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31 Abstract
32
33 Background. Grasslands occupy significant land area and account for a large proportion of the 

34 global soil carbon stock, yet the direct effects of grazing and genotypic composition on 

35 relationships between shoot and root production are poorly resolved. This lack of understanding 

36 hinders the development of models for predicting root production in managed grasslands, a 

37 critical variable for determining soil carbon stocks. 

38 Methods. We quantified the effects of season-long defoliation treatments on both shoot and root 

39 production across four cultivars of a widely-planted pasture grass species (Paspalum notatum 

40 Fluegge) in a common garden setting in South Florida, USA. 

41 Results. We found that infrequently applied (4 week) severe defoliation (to 5 cm) substantially 

42 enhanced shoot production for all cultivars, while severe defoliation reduced root production 

43 across cultivars, regardless of frequency. Overall, cultivars varied substantially in root 

44 production across the range of defoliation treatments in our study. However, there was no 

45 significant relationship between shoot and root production. 

46 Conclusions.  Our results find that aboveground and belowground productivity are only weakly 

47 coupled, suggesting caution against use of simple aboveground proxies to predict variations in 

48 root production in grasslands. More broadly, our results demonstrate that improved modeling and 

49 management of grasslands for belowground ecosystem services, including soil carbon 

50 sequestration/stocks, will need to account for intraspecific genetic variations and responses to 

51 defoliation management. 

52
53
54
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56
57 Introduction
58
59 Grassland ecosystems occupy more than a fifth of earth’s land area and account for a 

60 large proportion of the global SOC stock (1,2). However, there is considerable uncertainty in 

61 predictions of net ecosystem exchange, and hence carbon sequestration services from grasslands 

62 (3,4). One significant source of uncertainty is that while large herbivore grazing is known to 

63 mediate patterns of plant species composition, diversity, and aboveground primary productivity 

64 (5–7), the effects of grazing on belowground processes and soil carbon is less clear (8–11). In 

65 particular, there are limited field studies where the impact of grazing on root production in 

66 grassland systems has been directly measured (e.g., via root ingrowth cores or minirhizotron 

67 technology, but see Ziter and MacDougall (12) Balogianni et al. (11) and Cooley et al. (13)). 

68 Since belowground production may be the largest component of total NPP for many grasslands 

69 (14,15), determining how grazing affects root production will help to predict if and when 

70 grassland ecosystems will behave as carbon sinks, and whether grazing is likely to promote or 

71 inhibit carbon sequestration services.  

72 Root carbon inputs may constitute a disproportionate amount of the total SOC stock 

73 compared with shoot carbon (16–18), and are especially critical in grassland ecosystems where 

74 aboveground tissue is susceptible to frequent removal by fire and grazing (19). Current 

75 understanding of how grazing affects root production is ambiguous. For example, one temperate 

76 mesocosm study showed that intense defoliation inhibited root production and accelerated the 

77 loss of SOC (20), whereas some field studies have documented greater belowground allocation 

78 and root production under grazing (Hafner et al. (21) in the Tibetan plateau; Wilson et al. (22) in 

79 subtropical pasture).. Augustine et al. (23) found that defoliation reduced belowground carbon 

80 allocation in one grazing-adapted North American grass species (Pascopyrum smithii, western 
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81 wheatgrass) but not in another (Bouteloa gracilis, blue grama), highlighting interspecific 

82 variations in response to a given defoliation regime. In general, laboratory and mesocosm studies 

83 have found that frequent grazing/defoliation leads to declines in standing root biomass over the 

84 long term (24), whereas a global synthesis of data comparing grazed and ungrazed grasslands 

85 found a mix of positive and negative effects on standing root biomass (25). Overall, this 

86 discordance suggests that variations in plant composition, underlying environmental factors, 

87 grazing intensity, or some combination of these factors significantly mediate the effect of grazing 

88 on root production. 

