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14 Abstract

15 We developed an integrated R library called BWGS to enable easy computation of Genomic Estimates 

16 of Breeding values (GEBV) for genomic selection. BWGS relies on existing R-libraries, all freely 

17 available from CRAN servers. The two main functions enable to run 1) replicated random cross 

18 validations within a training set of genotyped and phenotyped lines and 2) GEBV prediction, for a set of 

19 genotyped-only lines. Options are available for 1) missing data imputation, 2) markers and training set 

20 selection and 3) genomic prediction with 15 different methods, either parametric or semi-parametric.

21 The usefulness and efficiency of BWGS are illustrated using a population of wheat lines from a real 

22 breeding programme. Adjusted yield data from historical trials (highly unbalanced design) were used for 

23 testing the options of BWGS. On the whole, 760 candidate lines with adjusted phenotypes and genotypes 

24 for 47 839 robust SNP were used. With a simple desktop computer, we obtained results which compared 

25 with previously published results on wheat genomic selection. As predicted by the theory, factors that 

26 are most influencing predictive ability, for a given trait of moderate heritability, are the size of the training 

27 population and a minimum number of markers for capturing every QTL information. Missing data up to 

28 40%, if randomly distributed, do not degrade predictive ability once imputed, and up to 80% randomly 

29 distributed missing data are still acceptable once imputed with Expectation-Maximization method of 

30 package rrBLUP. It is worth noticing that selecting markers that are most associated to the trait do 

31 improve predictive ability, compared with the whole set of markers, but only when marker selection is 

32 made on the whole population. When marker selection is made only on the sampled training set, this 

33 advantage nearly disappeared, since it was clearly due to overfitting. Few differences are observed 

34 between the 15 prediction models with this dataset. Although non-parametric methods that are supposed 

35 to capture non-additive effects have slightly better predictive accuracy, differences remain small. Finally, 

36 the GEBV from the 15 prediction models are all highly correlated to each other. These results are 
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37 encouraging for an efficient use of genomic selection in applied breeding programmes and BWGS is a 

38 simple and powerful toolbox to apply in breeding programmes or training activities.

39
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40 Introduction

41 The use of molecular markers to provide selection criteria for quantitative traits was first proposed by 

42 [1]. They introduced a theory for optimizing weights to be given to each marker associated with a QTL, 

43 and they demonstrated that this index was at least as efficient as the phenotypic score for the genetic 

44 improvement of a population by truncation selection. This marker-assisted-selection (MAS) approach 

45 used only markers which had been previously associated with a QTL through statistical analysis. 

46 Therefore, the number of markers remained limited, and their effects were usually estimated by solving 

47 the linear model equations. The efficiency of MAS versus phenotypic selection is higher when the trait 

48 has a low heritability, the population size is large and the QTLs explain a large proportion of the trait 

49 variation. It was shown that the use of this marker index would facilitate early selection, bypassing a trait 

50 evaluation step and thereby shortening selection cycles [2]. Consequently the genetic gain per cycle 

51 would increase. However, QTL detection is often limited in practice by experimental power, particularly 

52 by the size of the studied population, and QTL with small effects often remain undetected. Therefore, 

53 this “missing heritability” can reduce the efficiency of MAS. Subsequent studies have shown that MAS 

54 efficiency is improved when more QTLs with small effects are included [3-4], and this implied relaxing 

55 the stringency threshold of significance to allow more true QTLs being detected, despite the risk of 

56 having some false positive ones being included. Extending this reasoning, it was proposed to include all 

57 markers in the selection index, thus bypassing the QTL identification step [5]. As the number of markers 

58 is generally larger than the number of phenotypic observations, classical fixed effects regression are 

59 intractable (n>>p problem). Therefore, [5] suggested using ridge regression models to overcome this 

60 over-parameterization problem. Soon after, [6] applied ridge and Bayesian regression models to animal 

61 populations for predicting breeding values, and called this approach Genomic Selection (GS). Marker 

62 effects are first estimated from the genotypic and phenotypic data in a training population. Then marker 
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63 effects are used to predict breeding values in the target population with only genotypic data, and 

64 selections are based on these Genomic Estimates of Breeding Values (GEBV). This method has been 

65 used successfully for dairy cow breeding [7]. Indeed, in the case of dairy cow breeding (and particularly 

66 for bulls), the advantages of GS over classical breeding are obvious. 1) genotyping is much cheaper (a 

67 few 10s US$ for the 55K SNP bovine chip) than progeny testing (since bulls do not give milk), 2) 

68 genotyping can be done at birth time, while progeny testing requires >7-8 years (until bulls give daughters 

69 and daughters give milk). Therefore GS of dairy bulls allowed early selection on a larger population, thus 

70 leading to nearly doubling the genetic gain per unit of time while the costs of proving bulls were reduced 

71 by 92% [8].

72 To benefit from shorter cycles and increasing selection intensity, the genetic gain per cycle should be 

73 close to that expected from phenotypic selection (PS). This relative efficiency of GS vs PS thus relies on 

74 the ability of predicting the observed genetic value from the marker genotype. GEBV predictive ability 

75 is usually measured by the correlation between the predicted and observed values. Most reported studies 

76 on GS in plants have focused on measuring the accuracy of genomic predictions, usually assessed by 

77 cross-validation techniques [9-14]. 

