1 serotype importation to Tanzania can originate 236 237 from countries other than South-East Asian countries due to increased movement networks of people. For instance, Mauritius has recently reported DENV-1 epidemic 238 that included eleven imported cases from South-East Asia countries [9]. Circulation 239 240 of DENV-1 serotypes in Africa has been previously reported in Cameroon, Comoros, Côte d'Ivoire, Djibouti, Gabon, Kenya, and Senegal [2,28]. 241

Also, we report for the first time genomic-based evidence of dengue virus co-242 infection with DENV-1 and DENV-3 serotypes during a single phase of outbreak in 243 Tanzania. Dengue concurrent infections have been commonly reported in endemic 244 countries including Brazil [29] and India [30]. Dengue concurrent infections have 245 serious clinical implication for patient management, as they can present with severe 246 clinical manifestations such as haemorrhagic fever syndrome [31,32]. Previous 247 findings showed that subsequent infection with a different serotype may lead to 248 increased disease severity because antibodies against the previous serotype do not 249 cross-neutralize the subsequent heterologous invading serotype, but induce 250 antibody-dependent enhancement that increases replication inside target Fc 251 receptor-bearing cells [33,34]. Co-infection with multiple DENV serotypes may 252 increase the risk of emergence of recombinant strains that have different 253

PLOS Neglected Tropical Diseases

characteristics and the areas with a circulation of more than one serotype have been
classified as more prone to severe DENV infections [31,35]. Co-circulation of dengue
virus serotypes and occurrence of serotypes co-infection in Tanzania provide alert
on the possibility of an increased risk of severe dengue in the country.

It is worth noting important limitations of this study. This was a cross-sectional 258 health facility-based study that focused on the detection of dengue viruses from 259 260 outpatients during an epidemic phase, thus, it was not possible to establish an algorithm to classify primary and secondary dengue virus infections and sequence 261 262 DENV RNA genomes that could provide insights on the evolution of circulating dengue viruses. Also, the health facility-based subjects included in the study may not 263 be a representative of the population parameter estimates, suggesting that 264 extrapolation of the results to unsampled locations should be made with caution. 265 In conclusion, the findings of this study indicate that DENV-1 is the dominant 266 serotype during the on-going 2019 epidemic and reveal for the first time occurrence 267 of dengue virus serotypes 1 and 3 co-concurrent infection in Tanzania. These 268 observations emphasize the need for establishing continuous genomic-based 269 surveillance of circulating dengue viruses in Tanzania. This will provide rapid 270 evidence of emerging/re-emerging and spread of dengue viruses and inform public 271 health authorities to implement effective preventive measures. 272

273

274 Acknowledgments

We are grateful to the Management of Regency Medical Centre, Doctor's Plaza
Hospital, International School of Tanganyika Clinic and Premier Care Clinic for
providing sera samples used in this study. Lancet Laboratories Tanzania is thanked
for laboratory technical assistance in serum separation and testing. We would like to

PLOS Neglected Tropical Diseases

279	than	k Ms Mariam Makange of the Sokoine University of Agriculture Molecular
280	Lab	pratory for her technical support during molecular laboratory analysis. We also,
281	ackr	nowledge the support from the Government of Tanzania and the World Back
282	thro	ugh the SACIDS-Africa Centre of Excellence for Infectious Disease of Human
283	and	Animal.
284		
285	Con	flicts of interest
286	The	authors declare the absence of any competing interests.
287		
288	Fun	ding
289	The	study was supported by the Government of Tanzania and the World Bank (WB-
290	ACE	II Grant PAD1436) through SACIDS Africa Centre of Excellence for Infectious
291	Dise	eases of Humans and Animals in Tanzania.
292		
293	Refe	erences
294	1.	Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The
295		global distribution and burden of dengue. Nature. 2013;496: 504–507.
296		doi:10.1038/nature12060
297	2.	Amarasinghe A, Kuritsky JN, Letson GW, Margolis HS. Dengue Virus Infection
298		in Africa. Emerg Infect Dis. 2011;17: 1349–1354. doi:10.3201/eid1708.101515
299	3.	Weekly bulletins on outbreaks and other emergencies. In: WHO Regional
300		Office for Africa [Internet]. [cited on 23 Jul 2019]. Available:
301		https://www.afro.who.int/health-topics/disease-outbreaks/outbreaks-and-other-
302		emergencies-updates