89 Grazing effects on belowground production may not only vary based on plant species, but 

90 also on the genotypic composition of a grazed stand, given the increasing evidence of the 

91 importance of intraspecific variation in driving ecosystem structure and function (26,27). In 

92 general, some literature suggests that reduced root allocation (and increased shoot allocation) 

93 following grazing may represent an evolutionarily adaptive trait for grazing tolerance (28). For 

94 instance, Carman (1985) (29) noted that short-leaved genotypes of Schizachyrium scoparium, 

95 selected from a long-term grazed site, exhibited lower rates of root elongation post-grazing than 

96 longer-leaved genotypes from a long-term grazing excluded site. Planted pasture grasses also 

97 have been shown to exhibit genotypic variability in shoot and root production in response to 

98 grazing (e.g. Dawson et al. (30)). For example, Interrante et al. (31) observed significantly less 

99 plant cover in recently selected, upright-growing Paspalum notatum (bahiagrass) cultivars in 

100 response to severe, frequent defoliation, but did not observe less cover with the same defoliation 

101 treatments applied to widely naturalized cultivars, suggesting significant intraspecific variability 

102 in grazing tolerance and belowground allocation. 
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103 Although root production is a critical component of predicting the carbon cycle in 

104 grassland ecosystems, it is difficult to monitor or predict over large spatial scales. Thus, regional-

105 scale grassland models have been developed that predict total NPP and/or greenhouse gas 

106 exchange on the basis of aboveground canopy characteristics estimated from remote sensing 

107 (32–34). Similarly, some previous work has sought to predict BNPP on the basis of readily 

108 obtained aboveground measurements in both grasslands (14) and forests (35). Recently, 

109 concerted efforts have been made to link fine root traits with other plant traits, across species and 

110 environments, by compiling and analyzing global-scale big datasets (36). The goal is to have 

111 reliable aboveground proxies for predicting critical belowground root processes (37). However, 

112 given the evidence for potentially significant genotypic and defoliation effects on belowground 

113 carbon allocation, it is unclear whether aboveground proxies can ever reliably approximate root 

114 production. Given the central importance of root system carbon inputs to maintaining SOC, 

115 especially in grasslands,  we need more data from experimental systems where genotypic 

116 composition and grazing management have been manipulated, and the relationship between 

117 above and belowground allocation have been quantified.    

118 In this study, we tested the independent and combined effects of defoliation intensity and 

119 frequency, and cultivar on root production of a widely utilized pasture grass species of the 

120 southeastern United States, Paspalum notatum Flüegge (bahiagrass). For Bahiagrass, we can 

121 broadly delineate cultivars on the basis of growth habit where historically older, widely 

122 naturalized cultivars tend to have a more prostrate growth pattern, whereas recently selected 

123 cultivars tend to have a more upright growth pattern, reflecting selection for improved forage 

124 growth characteristics (38). Previous work, and considerable producer experience, suggests that 

125 bahiagrass has a remarkable resilience to intense grazing, wherein forage growth and quality is 
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126 maximized with severe defoliation (close to ground level) so long as regrowth intervals are 

127 adequate (39,40). However, the impact of defoliation severity on root production across 

128 cultivars, and their associated growth habits, has not been directly studied, reflecting a general 

129 lack of information on belowground growth responses in warm season subtropical pasture (13). 

130 To redress this gap in knowledge we conducted an experiment in a common garden setting under 

131 realistic conditions of limited soil fertility to isolate the effects of defoliation intensity, frequency 

132 and cultivar on belowground production, and to evaluate the relationship between aboveground 

133 and belowground growth. 

134  Consistent with the literature on compensatory growth responses from natural and 

135 planted pastures (40–42), and the literature on genotypic variability (e.g. Dawson et al. (30)) we 

136 hypothesized that:

137 1) Severe defoliation, applied infrequently, would stimulate increases in 

138 aboveground primary productivity (via compensatory response mechanisms), 

139 but would have neutral effects on root productivity across all cultivars; 

140 2) Severe defoliation, applied frequently, would significantly suppress root 

141 production across all cultivars as a consequence of plant requirements to 

142 prioritize photosynthate allocation to regrowing shoots;

143 3) Widely naturalized, decumbent cultivars would show proportionally greater 

144 reductions in root production under severe defoliation compared to the more 

145 upright cultivars, reflecting a beneficial adaptation for increased shoot 

146 allocation following severe defoliation events; and

147 4) Despite alterations to belowground allocation on the basis of cultivar and 

148 defoliation treatment, shoot production and root production would positively 
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149 correlate at the plot level reflecting variations in underlying soil factors 

150 determining total productivity.  