78 In the native theory, all available markers should be used without prior selection, since the statistical 

79 models were supposed to cope with the big data problem and avoid over parametrization. However, with 

80 the advance of molecular biology, the number of markers, e.g. single nucleotide polymorphisms (SNP), 

81 can be extremely high (up to some millions), particularly when compared to a few hundreds or thousands 

82 phenotypic observations. In this case, it seems reasonable to limit the number of markers to avoid too 

83 high over parametrization or over-representation of non-informative genomic regions, as well as 

84 speeding up computation. For example, one may wish to discard markers when they are in complete (or 

85 nearly complete) LD with another, thus bringing the very same information, or selecting markers which 

86 are evenly spaced, either physically or genetically, along the genome map. 
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87 Molecular data often contain missing value, particularly with the so-called genotyping-by-sequencing 

88 (GBS), likely because the fraction of the genome which is re-sequenced is not exactly the same from one 

89 individual to another [15]. Most prediction models do not accept missing data, therefore an imputation 

90 step is necessary to replace missing values, and various methods have been proposed to achieve the best 

91 guess (e.g. fastphase [16]).

92 Finally, imputed data of (possibly selected) markers are used to predict GEBV using phenotypic 

93 observation in a training population. Several methods have been proposed to achieve GEBV prediction. 

94 They can be classified into parametric vs semi-parametric methods [17]. In the R environment [18], 

95 which is often used in research, several libraries have been specifically developed for genomic selection, 

96 such as BGLR [19] or rr-BLUP [20]. However, few of these packages proposes functions to successively 

97 achieve the three described steps of marker selection, genotype imputation and model prediction.

98

99 The objectives of this manuscript are 1) to describe an integrated software (pipeline) which has been 

100 developed from open-source R functions available in various R libraries to enable the three steps to be 

101 performed easily and 2) to present an application of this software to carry out genomic predictions using 

102 historical data from a bread wheat breeding programme.

103  

104 Materials and Methods

105

106 The BWGS pipeline

107 In the framework of the French flagship programme BreedWheat (www.breedwheat.fr), we developed 

108 an integrated pipeline based on R [18] called BWGS (BreedWheat Genomic Selection pipeline). BWGS 
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109 comprises three modules: 1) missing data imputation, 2) dimension reduction, for reducing the number 

110 of markers and/or training individuals and 3) Genomic Estimation of Breeding Values (GEBV) with a 

111 choice among 15 parametric and non-parametric methods. 

112 The pipeline comprises two “main” functions (Fig 1)

113

114 (Fig 1 around here)

115

116 The first function called bwgs.cv is using both genotyping and phenotyping data from a “training” set or 

117 reference population to carry on model calibration and cross validation. Data are randomly split into n 

118 “folds”, and n-1 folds are used for training models and predicting the nth one. Computation can be 

119 replicated p times, and correlation between GEBV and observed trait are computed for each fold and 

120 each replicate, enabling estimates of average and standard deviation of predictive ability (see [21]).

121 Once the “best” model has been chosen based on quality assessment, a second function, named 

122 bwgs.predict is used to build the BEST model using the whole training set (genotyping + phenotyping), 

123 then apply the model to the genotyping data of the target population to get GEBV of these new genotypes.

124 Candidate lines of the target population can then be ranked according to GEBV for single trait 

125 (truncation) selection.

126 Going into more details of the pipeline, the workflow comprises three main steps:

127 1. A step of (missing) genotyping data imputation. This option can be useful for sources of 

128 genotyping data such as GBS. The following options are available:
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129  MNI: missing data are replaced by the mean allele frequency of the given marker. This imputation 

130 method is only suited when there are a few missing values, typically in marker data from SNP 

131 chips or KasPAR.

132  EMI: missing data are replaced using an expectation-maximization methods described in function 

133 A.mat of R-package rrBLUP [20]. This algorithm was specially designed by Poland et al (2012) 

134 for the use of GBS markers, which usually give many missing data which are roughly evenly 

135 distributed. However, it does not use physical map position, as do other more sophisticated 

136 software (e.g. Beagles, [22]). For imputing low density genotyping of a large population to high 

137 density available for only a subpopulation, i.e. many markers with many missing data, such 

138 software should be used before BWGS.

139 2. A step of dimension reduction, i.e. reducing the number of markers. This reduction could be 

140 necessary to speed up computation on large datasets, depending on computer resources available. 

141 The following methods are available 

142  RMR: Random sampling (without replacement) of a subset of markers. To be used with the parameter 

143 “reduct.marker.size”.

144  LD (with r2 and MAP): enables “pruning” of markers which are in LD > r2. Only the marker with 

145 the least missing values is kept for each pair in LD>r2. To allow faster computation, r2 is estimated 

146 chromosome by chromosome, so a MAP file is required with information of marker assignation to 

147 chromosomes.