PLOS Neglected Tropical Diseases

303	4.	Gubler DJ. Dengue, urbanization and globalization: the unholy trinity of the 21st
304		century. Trop Med and Health. 2011;39: S3–S11. doi.org/10.2149/tmh.2011-
305		S05
206	5.	Christie J. Remarks on "Kidinga Pepo": a peculiar form of exanthematous
306	5.	
307		disease. Br Med J. 1872;1: 577. doi.10.1136/bmj.1.596.577
308	6.	Vairo F, Nicastri E, Meschi S, Schepisi MS, Paglia MG, Bevilacqua N, et al.
309		Seroprevalence of dengue infection: A cross-sectional survey in mainland
310		Tanzania and on Pemba Island, Zanzibar. IJ Infect Dis. 2012;16: 2011–2013.
311		doi:10.1016/j.ijid.2011.09.018
312	7.	Mboera LEG, Mweya CN, Rumisha SF, Tungu PK, Stanley G, Makange MR, et
313		al. The Risk of Dengue Virus Transmission in Dar es Salaam, Tanzania during
314		an Epidemic Period of 2014. PLoS Negl Trop Dis. 2016;10: 1–15.
315		doi:10.1371/journal.pntd.0004313
316	8.	Gautret P, Simon F, Askling HH, Bouchaud O, Leparc-Goffart I, Ninove L, et al.
317		Dengue type 3 virus infections in European travellers returning from the
318		Comoros and Zanzibar, February-April 2010. Eurosurv. 2010;15: 19541.
319		doi.10.2807/ese.15.15.19541-en
320	9.	Weekly bulletins on outbreaks and other emergencies. In: WHO Regional
321		Office for Africa [Internet]. [cited on 7 Aug 2019]. Available:
322		https://www.afro.who.int/health-topics/disease-outbreaks/outbreaks-and-other-
323		emergencies-updates

324

PLOS Neglected Tropical Diseases

325	10.	Weekly bulletins on outbreaks and other emergencies. In: WHO Regional
326		Office for Africa [Internet]. [cited on 26 Aug 2019]. Available:
327		https://www.afro.who.int/health-topics/disease-outbreaks/outbreaks-and-other-
328		emergencies-updates
329	11.	Mustafa MS, Rasotgi V, Jain S, Gupta V. Discovery of fifth serotype of dengue
330		virus (DENV-5): A new public health dilemma in dengue control. Med J Arm
331		Forc India. 2015;71: 67–70. doi.10.1016/j.mjafi.2014.09.011
332	12.	WHO. World Health Organization, Special Programme for Research, Training in
333		Tropical Diseases, World Health Organization. Department of Control of
334		Neglected Tropical Diseases, World Health Organization. Epidemic, Pandemic
335		Alert. Dengue: guidelines for diagnosis, treatment, prevention and control.
336		World Health Organization 2009. pp. 139-140 [cited on 5 Jul 2019].
337	13.	Nimmagadda SS, Mahabala C, Boloor A, Raghuram PM, Nayak U. A. Atypical
338		Manifestations of Dengue Fever (DF) – Where Do We Stand Today? J Clin
339		Diagn Res. 2014;8: 71–73. doi:10.7860/JCDR/2014/6885.3960
340	14.	Murray NEA, Quam MB, Wilder-Smith A. Epidemiology of dengue: past, present
341		and future prospects. Clin Epidemiol. 2013;5: 299–309.
342		doi:10.2147/CLEP.S34440
343	15.	Sang RC. Dengue in Africa. In Report of the scientific working group meeting on
344		dengue. Geneva: WHO Special Programme for Research and Training in
345		Tropical Diseases 2007. pp. 50-2. [Cited on 5 Jul 2019].