151
152 Materials & Methods
153
154 To evaluate the independent and potential interactive effects of defoliation intensity and 

155 plant cultivar on root production, we established 32 3 m x 7 m experimental plots at the 

156 University of Florida Range Cattle Research and Education Center, Ona, FL (27°26’ N, 

157 82°55’W) in 2009. The soils were uniform and classified as Pomona fine sand (sandy, siliceous, 

158 hyperthermic Ultic Alaquod). First, we seeded plots with one of four bahiagrass cultivars 

159 (Argentine, Pensacola, Tifton-9, and UF-Riata). Bahiagrassis a perennial C4 pasture grass with 

160 improved germplasm that was introduced to Florida in the 1920s from South America and 

161 constitutes the primary forage for the Florida cow-calf industry (43). ‘Argentine’ and ‘Pensacola’ 

162 are widely-distributed, naturalized cultivars in the state of Florida with a decumbent growth 

163 habit, whereas ‘Tifton-9’ and ‘UF-Riata’ are recently-released cultivars selected for improved 

164 agronomic characteristics including more upright growth habits and less photoperiod sensitivity 

165 (31,38). Plots were fully established by the onset of the 2010 summer growing season with 

166 complete, uniform plant cover. More details, including soil fertility characteristics can be found 

167 in Vendramini et al. (38). Site weather data for this period were accessed from the Florida 

168 Automated Weather Network (FAWN, http://fawn.ifas.ufl.edu/data/), including temperature, 

169 precipitation, and evapotranspiration, and all fell within normal ranges (Table A1). 

170 We initiated defoliation treatments on June 13th 2013 and concluded field sampling 16 

171 weeks later on October 5th 2013. Although we did not measure soil moisture, the soils were all 

172 visibly waterlogged from July until the end of the experiment, as is typical in Florida Spodosol 
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173 soils (43). We therefore assumed that plant growth was not limited by water availability during 

174 the sampling period, or at the very least that water availability was essentially constant across 

175 plots. Each plot (n = 32) was randomly assigned to either a frequent (2 week) or infrequent (4 

176 week) defoliation treatment to simulate grazing stress. Each plot was divided in half and received 

177 two defoliation intensities (a severe defoliation to 5 cm residual height, and a mild defoliation to 

178 15 cm residual height) resulting in n = 64 experimental units (Figure A1). Thus, our design was 

179 effectively split-plot with two main-plot treatments (cultivar and defoliation frequency), while 

180 our subplot factor was defoliation intensity. Overall, each cultivar X defoliation severity X 

181 defoliation frequency treatment was replicated 4 times. 

182 We harvested a 0.92-m2 quadrat from each subplot during each defoliation treatment with 

183 a rotary mower (Sensation Mow-Blo Model 11F4-0) at the target cutting heights: 5 cm for the 

184 severe defoliation, 15 cm for the mild defoliation, values chosen based on personal observation 

185 (C.H. Wilson, L.E Sollenberger, J.M. Vendramini) to represent the extremes of pasture 

186 defoliation under grazing by beef cattle in Florida. To quantify aboveground production, 

187 harvested material was oven-dried at 60°C to constant mass and weighed on an analytical scale. 

188 During the final harvest, all subplots were harvested at 5 cm. Total aboveground production was 

189 determined by summing values for each subplot across all dates including the final harvest. 

190 Aboveground production values are presented in gm-2 (dry biomass). 

191 To quantify root primary production in response to the defoliation treatments, we 

192 installed 2-mm mesh root in-growth cores (44) on June 7th, 2013, prior to imposing the 

193 defoliation treatments. Cores were 7.5 cm diameter x 25 cm deep and constructed of fiberglass 

194 mesh. They were installed by first excavating a cylinder of soil with a soil auger to target 

195 dimensions, placing the mesh bags into the cylinder so that the upper edge of the bags was just 
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196 below the soil surface, and then re-filling the cores with sieved, root-free soil from the same plot. 

197 We retrieved the cores at the end of the growing season on October 5th 2013, 16 weeks after 

198 installation. The final volume of soil contained in each core was quantified prior to washing the 

199 roots free of soil on a 250-uM sieve. Root samples were then oven-dried at 60°C to constant 

200 mass and weighed on an analytical scale. To correct for variation in core volume, root biomass 

201 was multiplied by a correction factor determined as the inverse of the ratio of each core volume 

202 to a reference core (a cylinder of 7.5 cm diameter and 25 cm depth). Finally, we visually 

203 determined that almost all root biomass was contained within the depth we evaluated (i.e. 25 cm 

204 depth) by digging several test pits around our study area. We note from personal observation that 

205 wet pastures tend to result in shallower root distribution, consistent with early literature such as 

206 (45). Therefore, we multiplied root biomass by a constant (10000/(pi*3.75^2)) to convert our 

207 measures to g/m2, putting them on an easily interpretable scale. 