148  ANO (with pval): one-way ANOVA are carried out with R function lm on trait “pheno” Every 

149 markers are tested one at a time, and only markers with pvalue<pval are kept for GEBV prediction
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150  ANO+LD (with pval and r2, MAP is facultative): combines a first step of marker selection with 

151 ANO, then a second step of pruning using LD option.

152 For research or teaching purposes, an option for randomly sampling individuals has been added, although 

153 it is little useful in practical breeding applications. Options for selecting a subset of the training 

154 population are:

155  RANDOM: a subset of sample.pop.size is randomly selected for training the model, and the 

156 unselected part of the population is used for validation. The process is repeated nFolds * nTimes to 

157 have the same number of replicates than with cross-validation.

158  OPTI: the optimization algorithm based on CDmean [23] to select a subset which maximizes average 

159 CD (coefficient of determination) in the validation set. Since the process is long and has some 

160 stochastic components, it is repeated only nTimes.

161

162 3. A step of model building and cross validation.

163 In the general case of genomic selection, the number of explanatory variables, i.e. markers, (largely) 

164 exceeds the number of observations, making the classical linear model equation unsolvable. In a review, 

165 [24] classified most of the methods that have been proposed to overcome this “big data” problem, into 

166 penalized regression (to make them solvable) or semi-parametric methods. Moreover, regression can be 

167 solved either analytically as in ridge regression (equivalent to G-BLUP) or iteratively though Bayesian 

168 computations. Bayesian methods can differ by the prior density distribution of marker effects, which can 

169 be modified boundlessly. In their review [24] describe the main features (e.g. prior…) for 13 methods.

170 The options available for genomic breeding value prediction are:
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171  GBLUP: performs G-BLUP using a marker-based relationship matrix, implemented through 

172 rrBLUP R-library. Equivalent to ridge regression (RR-BLUP) of marker effects.

173  EGBLUP: performs EG-BLUP, i.e. BLUP using a “squared” relationship matrix to model 

174 epistatic 2x2 interactions, as described by [25] using the BGLR library

175  RR: ridge regression, using package glmnet [26]. In theory, strictly equivalent to GBLUP.

176  LASSO: Least Absolute Shrinkage and Selection Operator is another penalized regression 

177 methods which yield more shrinked estimates than RR. Run by glmnet library.

178  EN: Elastic Net [27] which is a weighted combination of RR and LASSO, using glmnet library

179 Several Bayesian methods, using the BGLR library 

180  BRR: Bayesian ridge regression: same as rr-blup, but Bayesian resolution. Induces homogeneous 

181 shrinkage of all markers effects towards zero with Gaussian distribution [24]. 

182  BL: Bayesian LASSO: uses an exponential prior on marker variances priors, leading to double 

183 exponential distribution of marker effects [28].

184  BA: Bayes A uses a scaled-t prior distribution of marker effects [6].

185  BB: Bayes B, uses a mixture of distribution with a point mass at zero and with a slab of non-zero 

186 marker effects with a scaled-t distribution [29].

187  BC: Bayes C same as Bayes B with Gaussian a distribution for non-zero marker effects[19]

188 A more detailed description of these methods can be found in 

189 (http://genomics.cimmyt.org/BGLR-extdoc.pdf.)
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190

191 Four semi-parametric methods

192  RKHS: reproductive kernel Hilbert space and multiple kernel MRKHS, using BGLR [30-31]. 

193 Based on genetic distance and a kernel function to regulate the distribution of marker effects. 

194 This methods is claimed to be effective for detecting non additive effects.

195  RF: Random forest regression, using randomForest library [32]. This method uses regression 

196 models on tree nodes which are rooted in bootstrapping data. Supposed to be able to capture 

197 interactions between markers.

198  SVM: support vector machine, run by e1071 library. For details, see LIBSVM: a library for 

199 Support Vector Machines https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf

200  BRNN: Bayesian Regularization for feed-forward Neural Network, with the R-package BRNN 

201 [33]. To keep computing time in reasonable limits, the parameters for the brnn function are 

202 neurons=2 and epochs = 20.

203 The criteria used to estimate model’s quality are 1) the Pearson correlation between adjusted 

204 phenotype and GEBV, computed over the whole data set (i.e. by merging the value from the nFolds) 

205 and 2) the square-root of the mean-squared error of prediction RMSEP. These criteria are provided 

206 for each replicate (nTimes) as well as mean and standard deviation over replicates. A table 

207 summarizes phenotype, estimated breeding value and its standard deviation, as well as the coefficient 

208 of determination for each individual GEBV computed as CD=sqrt(1-(SD(GEBV)2/VAR(GEBV)), 

209 when the package used does provide estimate of variance and standard deviation of GEBV, as it is 

210 the case for BGLR.
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211 Application to real wheat breeding: plant materials and phenotypic data

212 A training population was built by gathering historical data from the INRA-Agri-Obtentions breeding 

213 programmes. To obtain robust phenotypes, we kept data from lines which have been evaluated in 

214 multisite trials (> 6 locations), usually for 1-2 years. They were developed from inbred lines crosses, 

215 followed by 6-8 generations of self-pollination. Few selection is made during the first 3 generations (i.e. 