346

PLOS Neglected Tropical Diseases

- 16. Vairo F, Mboera LEG, de Nardo P, Oriyo NM, Meschi S, Rumisha SF, et al.
- 348 Clinical, virologic, and epidemiologic characteristics of dengue outbreak, Dar es
- 349 Salaam, Tanzania, 2014. Emerg Infect Dis. 2016;22: 895–899.
- 350 doi:10.3201/eid2205.151462
- 17. Hill SC, Neto de Vasconcelos J, Granja BG, Thézé J, Jandondo D, Neto Z, et al.
- 352 Early Genomic Detection of Cosmopolitan Genotype of Dengue Virus Serotype
- 353 2, Angola, 2018. Emerg Infect Dis. 2019;25: 784–787.
- doi:10.3201/eid2504.180958
- 18. Sharp TM, Moreira R, Soares MJ, da Costa LM, Mann J, DeLorey M, et al.

³⁵⁶ Underrecognition of dengue during 2013 epidemic in Luanda, Angola. Emerg

357 Infect Dis. 2015;21: 1311. doi: 10.3201/eid2108.150368

- 19. Jaenisch T, Junghanss T, Wills B, Brady OJ, Eckerle I, Farlow A, et al. Dengue
- 359 Expansion in Africa—Not Recognized or Not Happening? Emerg Infect Dis.
- 360 2014;20. doi:10.3201/eid2010.140487
- 20. Jaswant G. Detection and genetic characterisation of dengue virus among
- patients in Dar es salaam, Tanzania during the 2013-2014 outbreak. PhD
- Thesis, Sokoine University of Agriculture. 2015. [cited on 5 Jul 2019].
- Trpis M. Seasonal changes in the larvel populations of Aedes aegypti in two
 biotopes in Dar es Salaam, Tanzania. Bulletin of the World Health Organization.
 1972;47: 245.
- 367 22. World Health Organization. Comprehensive Guidelines for Prevention and

368 Control of Dengue and Dengue haemorrhagic fever 2011. pp. 31-40 [Cited on 5

369 Jul 2019].

PLOS Neglected Tropical Diseases

- 23. Desjardins P, Conklin D. NanoDrop microvolume quantitation of nucleic acids. J
- 371 Vis Exp. 2010; e2565. doi: 10.3791/2565.
- 24. Lanciotti RS, Calisher CH, Gubler DJ, Chang G-J, Vorndam AV. Rapid
- detection and typing of dengue viruses from clinical samples by using reverse
- transcriptase-polymerase chain reaction. J Clinical Microbiol. 1992;30: 545–551.
- 25. Moi ML, Takasaki T, Kotaki A, Tajima S, Lim C-K, Sakamoto M, et al.
- Importation of dengue virus type 3 to Japan from Tanzania and Côte d'Ivoire.
- 377 Emerg Infect Dis. 2010;16: 1770. doi: 10.3201/eid1611.101061
- 26. Okada K, Morita R, Egawa K, Hirai Y, Kaida A, Shirano M, et al. Dengue Virus
- Type 1 Infection in Traveler Returning from Tanzania to Japan, 2019. Emerg
 Infect Dis. 2019;25.
- 27. Konongoi L, Ofula V, Nyunja A, Owaka S, Koka H, Makio A, et al. Detection of
- dengue virus serotypes 1, 2 and 3 in selected regions of Kenya: 2011–2014.