208

209 Statistical Analysis

210 Response variables for analyses were shoot and root production, and a measure of root 

211 allocation defined as: 

212
𝑅𝑜𝑜𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑅𝑜𝑜𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝑆ℎ𝑜𝑜𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

213  To analyze among-cultivar variability in response to our treatments, we parameterized a 

214 varying-intercept/varying-slope Bayesian hierarchical model that we applied to both of our 

215 response variables. In this model, we estimate intercept and slope (i.e., treatment effects) 

216 coefficients for each cultivar, where each batch of coefficients is modeled as a draw from a 

217 normal distribution with an estimated variance component (46). We included binary predictor 

218 variables using a -0.5/0.5 “effect coding” for our experimentally imposed treatments: lenient (15 
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219 cm) and infrequent (4 wk) defoliation were assigned -0.5 values, while frequent (2 wk) and 

220 severe (5 cm) defoliation were assigned 0.5 values. Under this coding, the model intercept 

221 represents the grand mean, and the coefficients for defoliation severity and frequency represent 

222 the main effects of severe and/or frequent defoliation across both levels of the other treatment 

223 (see e.g. Schabenberger et al. (47)). We also included a term for the interaction of severe and 

224 frequent defoliation treatments and a random effect of plot to allow for correlation in 

225 observations from the same plot. Our varying-intercept/varying-slope model therefore included 

226 four separate estimates of grand means (one for each cultivar), each of which represents an 

227 estimate of performance for that cultivar across all defoliation treatment conditions, and four 

228 treatment effect estimates (one for each cultivar) for frequent defoliation, severe defoliation, and 

229 their interaction. Since these coefficients were drawn from distributions with estimated variance 

230 components, the separate estimates were partially pooled towards their common mean, which 

231 also was estimated from the data, a property that built in an automatic correction for multiple 

232 comparisons among cultivars and obviated the need for arbitrary post-hoc adjustments such as 

233 the Bonferonni correction (48). Finally, because growth data are naturally constrained to be 

234 positive only and because we observed a pattern of variance increasing with the mean, we used a 

235 gamma distribution to model our data, which naturally accounts for this nearly universal pattern 

236 in biomass data. We used the standard log-link in our parameterization of the gamma regression 

237 model, and thus our model coefficients represent multiplicative effects, and are reported on the 

238 log link scale (46). Values greater than zero indicate positive effects on the response variable, 

239 whereas values less than zero indicate negative effects. As in all cases where the log-link is used, 

240 exponentiation of these regression coefficients returns the multiplicative effect which can be 

241 naturally interpreted as a % effect.    
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242 We display treatment effects graphically by first plotting estimated fixed effect 

243 coefficients (i.e. frequency, severity and frequency X severity) centered on the median, and 

244 include both a 50% (thick) and a 95% (thin line) uncertainty (credible) interval. These 

245 coefficients represent the overall average effects of treatment or the interaction effect across all 

246 cultivars. In addition, we graphically present the varying intercepts portion of our model, which 

247 represents the overall average deviation of each cultivar from the grand mean across all cultivars, 

248 and is thus naturally centered at zero. Here again, we include both 50% (thick) and a 95% (thin 

249 line) credible intervals. The proportion of the credible interval above or below zero can be 

250 interpreted as the Bayesian probability of that cultivar differing in response from the average 

251 across all cultivars. In the case of root allocation, we further analyze all the pairwise contrasts 

252 among cultivars (n=6 contrasts), by taking the difference between each coefficient at each 

253 iteration of the MCMC sampler. These pairwise contrasts thus represent the differences between 

254 each pair of cultivars in their overall root allocation, averaged across all treatment conditions. 

255 We estimated these models in a Bayesian framework via Hamiltonian Monte Carlo in the 

256 packaged “rstanarm” (v2.18.2) called from R (v3.5.3) via Rstudio (v1.1.463). Prior to analysis, 

257 shoot and root production responses were standardized by dividing by their mean, resulting in 

258 this case with response variables with scale ~O(1) to facilitate faster sampling, and to help 

259 specify weakly-regularizing Normal(0,1) priors for all treatment effects. For all models we 

260 sampled the target (posterior) distribution with four chains of 2000 iterations each. Model 

261 convergence was assessed via use of the R-hat < 1.01 criterion (46) as well as by visual 

262 inspection for chain blending and stability, and monitoring of the powerful diagnostics built into 

263 rstanarm (i.e. divergent transitions and E-BFMI, citation). 
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264 To understand the relative importance of defoliation treatment and cultivar compared 

265 with shoot production for predicting root production, we first fit a simple univariate regression 

266 model using only aboveground biomass from each subplot (n=64) as a continuous covariate. We 

267 then refit our varying-intercepts/varying-slopes model while including shoot production as a 

268 continuous covariate alongside treatment and cultivar effects. We compare a Bayesian R2 metric 

269 between the models (49). Because the visual and R2 comparisons were so clear, we had no need 

270 to evaluate additional metrics of model predictive performance.  