216 F2 to F4), which are harvested in bulk, then visual selection on simple traits is made on plants or rows at 

217 generations F4 and F5. Selected F5 families are multiplied in field plots, which allow a rough evaluation 

218 of yield. Then enough seeds are available and selected lines are put into the evaluation network, usually 

219 at the F7 generation, when breeding lines are nearly homozygous. Typically, about 300-400 pair crosses 

220 are made each year, 120-150 F7 lines are put into first year multisite trials, then 50-60 are evaluated for 

221 a second year, and the very happy few (1-3) are then entering the official registration trials in France, to 

222 hopefully become a commercial variety, 10-12 years after the initial crosses. On the whole, our database 

223 for field data had 77,176 records on 1715 genotypes, i.e. 45 single plot measurements per genotype, 

224 spread over 15 years (2000-2014), 10 locations in France and two managements (high vs low inputs). Of 

225 course these data are highly unbalanced, each genotype being evaluated, on average, during 1.5 years in 

226 7.60 environments (site x year) with usually two replicates by management, and most connections in the 

227 design are between two successive years, with a few control varieties (usually four in each trial) being 

228 evaluated on a longer period. These figures are for grain yield, the most documented trait. The whole 

229 dataset is described in [34] and can be recovered at urgi.versailles.inra.fr (INRA Small Grain Cereals 

230 Network Phenotypic Trials dataset). To illustrate the use of BWGS, we will concentrate on grain yield 

231 in high input management, i.e. an estimate of the genetic and climatic potential in each environment.
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232 These highly unbalanced raw data require a pre-treatment step to correct for non-genetic factors as much 

233 as possible. The following mixed model was applied to estimate “corrected” genotypic means (BLUE) 

234 using the mixed model in R (library lme4):

235 Y=lmer (yield~geno + (1|year:site:trial:block) + (1|year:site:geno)), where : stands for nested effects, e.g. 

236 block within trial within year.

237 Where geno being the main genotypic effect (fixed) and all other effects being considered as random 

238 effects to be corrected for. Note that these genotypic “BLUE” are highly correlated (r=0.94) with BLUP 

239 estimates (i.e. when genotypes are also considered as random effects with identity matrix for modelling 

240 covariances). But BLUE are not shrinked, and thus can be more easily used in a second step involving 

241 mixed modelling.

242 The same model with geno as random effect was used to estimate variance components and rough 

243 estimate of broad sense heritability as σ ²g / (σ ²g + σ ²ge /nenv + ²e /nplot) σ

244 Where ²g  is the genotypic variance component, ²ge is the GxE variance component (i.e. year:site:geno) 

245 and ²g is the residual variance. nenv is the average number of environments per genotype and nplot the 

246 average number of plots per genotype in the dataset used. 

247 Out of these “HQ-phenotyped” lines, 760 were also genotyped with the TaBW280K SNP chip [35] and 

248 used for testing BWGS. After quality check, a matrix of 188,406 high quality, polymorphic markers was 

249 finally used. To illustrate BWGS pipeline, we used a subset of 60,912 markers with consolidated map 

250 position.

251 Cross Validation used randomly sampled 90% of the genotypes as the training set and the remaining 10% 

252 genotypes as the “validation set”. The resampling process was iterated 100 times to estimate an empirical 

253 mean and standard deviation. Since the true breeding value was unknown, predictive ability (PA) was 
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254 measured by the Pearson correlation between GEBVs and the adjusted phenotypic values (BLUE) across 

255 all folds, i.e. the Hold accuracy, which is supposed to be less biased that a fold-by-fold estimate [36].

256

257 Results 

258 Summary statistics of the breeding population.

259 Genotypic data have been used to estimate the additive relationships matrix according to [37] with the 

260 A.mat function of the R package rrblup. After scaling on a 0-1 scale (1 on diagonal), the values can be 

261 regarded as estimates ofcoancestry coefficients, whose distribution is shown in Fig 2a. Omitting the 

262 diagonal, coanscestry coefficients range between 0.05 and 0.5, with a median around 0.18, i.e. slightly 

263 less than the value expected for half-sibs. The heat map of Fig 2b displays no clear-cut structure into 

264 distinct groups, although some groups along the diagonal are made of lines that are more related than 

265 average. Such absence of structure allows the use of random sampling cross-validation. A plot of 

266 principal component analysis of Euclidian distance matrix among the 760 lines (Fig 2c, R command 

267 cmdscale) again does not show any clear structure according to the year of first evaluation, thereby 

268 justifying again the use of random cross-validation over years.