383 Virol J. 2016;13: 182. doi:10.1186/s12985-016-0641-0

28. de Laval F, Plumet S, Simon F, Deparis X, Leparc-Goffart I. Dengue

surveillance among French military in Africa. Emerg infect Dis. 2012;18(2):342-

- 386 3. doi: 10.3201/eid1802.111333
- 29. Andrade EH, Figueiredo LB, Vilela AP, Rosa JC, Oliveira JG, Zibaoui HM, et al.
- 388 Spatial–temporal Co-circulation of dengue virus 1, 2, 3, and 4 associated with
- coinfection cases in a hyperendemic area of Brazil: a 4-week survey. The Am J
- Trop Med and Hyg. 2016;94: 1080–1084. doi.10.4269/ajtmh.15-0892

PLOS Neglected Tropical Diseases

391	30.	Reddy MN, Dungdung R, Valliyott L, Pilankatta R. Occurrence of concurrent
392		infections with multiple serotypes of dengue viruses during 2013–2015 in
393		northern Kerala, India. PeerJ. 2017;5: e2970. doi:10.7717/peerj.2970
394	31.	VinodKumar CS, Kalapannavar NK, Basavarajappa KG, Sanjay D, Gowli C,
395		Nadig NG, et al. Episode of coexisting infections with multiple dengue virus
396		serotypes in central Karnataka, India. J Infect and Public Health. 2013;6: 302-
397		306. doi:10.1016/j.jiph.2013.01.004
398	32.	Bharaj P, Chahar HS, Pandey A, Diddi K, Dar L, Guleria R, et al. Concurrent
399		infections by all four dengue virus serotypes during an outbreak of dengue in
400		2006 in Delhi, India. Virol J. 2008;5: 1. doi:10.1186/1743-422X-5-1
401	33.	Katzelnick LC, Coloma J, Harris E. Dengue: knowledge gaps, unmet needs, and
402		research priorities. Lancet Infect Dis. 2017;17: e88-e100. doi: 10.1016/S1473-
403		3099(16)30473-X
404	34.	Dejnirattisai W, Jumnainsong A, Onsirisakul N, Fitton P, Vasanawathana S,
405		Limpitikul W, et al. Cross-Reacting Antibodies Enhance Dengue Virus Infection
406		in Humans. Science. 2010;328: 745–748. doi:10.1126/science.1185181
407	35.	Vaddadi K, Gandikota C, Jain PK, Prasad VSV, Venkataramana M. Co-
408		circulation and co-infections of all dengue virus serotypes in Hyderabad, India
409		2014. Epidemiol Infect. 2017;145: 2563–2574.
410		doi:10.1017/S0950268817001479
411		

PLOS Neglected Tropical Diseases

412 Figure legends

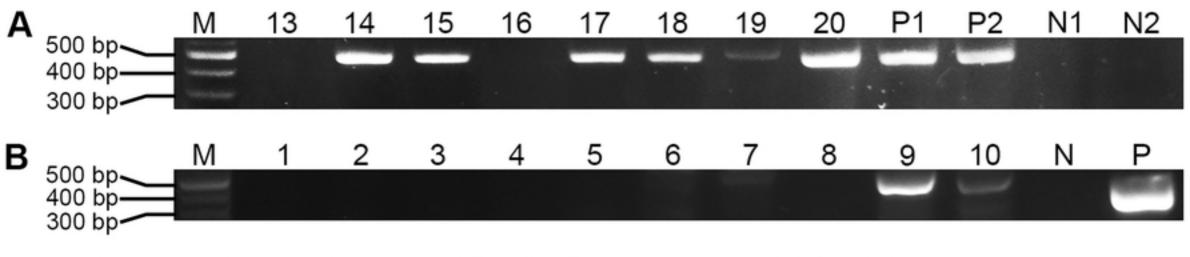
- 413 **Fig 1: Study location and sample collection sites.**
- 414 Source: This map was designed and drawn in this study
- 415 Fig 2: Agarose gel electrophoresis image for RT-PCR amplified serotype-
- 416 specific DENV DNA products.
- (A) Dengue virus serotype 1 (482 bp), M is a 100 bp DNA ladder, 13-20 are test sera
- samples, P1, P2 are positive controls (CDC KK0129) and N1, N2 are the negative
- 419 controls.
- (B) Dengue virus serotype 3 (290 bp), M is a 100 bp DNA ladder, 1-10 are test sera
- samples, N is the negative control and P is positive control (CDC KK0129).