271
272 Results
273 Shoot production model

274 Average shoot production across all cultivars and treatment combinations in our study 

275 was 290 gm-2, with the highest values observed in the infrequent severe defoliation treatment, 

276 which averaged 384 gm-2 (Fig 1). The fixed main effect estimate (on log-link scale, and reported 

277 as posterior median +/- posterior standard error) for severe defoliation was positive [0.28 +/- 

278 0.07, Fig 2a], while the estimate for frequent defoliation was negative [-0.18 +/- 0.08, Fig 2a]; 

279 however, the interaction was negative as well [-0.25 +/- 0.15, Fig 2a], consistent with readily 

280 observable pattern (Fig 1) that it is the combination of severe + infrequent (4 wk) defoliation that 

281 leads to over-yielding. Overall, we did not estimate substantial variability in shoot production 

282 among cultivars across all treatments, although the upright cultivars (UF-Riata and Tifton-9) had 

283 slightly higher production than the decumbent cultivars Argentine and Pensacola (Fig. 3a). 

284 Fig. 1: Raw data (gm-2) plotted as circles (shoots) and triangles (roots). Error bars show 
285 mean biomass (gm-2) +/- 1 SE for shoots (purple error bars) and roots (brown error bars). The 
286 panels are faceted by treatment combinations: intensity of defoliation on top (lenient 15 cm or 
287 severe 5 cm on top), and frequency of defoliation labeled on the right hand side (2 wk or 4 wk). 
288 The x-axis groups responses by cultivar: A = Argentine, P = Pensacola, T9 = Tifton-9, and UF-R 
289 = UF-Riata.  
290
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291 Fig. 2: Fixed effects from varying-intercepts/varying-slopes Gamma regression model. 
292 Coefficients are plotted on the log-link scale and include a median (point), 50% (thick line) and 
293 95% (thin line) credible intervals for a) shoot production, b) root production and c) root 
294 allocation. Where the entire 95% credible interval falls above or below zero, we can interpret 
295 that as a 97.5+% Bayesian probability of that coefficient having a positive or negative effect on 
296 the response, respectively. 
297
298 Fig. 3: Varying-intercepts from the Gamma regression model for root production. 
299 Coefficients represent deviations of each cultivar (A = Argentine, P = Pensacola, T9 = Tifton-9, 
300 and UF-R = UF-Riata) from the overall mean (fixed effect coefficient), and are thus naturally 
301 centered at 0, where negative values represent lower than average performance, and positive 
302 values higher than average performance. Plots include a median (point), and 50% (thick line) and 
303 95% (thin line) credible intervals. Where the entire 95% credible interval falls above or below 
304 zero, we can interpret that as a 97.5+% Bayesian probability of the cultivar having a higher or 
305 lower overall root production compared to the mean among all cultivars. 
306

307 Root production model

308 We observed an average root production of 224 gm-2, where mild defoliation treatments 

309 were the highest with 262 gm-2 averaged across 2 wk and 4 wk defoliation frequencies, 

310 compared with severe defoliation with an average of 186 gm-2 (Fig 1). The fixed main effect 

311 estimate for severe defoliation was negative (-0.33 +/- 0.12, Fig 2b), with >97.5% of posterior 

312 probability below 0, while the main effects of frequent defoliation and the interaction of frequent 

313 X severe defoliation were highly uncertain, with 95% credible intervals spanning a similar range 

314 above and below zero. Average root production across all treatment groups varied by cultivar 

315 more substantially than shoot production (Fig 3b), with the decumbent cultivars Argentine and 

316 Pensacola having greater root production than the upright cultivars UF-Riata and Tifton-9 (Fig 

317 3b, Fig. 4). The greatest contrast was between Argentine and UF-Riata, which had a median 

318 posterior difference of -0.36 on the log-link scale (Fig. 4), which represents a 30% lower root 