269

270 (Fig 2 around here)

271

272

273 Imputation of missing data
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274 The first step of data cleaning with MAF=5% and maximum marker missing data = 20% led to retain 

275 47,839 markers out of 60,912. Since adjusted Yield BLUE were complete for the 760 genotypes, the 

276 final dimension of geno matrix was 760 x 47,839. This SNP dataset contained on average 0.93% of 

277 missing data. Given the small proportion of missing data, no difference in predictive ability was 

278 observed between the two imputation methods. To test the efficiency of imputation methods on 

279 prediction accuracy, we generated new genotypic matrices with 20%, 40%; 60% and 80% of missing 

280 data, randomly distributed in the dataset. Imputation by mean allele frequency took 0.15 minute, while 

281 imputation by the EM algorithm of A.mat took around 15 minutes, whatever the proportion of missing 

282 data. Predictive ability for grain yield from imputed dataset using the two methods is presented in Fig 

283 3. The two methods give similar results for up to 20% missing Data, then imputation by EMI allows 

284 higher predictive abilities than imputation by the mean allele frequency. When 80% missing data are 

285 randomly generated, the predictive ability of EMI-imputed set is still 0.418, while it drops to 0.329  

286 with the MNI-imputed set.

287 Fig. 3 around here

288

289

290 Effects of sampling markers

291 Table 1 shows the number of markers selected by either one-way ANOVA at different pvalue 

292 thresholds, or by pruning markers with LD > threshold values from 0.5 to 0.98. For ANOVA selection, 

293 two strategies have been used, namely 1) GWAS was carried out only once using the whole dataset, i.e. 

294 training + validation lines and 2) GWAS was carried out using training lines only, i.e within each time 
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295 x fold replicate. Predictive abilities achieved with the selected marker subsets are also shown in Table 

296 1.   

297 Results are also displayed in Fig 4.

298

random selection GWAS  
GWAS whole 

set
GWAS training 

set LD prunning  

Nb markers
Pred 

ability Pvalue Nb markers Pred ability Pred ability LD_threshold
Nb 

markers Pred ability

47739 0.525 1.0 47839 0.526 0.526   

25000 0.52 0.05 14390 0.573 0.528 0.98 15773 0.538

10000 0.515 0.01 8325 0.579 0.529 0.95 9297 0.541

5000 0.514 0.001 4000 0.596 0.519 0.9 6661 0.54

2000 0.505 0.0001 1820 0.614 0.515 0.8 4462 0.544

1000 0.493 0.00001 806 0.576 0.473 0.7 3234 0.536

500 0.447 0.000001 323 0.551 0.438 0.6 2376 0.527

200 0.392     0.5 1704 0.521

100 0.299        

299

300 Table 1: Number of markers and predictive abilities achieved with marker subset from 1) random 

301 selection (RMR option); 2) GWAS on whole marker set (option ANO); 3) GWAS on training set only 

302 (not included) and 4) LD-pruning. 

303

304 Fig 4 around here

305

306 As expected, predictive ability increases with the number of randomly sampled markers, with a steady 

307 plateau above around 5000 markers and a best predictive ability of 0.525. This clearly shows that the 

308 extent of LD is large enough in such elite breeding lines to allow most QTLs for yield being captured 

309 with 5000-10000 markers, i.e. on average one every 1.7 Mbase. This is illustrated by marker selection 
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310 based on LD-pruning, i.e. removing markers which are in LD > threshold with any other marker. The 

311 marker with the least number of missing value is conserved, otherwise the choice is random. The 

312 highest value of 0.544 is obtained with 4462 markers with pairwise LD >0.8. When marker selection is 

313 based on ANOVA carried out on the entire population, there is an optimum predictive ability of 0.614 

314 achieved with 1820 markers (pvalue = 0.0001). However, these results were only found when marker 

315 selection is made only once by association analysis on the whole dataset, which is then split into a 

316 training and a validation set. When marker selection is made within the loop only in the training set, 

317 then the predictive ability of the validation set is only slightly improved for N= 2000 and 5000 

318 markers, compared to random sampling, but never exceeds the predictive ability achieved with the 

319 whole set of markers. This clearly illustrates that overfitting does occur in the first case.

320

321 Effect of different calibration set sampling strategies on prediction 

322 accuracy 

323 For this study, we used the whole set of 47,839 markers; which gave a predictive ability of 0.525 in 10-

324 fold cross validation using the complete dataset of 760 breeding lines, i.e. with a training set of 684 

325 lines and a validation set of 76 lines. Predictive ability was estimated with GBLUP using calibration set 

326 of size CS= 50, 100, 200, 300, 400, 500, 600 and 700, validation being made using the remaining lines. 

327 Fig 5 shows the increase of both predictive ability and computing time as the size of training set 

328 increases. Computing time is given as the proportion of that needed for 100 replicates x 10 folds with 

329 TS = 700, which was roughly 60 minutes. As expected, predictive ability does increase with the size of 

330 calibration set, while its variability decreases, with the notable exception of TS = 700. This may be due 

331 to the small size of the validation set, which is only 76 with TS = 700, making correlations between 

332 phenotype and GEBV more erratic than those observed with larger validation sets. 
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333

334 Fig 5 around here

335

336  Two strategies were compared as illustrated in Fig 6: 1) the random sampling among the 760 lines as 

337 in Fig 5 and 2) selecting an optimized subset with the CD-mean criteria as described by [23].  Although 

338 this algorithm should be deterministic and give always the same subset, some stochasticity remains in 

339 the drop-replacement procedures, which explains that predictive ability still have some residual 

340 variation as illustrated by the error-bar. Fig 6 shows that the optimization algorithm does improve 

341 predictive ability for small-medium size of the training set compared to random sampling. as predicted 

342 by the theory and already reported [23]. This advantage disappears when the proportion of sampled 

343 individuals increases. 