PLOS Neglected Tropical Diseases

Table 1: F	Table 1: Primers used in RT-PCR amplification					
Primer	Sequence ('5->3')	Amplicon size (bp)	Ref			
D1	TCAATATGCTGAAACGCGCGAGAAACCG	511	[24]			
D2	TTGCACCAACAGTCAATGTCTTCAGGTTC	511	[24]			
TS1	CGTCTCAGTGATCCGGGGG	482 (DENV-1)	[24]			
TS2	CGCCACAAGGGCCATGAACAG	119 (DENV-2)	[24]			
TS3	TAACATCATCATGAGACAGAGC	290 (DENV-3)	[24]			
TS4	CTCTGTTGTCTTAAACAAGAGA	392 (DENV-4)	[24]			

PLOS Neglected Tropical Diseases

patients (n=45)		
Characteristic	Total participants (%)	
Age group		
< 18	4 (8.9)	
18-24	5 (11.1)	
25-34	9 (20)	
35-44	14 (31.1)	
45-54	6 (13.3)	
55 and above	7(15.6)	
Sex		
Male	30 (66.7)	
Female	15 (33.3)	
Education		
None	2 (4.4)	
Primary	1 (2.2)	
Secondary	14 (31.1)	
College/University	28 (62.2)	
Occupation		
Self employed	13 (28.9)	
Business	4 (8.8)	
Formal employment	21 (46.7)	
Students	7(15.6)	


Table 2: Socio-demographic characteristics of the confirmed dengue-positive patients (n=45)