319 production.
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320 Fig. 4: Pairwise contrasts among each cultivar for the varying intercepts of the root 
321 allocation model. Key: A = Argentine, P = Pensacola, T9 = Tifton-9, and UF-R = UF-Riata. 
322 Plots include a median (point), and 50% (thick line) and 95% (thin line) credible intervals. 
323 Where the entire 95% credible interval falls above or below zero, we can interpret that as a 
324 97.5+% Bayesian probability of the first cultivar having a higher root allocation than the second 
325 cultivar. 
326
327 Root allocation

328 The fixed main effect estimate for severe defoliation on root allocation proportion was -

329 0.34 +/- 0.09 (Fig 2c), a very similar median estimate to that for root production, although with a 

330 smaller uncertainty (SE = 0.09 versus 0.12). This result represents a median estimate of 29% 

331 reduced allocation proportion to roots overall among cultivars and across both frequencies of 

332 defoliation with severe defoliation. Variation among cultivars was also similar to that observed 

333 for root production (Fig 3c versus 3b), and thus we did not repeat the pairwise analysis since it 

334 would convey redundant information.  

335

336 Root production predictions

337 The univariate regression between shoot and root production revealed a very weak (R2 = 

338 0.09) relationship (Fig 5a). The full model that included treatment indicators and cultivar identity 

339 (as in the analyses above), yielded a median R2 of 0.45 (Fig 5b). After removing the varying 

340 intercepts/slopes by cultivar, this R2 value declined to 0.21 (see supplement), indicating that 

341 accounting for cultivar identity doubles model fit. Close examination of Fig 5b reveals that the 

342 full model accounted for observed variations in root production quite well in the range of 100-

343 300 gm-2 but severely underpredicted root production > 300 gm-2. 

344 Fig. 5: Shoot production does not predict root production. a) Predicted versus observed 
345 scatterplot for root production as predicted by shoot production as an aboveground proxy, and b) 
346 predicted versus observed scatterplot for root production as predicted by defoliation treatment, 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 9, 2019. ; https://doi.org/10.1101/763128doi: bioRxiv preprint 

https://doi.org/10.1101/763128
http://creativecommons.org/licenses/by/4.0/


347 cultivar identity, and shoot production. For reference, the 1:1 line of “perfect fit” is plotted along 
348 with an in-sample median Bayesian R2 for both predictive models. 
349
350 Discussion
351
352 Severe defoliation resulted in substantially greater shoot production when applied 

353 infrequently, but reduced root production among the bahiagrass cultivars. Averaged across all 

354 defoliation treatments, root production was also more strongly variable among cultivars than was 

355 shoot production. Thus, our results suggest that severe defoliation can trigger a tradeoff between 

356 aboveground and belowground allocation in managed subtropical pastures, and that the extent of 

357 this tradeoff depends in part on cultivar identity. Contrary to Georgiadis et al. (50) and Briske 

358 and Richards (28)  who suggested that overcompensation is only likely to occur under water-

359 limitation, or given concomitant fertilization, we found significantly greater shoot production in 

360 response to severe defoliation under limited fertility and abundant soil water. Compared with 

361 mild defoliation, all cultivars exhibited this compensatory aboveground growth response to 

362 severe defoliation, but only when defoliation was applied infrequently (similar to Gates et al. 

363 (51)). However, the severe, but infrequent defoliation treatment that led to aboveground 

364 compensatory growth also suppressed root production. Thus, under low-input conditions, 

365 manipulating defoliation intensity and frequency to enhance forage production could evoke a 

366 tradeoff between shoot and root production.. Given the substantial literature demonstrating the 

367 importance of root carbon for maintenance of soil carbon pools (17,18,22), these altered 

368 allocation patterns may have significant consequences for carbon cycling, and hence soil carbon 

369 sequestration services, in managed subtropical pastures. Moreover, use of simple aboveground 

370 proxies, such as leaf area/biomass, are unlikely to help constrain predictions of root production 

371 over large spatial scales. 
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372 Our results differ from the short-term responses measured by Ziter and Macdougall (12) 

373 and Hamilton III et al. (52) where a single defoliation event stimulated root production and root 

374 exudation, respectively. Moreover, the results reported here appear to conflict with 

375 measurements of standing root biomass, root exudation rates, and their connections to microbial 

376 biomass and soil carbon, across a system of long-term grazing exclosures on a similar pasture 

377 site, as reported in Wilson et al. (22). These discrepancies suggest that root responses to short-

378 term grazing/defoliation events can strongly differ from season-long responses to grazing 

379 regimens where both intensity and frequency of defoliation are expected to mediate plant 

380 regrowth strategies (28). Moreover, long-term impacts of grazing exclusion in bahiagrass-