344

345 Fig 6 around here

346

347 Efficiency of various prediction methods

348 With again the whole set of 47,839 markers, we used all prediction methods available in BWGS to 

349 estimate prediction accuracy in 100 independent 10-fold cross validations. Computing time varied 

350 considerably from one method to another, as illustrated in Fig7. BRNN is, by far, the most demanding 

351 methods, with 2214 minutes (nearly 4 days) needed to carry out 100 replicates of 10-folds cross 

352 validation, while the least demanding is GBLUP with 28 minutes. Of course these values must be taken 

353 only for comparison, as they are highly dependent on the computer characteristics. Note that EGBLUP, 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 9, 2019. ; https://doi.org/10.1101/763037doi: bioRxiv preprint 

https://doi.org/10.1101/763037
http://creativecommons.org/licenses/by/4.0/


19

354 which is an extension of GBLUP with epistatic interactions being modelled by the product of additive 

355 relationship matrix with itself, takes 344 minutes instead of 28. The other computationally intensive 

356 methods are multi-kernel RKHS (637 minutes) and random Forest RF (382 minutes).

357 In Fig 7, we discarded results from SVM methods, which gave very poor predictive ability (0.25), 

358 although in a reasonable time of 31 minutes. Predictive abilities of the other 14 methods range from 

359 0.475 to 0.543, with no relationship with computing time, which can be considered as an estimate of 

360 method complexity. Note that the support vector machine SVM compared with other methods when 

361 5000 random markers are used, but seemed to be unable to deal with 47,000 markers. LASSO and 

362 elastic net (from glmnet library) and BRNN give the worse predictive abilities around 0.48, while 

363 random forest regression RF gives the highest of 0.543, slightly above that of the reference GBLUP 

364 (0.525). Note that the three methods that outperform GBLUP are thought to take into account non 

365 additive marker effects. However, in this practical case of grain yield prediction, they did not show a 

366 dramatic advantage over GBLUP. BRNN is another model-free, machine learning method, often 

367 supposed to give more accurate prediction than linear regression methods. The relatively poor 

368 predictive ability observed in this study can be caused by insufficient computer resources allocated. 

369 Other parameterization (e.g. number of neurone layers, epochs…) may have given better predictive 

370 abilities.

371

372 Fig 7 around here

373

374 Perhaps as important as predictive ability is the consistency of GEBV estimated by different methods. 

375 Fig 8 shows the correlation between GEBV (averaged over the 100 replicates) predicted by the 14 

376 successful methods (omitting SVM). The minimum correlation of 0.85 is between random Forest and 
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377 Bayesian ridge regression, while many pairwise correlation are close to 1. When omitting RF, which is 

378 the method whose prediction are least related to the others, all correlations are above 0.92, thus all 

379 methods can be considered as giving highly consistent prediction of GEBV.

380

381 Fig 8 around here

382

383 Discussion

384 Genomic selection programmes are now routinely used in dairy cow breeding, and benefit from huge 

385 phenotypic data recorded in past years on milk production of thousands of females, usually related by 

386 well-known pedigree relationships (i.e. mother and father known without error). This is however not yet 

387 the case in other species like sheep, although effort are being developed in so-called minor species. 

388 Therefore, using a relatively cheap genotyping, dairy cow breeders usually have very large population 

389 for training GS models, which led to highly accurate predictions. In many animal studies, the oldest 

390 animals are used as training set and the youngest as validation set.

391 Contrasting with animal breeding, most plant breeding programmes do not have very large population 

392 sizes, although each breeding company manipulates hundreds or thousands of candidates, since 

393 companies are usually reluctant to share and merge datasets. Breeding companies have developed in-

394 house biostatistical tools for calculating GEBV with semi-automated pipeline, since time is often short 

395 between data production (e.g. grain harvest) and selection decision (e.g. sowing next generation). There 

396 are also several publically available tools which have been developed, particularly as R libraries. Among 

397 the most popular we can mention glmnet [26], BGLR [19], rrBLUP [20] or Synbreed [38]. Recently, 

398 integrative packages have been developed, which rely on existing public R-libraries. An example of such 
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399 packages are G2P and the one presented here called BWGS. G2P [39] proposes 17 prediction methods 

400 from 10 R-libraries, among which BGLR, glmnet and randomForest as in BWGS. As BWGS, there are 

401 also two main functions, G2PCrossValidation and G2P to apply prediction model to a test set with only 

402 marker data. Compared to BWGS, G2P offers much more options for tuning parameters of the numerous 

403 functions/libraries called by the two main functions. As a drawback, handling G2P appears more 

404 complex, and its complete use requires reading the notices of original libraries, since the notice of G2P 

405 does not provide enough details on the possible parameters and options. Moreover, although G2P does 

406 content a quality control module, it is not directly integrated into the main function as in BWGS. 