PLOS Neglected Tropical Diseases

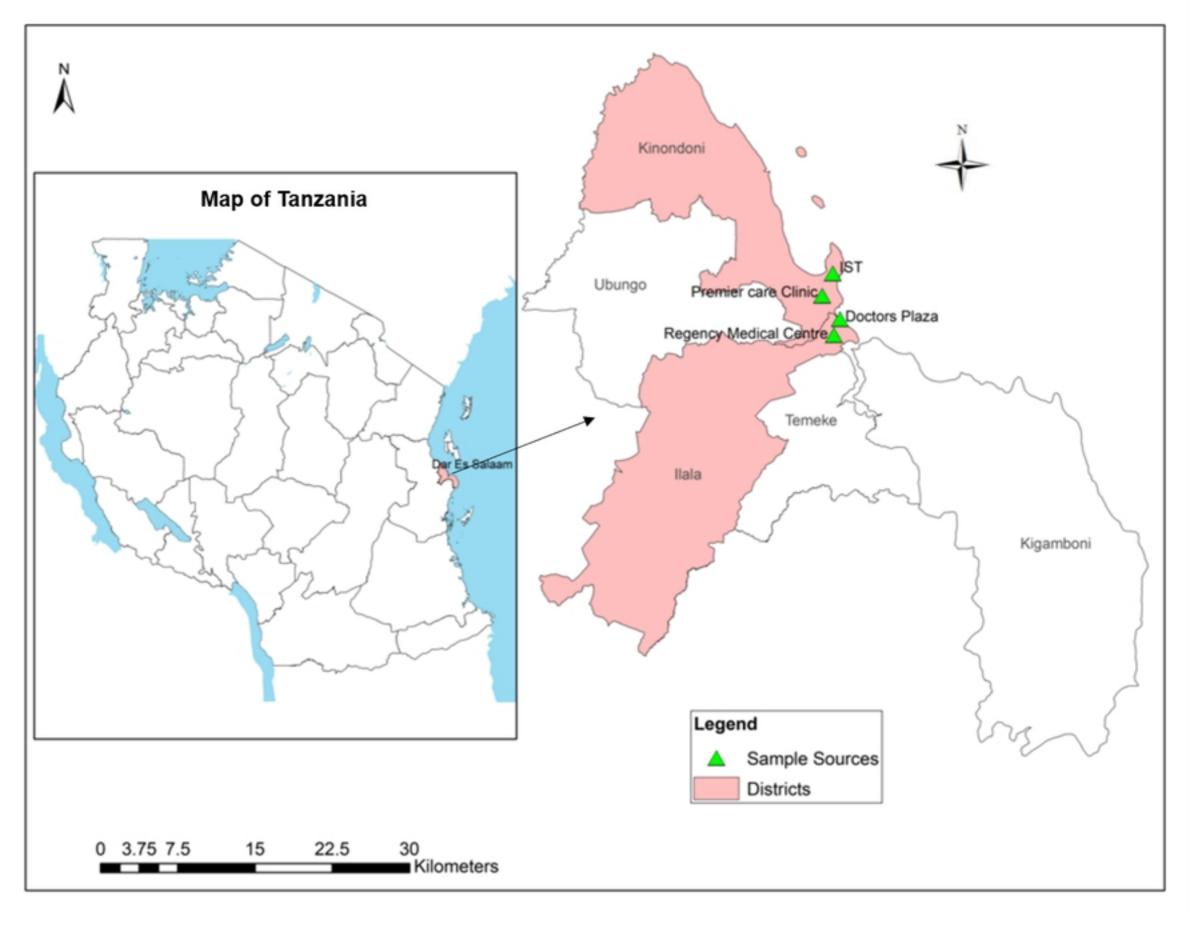

Sample	District	*Hospital	Sex	Age	RNA quality	DENV	Serotype
ID					(A260/280)	RNA	
1	Kinondoni	RMC	Μ	16	2.83	+ ^a	DENV-1
2	Kinondoni	RMC	Μ	48	2.25	+	DENV-1
3	llala	DPH	Μ	45	1.54	+	DENV-1
4	Kinondoni	IST	F	34	2.75	+	DENV-1
5	Kinondoni	DPH	F	36	1.42	_b	N/A ^c
6	Temeke	RMC	Μ	56	2.09	+	DENV-1
7	Temeke	RMC	Μ	26	2.45	+	DENV-1
8	Kinondoni	DPH	Μ	35	2.22	+	DENV-1
9	Kinondoni	DPHC	Μ	44	1.57	+	DENV-1/3 ^d
10	Temeke	PC	Μ	40	1.66	+	DENV-1/3
11	llala	PC	Μ	65	4.98	+	DENV-1
12	Kinondoni	IST	Μ	29	5.39	+	DENV-1
13	llala	RMC	Μ	22	1.69	-	N/A
14	Kinondoni	DPH	Μ	33	2.81	+	DENV-1
15	Kinondoni	DPH	Μ	20	2.61	+	DENV-1
16	Kinondoni	PC	Μ	27	1.53	-	N/A
17	Kinondoni	PC	Μ	21	1.95	+	DENV-1
18	llala	IST	F	37	2.00	+	DENV-1
19	Kinondoni	RMC	Μ	21	2.14	+	DENV-1
20	Kinondoni	RMC	F	31	2.43	+	DENV-1

Table 3: RNA quality and RT-PCR results of the tested sera (n=20)

^aPositive for dengue virus nucleic acid (DENV RNA) reverse-transcription polymerase chain reaction test (RT-PCR); ^b Negative for DENV RNA-RT-PCR test; ^cN/A, Not applicable; ^dPositive for DENV serotypes 1 and 3 RT-PCR test; *RMC, Regency Medical Centre; DPH, Doctors Plaza Hospital; IST, International School of Tanganyika Clinic and PC, Premier Care Clinic.

Gel electrophoresisis of RT-PCR amplified DENV serotype-specifi

Study area