381 dominated subtropical pasture appear to involve pronounced phenotypic shifts in root:shoot 

382 ratios, whereby absence of grazing favors lower root:shoot ratios, even when holding species 

383 composition constant (22)On the other hand, Thornton and Millard  (53) found that greater 

384 severity of defoliation resulted in lower root mass (but greater N uptake per unit of root mass), 

385 which is consistent with our findings. Meanwhile, Dawson et al.  (30) report that weekly 

386 defoliation over a growing season reduced root biomass compared with no defoliation, but 

387 infrequent defoliation (every 8 weeks) had no effect. Our ambivalent findings on the role of 

388 frequency of defoliation were thus somewhat surprising. Although we observed marked 

389 suppression of variability of production under our severe + frequent treatment (see e.g., Fig 1), 

390 root production was not markedly lower than in our severe + infrequent treatment. Overall, it 

391 appears that in our system, severity, not frequency, of grazing is the more important determinant 

392 of grass root production. 

393 We observed substantial overall variability in root production among the grass cultivars. 

394 However, it does not appear possible to predict cultivar-level belowground responses to specific 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 9, 2019. ; https://doi.org/10.1101/763128doi: bioRxiv preprint 

https://doi.org/10.1101/763128
http://creativecommons.org/licenses/by/4.0/


395 grazing regimens based on observations of aboveground compensatory growth responses. As we 

396 hypothesized, the cultivars selected for enhanced upright growth habit (Tifton 9, UF-Riata, (31)) 

397 exhibited less overall root production, especially Tifton-9, compared with the widely naturalized 

398 decumbent types (Argentine, Pensacola), especially Argentine. On the other hand, all cultivars 

399 responded equally negatively to severe defoliation per se, and we observed similar total root 

400 production among all cultivars in the severe + frequent defoliation treatment, a scenario 

401 reasonably representative of overstocked pastures. These results contradict the theory that more 

402 grazing-tolerant genotypes, in our case Argentine and Pensacola, will have lower root production 

403 as a consequence of greater post-grazing allocation to shoot regrowth (28,30). Instead, it appears 

404 that cultivars simply vary in root growth potential, but that severe defoliation, especially when 

405 applied frequently, overwhelms this variability. 

406 Contrary to hypothesis, our study revealed that shoot and root production are decoupled 

407 at fine spatial scales, at least in our experimental plots, with shoot production explaining only 8% 

408 of the in-sample variation in root production. By contrast, defoliation treatment and especially 

409 cultivar identity appear to be very important for predicting root production in this system, 

410 together accounting for roughly half the observed variance in root production. Gill et al. (14) 

411 reported some success in predicting belowground NPP using an algorithm based only on 

412 aboveground biomass and climate. However, their model consistently under-predicted root 

413 production in more productive sites. Interestingly, we observed a similar severe underprediction 

414 of root production in our more productive plots. Thus, we caution against using aboveground 

415 proxies to predict belowground production, even within uniform and homogeneous ecosystems, 

416 such as the planted pasture system where we worked. Our results suggest that knowledge of 

417 grazing management and cultivar identity (in addition to species-level variations in composition, 
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418 (54,55))  are critical for generating accurate predictions of BNPP.  Moreover, half of the variance 

419 in belowground production was unexplained, even in our best model, suggesting significant 

420 spatial heterogeneity in root system productivity that should be further investigated. Given recent 

421 calls highlighting the importance of plant roots to future progress in biogeochemical modeling 

422 and the quest to find reliable, scalable aboveground proxies to indirectly infer root processes 

423 (36,37), our results are a sobering reminder of the challenges inherent to linking production 

424 above and belowground. Accordingly, we suggest that a high priority for future research is to 

425 study belowground root-rhizosphere processes using spatially-explicit sampling protocols 

426 designed to maximize insight into heterogeneity at various spatial and temporal scales. 

427 At the large scale, McNaughton (1998) (8) found that grazing intensity is uncorrelated 

428 with standing root biomass or productivity in the Serengeti. However, in speciose natural 

429 grasslands plant diversity may confer a stabilizing influence on root production (55,56). By 

430 contrast, monoculture pasture systems may respond more like mesocosm systems where high 

431 defoliation intensity is associated with reduced root biomass (24). Moreover, since a large 

432 proportion of managed grasslands are dominated by single species, variation in root production 

433 among cultivars may represent an especially important component of diversity. Grazing 

434 management may need to be matched to cultivar-level characteristics to optimize both forage and 

435 root production, and establishment of planted pastures with multiple cultivars or genotypes may 

436 be a viable, yet underappreciated, strategy for enhancing functional diversity. For instance, 

437 combining upright and decumbent cultivars may introduce beneficial genotypic diversity that 

438 could maximize utilization of both above and belowground resources via niche complementarity 

439 (57,58). Additionally, cultivar-level variability suggests the potential for ecologists to collaborate 
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440 with plant breeders to improve the sustainability of grassland agroecosystems by development of 

441 improved forage cultivars selected for superior belowground traits.