407 Comparatively, in BWGS, we have chosen to fix most internal parameters with defaults values, which 

408 have been tested to be adapted for medium size datasets as provided in the example (47 K SNP, 760 

409 training lines), while maintaining computing time into reasonable limits for desktop computers. It is 

410 therefore easy to use, especially for beginners, and of course parameters can be modified quite easily in 

411 the source code to adapt larger datasets.

412 In our highly unbalanced breeder’s dataset, when discarding control lines which were regularly replicated 

413 over years, the average number of environment per studied lines is 10.4, with two replicates by 

414 environment (site x year). This led to an estimate of broad sense heritability of 0.76 and therefore a 

415 theoretical upward limit of prediction accuracy of 0.872. When using random cross validation and the 

416 whole set of 47,839 markers, the achieved predictive ability is 0.525, which would correspond to an 

417 accuracy of 0.603 according to formula in [21]. However we do not fully trust in this formula, since 

418 heritabilities are often poorly estimated. We do prefer keeping predictive ability as a criteria for 

419 comparing models and strategies. 

420 Our results compare with previously reported predictive ability estimated through random cross-

421 validation, for example 0.36-0.53 [40] and 0.32-0.59 [41] for grain yield in bread wheat with training 

422 population of a few hundreds lines, and up to 0.65 with a training set of 2325 elite European wheat lines 
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423 [42]. The use of random cross validation seems to be justified, since no clear-cut structure appears in the 

424 set of lines. In particular, lines put into trial in a given year are not more related with each other than with 

425 lines put into trails another year. Then the predictive ability obtained in random cross-validation should 

426 be valid for any other set of lines showing a similar degree of relatedness than within the training set.

427

428 Effect of marker density and training population size

429 Although GS theory has been elaborated to cope with the over parameterization problem (number of 

430 markers >> number of observations), it empirically appears that adding more markers than needed does 

431 not improve predictive ability. This was already observed in many reports. Among other, a figure similar 

432 to our Figure 3 can be found in [43]. In this empirical study in maize, GS accuracy reach a plateau with 

433 7000 randomly selected markers in a “natural” population, and with only 2000 markers in biparental 

434 populations. In a recent simulation study with high density coverage, the same authors even stated that 

435 the accuracy obtained using all SNPs can be easily achieved using only 0.5 to 1.0% of all markers [44]. 

436 This clearly illustrates that, once every QTL information is captured by one marker in LD, adding more 

437 markers is useless. This of course relates to the average linkage disequilibrium between adjacent markers. 

438 In our study, the material is made of hundreds of related families, each of small size, and the plateau is 

439 reached around 2000-5000 random markers, a value close to that observed for maize natural population, 

440 while [45] reported that 256 markers were enough to achieve maximum accuracy in wheat bi-parental 

441 populations. Similarly, in a population of 235 soybean varieties, predictive ability did not change much, 

442 whatever the number of markers (ranging 200-5200) and the way they were selected, either at random or 

443 one per haplotype block [46]. In a study of wheat breeding lines [47] found a plateau for predictive ability 

444 of yield around 2000 random markers as in the present study. Avoiding selection of markers pairs which 

445 are in high LD (LD-pruning) further improves predictive ability compare to random sampling. This was 
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446 reported in a soybean study, in which the authors found a 4% increase of prediction accuracy when 

447 selecting markers from haplotype blocks rather than random or equidistant.

448 Selecting markers that are significantly associated with QTLs can achieve higher predictive ability than 

449 randomly selected markers, and surprisingly even higher predictive ability than using all markers. 

450 However, it is clear from Fig 4 that selecting markers from their Pvalue in GWAS carried out on the 

451 whole population; i.e. including validation lines, does led to overfitting and this approach must be 

452 avoided and cannot be used in practice. This was reported many times. For example, in a wheat study 

453 [47] selected markers by GWAS on the training set only, as we did also in Fig 4. However, they observed 

454 a gain in predictive ability of up to 0.2, particularly for very small number of markers (<100), while we 

455 only had small improvement of about 0.01 with a maximum gain for 2000 markers. Nearly similar results 

456 were reported by [48].

457 In theory, the prediction accuracy is positively related to the training population size, as established by 

458 simulation studies [49-51]. This was confirmed in many empirical studies such as those already 

459 mentioned [42, 46, 47]. As expected from the theory, optimizing a subset of training lines gave higher 

460 PA than random selection. This was confirmed in empirical studies [23] then [52-53] in the case of 

461 population structure. Their optimization algorithm uses a simulated annealing approach. Other 

462 optimization methods have been proposed, such as a genetic algorithm [54] and also led to higher PA for 

463 a given training size. 

464

465 Effect of prediction method

466 Prediction methods have been classified into parametric and non-parametric (or semi-parametic) 

467 methods, and parametric methods sometimes split into penalized approach and Bayesian approach (for 
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468 reviews see [17] and [55-57]). In our study, most methods gave close values of predictive abilities, 

469 ranging 0.475 -0.543, with the noticeable exception of SVM, which worked with up to 5000 markers 

470 (data not shown), but failed with the 47 K markers. Some methods seem to give poorer results, such as 

471 LASSO and EN (elastic net) from the glmnet library, and also BRNN. In this latter case it may be due to 

472 insufficient computer resources, who led us to use restrictive parameters (e.g. number of iterations, 

473 number of neurone layers…), thereby limiting performances of this highly demanding method. In any 

474 case predictive ability is not related to computing time, with the less demanding GBLUP ranking the 

475 fifth best method. 