442 Overall, our results suggest that intermittent severe defoliation can elicit much greater 

443 shoot growth, but have neutral or negative effects on root production. It is possible that a more 

444 moderate defoliation intensity than we tested would have led to similar stimulation of 

445 aboveground compensation without the negative consequence for root production, a possibility 

446 our study was not designed to test. Neither did our study consider impacts of defoliation on 

447 rhizome biomass, but we note that our intent was to focus on root production since it appears to 

448 be of greater relevance for soil carbon sequestration than other compartments of plant biomass 

449 (17). Likewise, it is also possible that the lower fine root production we measured may have been 

450 compensated for by greater rhizodeposition/root exudation. However, this possibility seems 

451 unlikely given that rates of root exudation generally correlate to fine root surface area (22,59). 

452

453 Conclusions
454
455 Root production is critical for maintaining and increasing soil carbon pools in grassland 

456 ecosystems, yet findings on the immediate and long-term effects of grazing on root production 

457 remain variable. We hypothesized that severe defoliation, if applied infrequently, might lead to 

458 overyielding of shoots, but would have only small impacts on root production. Moreover, we 

459 hypothesized that cultivars selected for an upright growth habit would show less root production 

460 overall, and would be more sensitive to defoliation stress. Overall, we found that severe 

461 defoliation per se, regardless of frequency, suppressed root production, even as infrequently 

462 applied severe defoliation increased shoot production. Thus, it appears that manipulating timing 

463 and intensity of grazing to optimize forage production might evoke a negative tradeoff with root 
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464 production. We did find support for the hypothesis that recently developed upright cultivars have 

465 lower root production, and a lower root:shoot ratio, than widely naturalized decumbent cultivars. 

466 The main limitation of our work is that realistic animal grazing management can differ from 

467 experimentally imposed defoliation in two major ways: 1) grazing impacts will fall along a 

468 spectrum of timing and intensity with more intermediate values than can be tested in a 

469 randomized factorial experiment, and 2) grazers will return a certain fraction of consumed 

470 carbon and nutrients in the form of manure and urine, creating heterogeneous patches of varying 

471 nutrient availability. Moreover, we also caution that year-year variability in growing conditions 

472 can induce variability in experimental effects. Ideally, we recommend long-term (3+ year) field 

473 studies of controlled grazing (or defoliation) to begin to properly estimate the random effects of 

474 such year-year environmental fluctuations. 

475  In addition to recommending greater future consideration of intraspecific variations in 

476 belowground responses to grazing, our work supports the need to perform season-long measures 

477 of belowground productivity to obtain reliable estimates of belowground production that can be 

478 used to parameterize soil carbon models. Our data also suggest that reliance on aboveground 

479 proxies is, unfortunately, not justified at least for subtropical pastures. In addition, given the 

480 limitations of observational and comparative work, we suggest that longer-term field 

481 manipulations are necessary to evaluate a suite of grazing management scenarios across plant 

482 composition treatments. Such experiments will significantly improve our ability to inform the 

483 design and management of grassland agroecosystems for meeting aboveground (forage) 

484 production goals while also optimizing belowground production, and thus soil carbon 

485 sequestration and other soil carbon mediated ecosystem services such as nutrient retention and 

486 water cycling (2). 
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649 SUPPORTING INFORMATION 
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651 S1 Fig. Diagram showing layout of plots. North is top of the page. Legend: Defoliation 
652 severity- Red = Severe Defoliation  (5 cm), Blue = Lenient Defoliation  (15 cm). Defoliation 
653 frequency - 2wk = Defoliated every 2 weeks, 4wk = Defoliated every 4 weeks. Bahia cultivar 
654 identity - A = Argentine, P = Pensacola, T9 = Tifton 9, R = UF-Riata. 
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656 S1 Table. Meteorogical data from our study site during study season. Ona Range Cattle 
657 Research and Education Center. Accessed from the Florida Automated Weather Network 
658 (FAWN), http://fawn.ifas.ufl.edu/. 
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