476 Although there is no clear-cut separation between parametric vs non-parametric methods, nor between 

477 penalized vs Bayesian approach, it seems that methods that are supposed to better capture non additive 

478 and/or non-linear effects such as EGBLUP or RKHS  gave higher PA, as already reported [33,42,48,56]. 

479 Low difference in predictive ability has already been reported by [39] who analysed three wheat 

480 populations for GEBV using 10 statistical models, with RKHS being the most accurate and Support 

481 Vector Machine the least accurate methods, as we also found in our study. 

482 In a simulation study, [58] showed that with 121 markers with additive effects, RKHS and radial basis 

483 neural network (close to our BRNN option) clearly out passed the linear Bayesian LASSO, but it was no 

484 longer the case when adding the 7260 interactions between markers. The authors stated that “adding non-

485 signal predictors can adversely affect the predictive accuracy of the non-linear regression models”. Other 

486 studies have shown the interest of machine learning methods for genomic prediction [59-60]. In our 

487 study, this was not the case for RKHS, but for SVM and BRNN. It may have been better to choose the 

488 set of LD-pruning selected markers to optimize predictive ability of these methods. 

489 But perhaps more important than the predictive ability is to know whether the different methods give 

490 similar values or at least similar rankings of GEBV for candidates. Indeed correlations between predicted 
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491 GEBV with the 15 methods range from 0.85 to nearly 1. The highest values being observed between 

492 linear parametric methods, whatever based on penalized regression or Bayesian approaches. Machine 

493 learning methods such as SVM and BRNN are least related to others, except with MKRKHS. Given the 

494 close values of both predictive abilities and GEBV estimates among methods, it seems reasonable to 

495 keep the historical GBLUP as a reference method, for its simplicity and fastness, at least for polygenic 

496 traits such as grain yield chosen to illustrate this study.

497

498 Conclusion

499 The R pipeline we have developed is based on publically available libraries and therefore offers a full 

500 freedom to operate. It is easy to handle and allows a wide range of options for missing data imputation, 

501 marker or training set selection and prediction methods. Its parameterization was fixed for medium sized 

502 datasets to make it easy to use for beginners or teaching. Applying this tool with defaults parameters to 

503 a set of elite breeding lines with historical data from yield trials allowed us to obtain similar results to 

504 those reported on other wheat populations. The options for subsampling markers and/or training set 

505 enabled us to illustrate theoretical expectations (e.g. [61]). The predictive abilities obtained on this 

506 population of limited size are encouraging for the success of genomic selection in applied wheat breeding. 

507 Of course, BWGS does not deal with all challenges. It is now admitted that most methods give reasonably 

508 high accuracy, although recent studies claim that prediction accuracy could be improved with new 

509 alliances to share data across breeding programmes [62]. Rather, the challenges for future wheat breeding 

510 are 1) efficient implementation in real breeding schemes and/or adapting selection schemes with step(s) 

511 of GS (e.g.[63-64]), 2) prediction of GxE (e.g. [65]for review) and 3) incorporating multitrait selection 

512 (e.g. [66]).

513 Future developments of BWGS are ongoing to address these challenges, particularly multitrait selection.
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514 The source code of BWGS R functions as well as example files and notice are available on 

515 https://forgemia.inra.fr/umr-gdec/bwgs

516
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705 Tables and figures

706 Fig 1: Workflow of the two main functions of BWGS.  bwgs.cv does model cross-validation on a 

707 training set and bwgs.predict does model calibration on a training set and GEBV prediction of a target 

708 set of genotypes. MAF = Minor Allele Frequency, maxNA = maximum % of marker missing data

709 Fig 2: Histogram (a), heat map (b) and PCA plot (c)of the scaled coefficient of coancestry between the 

710 760 breeding. Yx represents the year of first evaluation of a given line.

711 Fig 3: Predictive ability of GBLUP as a function of % of randomly generated missing data, with two 

712 imputation methods 1) mean allele frequency or 2) expectation-maximization (EM in A.mat function of 

713 rrBLUP library)

714 Fig 4: Predictive ability as a function of marker number selected either 1) randomly, 2) by GWAS in 

715 the training set within each replicate* fold, 3) by GWAS on the entire population and 4) by LD-

716 pruning.

717 Fig 5: Distribution of predictive ability according to the size of randomly selected training population 

718 and relative computing time.

719 Fig 6: Predictive ability as a function of training population size selected either 1° randomly or 2) by 

720 the CD-mean optimization algorithm of [23]

721 Fig 7: Distribution of predictive ability of the 100 replicates for each of the 14 methods which worked 

722 correctly, average is in red and relative computing time in green line.

723 Fig 8: Histograms, bi-plot and correlation values among predicted GEBV obtained with 14 methods.

724
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