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Abstract

Currently, Diabetes and the associated Diabetic Retinopathy (DR) instances are
increasing at an alarming rate. Numerous previous research has focused on automated
DR detection from fundus photography. The classification of severe cases of
pathological indications in the eye has achieved over 90% accuracy. Still, the mild cases
are challenging to detect due to CNN inability to identify the subtle features,
discrimnative of disease. The data used (i.e. annotated fundus photographies) was
obtained from 2 publicly available sources - Messidor and Kaggle. The experiments were
conducted with 13 Convolutional Neural Networks architectures, pre-trained on
large-scale ImageNet database using the concept of Transfer Learning. Several
performance improvement techniques were applied, such as: (i) fine-tuning, (ii) data
augmentation, and (iii) volume increase. The results were measured against the
standard Accuracy metric on the testing dataset. After the extensive experimentation,
the maximum Accuracy of 86% on No DR/Mild DR classification task was obtained for
ResNet50 model with fine-tuning (un-freeze and re-train the layers from 100 onwards),
and RMSProp Optimiser trained on the combined Messidor + Kaggle (aug) datasets.
Despite promising results, Deep learning continues to be an empirical approach that
requires extensive experimentation in order to arrive at the most optimal solution. The
comprehensive evaluation of numerous CNN architectures was conducted in order to
facilitate an early DR detection. Furthermore, several performance improvement
techniques were assessed to address the CNN limitation in subtle eye lesions
identification. The model also included various levels of image quality (low/high
resolution, under/over-exposure, out-of-focus etc.), in order to prove its robustness and
ability to adapt to real-world conditions.

Introduction 1

Approximately 420 mln people worldwide have been diagnosed with Diabetes [1], and 2

its prevalence has doubled in the past 30 years [2]. The number of people affected is 3

only expected to increase, particularly in Asia [3]. Nearly 30% of those suffering from 4

Diabetes are expected to develop the Diabetic Retinopathy (DR) - a chronic eye disease 5

that is considered a leading cause of vision loss among working-age adults [1, 4]. The 6

eventual blindness resulting from DR is irreversible, though it can be prevented through 7

regular fundus examinations [5]. 8

Effective treatment is available for patients identified through early DR 9

identification [6]. Needless to say, a timely detection of pathological indication in the 10
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eye leading to DR is critical. It not only allows to avoid the late invasive treatments and 11

high medical expenses, but most importantly - to reduce the risk of potential sight loss. 12

The manual methods of diagnosis prove limiting given the worldwide increase in 13

prevalence of both Diabetes and its retinal complications [7]. Currently, the 14

ophthalmologist-to-patient ratio is approx. 1:1000 in China [5]. Furthermore, the 15

traditional approaches reliant on human assessment require high expertise, as well as 16

promote inconsistency among the readers [1]. Labour and time-consuming nature of 17

manual screening services has motivated the development of automated retinal lesions 18

detection methods, in particular early stages of DR. 19

Deep Neural Network model is a sequence of mathematical operations applied to the 20

input, such as pixel value in the image [8], where the training is performed by 21

presenting the network with multiple examples, as opposed to unflexible rule-based 22

programming underlying the conventional methodologies [9]. Deep learning, in 23

particular Convolutional Neural Networks (CNN), has been widely explored in the field 24

of DR detection [10–14],largely surpassing previous image recognition 25

methodologies [14]. Overall, Deep learning has demonstrated tremendous potential in 26

healthcare domain, enabling the identification of patients likely to develop a disease in 27

the future [6]. In terms of DR, the applications range from binary classification (No 28

DR/DR), to multi-level classification based on condition severity scale (No DR/Mild 29

DR/Moderate DR/Severe DR). CNNs, with their multi-layer feature representations, 30

have already shown outstanding results in discovering the intricate structures in 31

high-dimensional datasets. The models have proven successful at learning the most 32

discriminative, and often abstract aspects of the image, while remaining insensitive to 33

irrelevant details such as orientation, illumination or background. 34

The numerous challenges in automatic DR detection have been identified in 35

literature. The diagnosis is particularly difficult for patients with early stage of DR [1]. 36

As highlighted by Pratt et al. [12], Neural Networks struggle to learn sufficiently deep 37

features to detect intricate aspects of Mild DR. In the same study, approx. 93% of mild 38

cases were incorrectly classified as healthy eye instances. The problem is illustrated on 39

Fig 1, displaying various stages of DR advancement, and the associated features 40

visibility. The numerous accuracy improvement techniques such as dimensionality 41

reduction or feature augmention have been proposed in literature. Still, the studies on 42

Deep learning-based DR detection consistently report high performance on severe cases, 43

while identification of mild cases still remains a challenge. This limitation impede the 44

wider application of fully automated mass-screening due to potential omission of early 45

phase of DR, leading to more advanced condition development in the future. Also, 46

according to the study conducted by Ting et al. [15], the referable stage of DR (mild) 47

was 5x more prevalent than the vision-threatening stage of DR (severe), demonstrating 48

the significance of early lesions detection. 49

Transfer learning has already been validated and demonstrated promising results in 50

medical image recognition. The concept uses knowledge learned on primary task, and 51

its re-purpose to secondary task. Transfer learning is particularly useful in Deep 52

learning applications that require vast amount of data and substantial computational 53

resources. The state-of-the-art CNN models, pre-trained on the large public image 54

repository have been used as part of this study, following the concept of Transfer 55

learning. Using the weights initialised, the top layers of Neural Networks have been 56

trained for customised No DR/Mild DR binary classification from publicly available 57

fundus image corpora. The improved classification performance via Transfer learning 58

has already been reported in prior research on automated DR detection [16]. Unlike 59

previous approaches, the study conducted focuses entirely on Mild DR instances - 60

currently challenging to identify. The several task-specific data augmentation techniques 61

for classification performance improvement are further evaluated. Finally, the 62

August 28, 2019 2/12

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 9, 2019. ; https://doi.org/10.1101/763136doi: bioRxiv preprint 

https://doi.org/10.1101/763136
http://creativecommons.org/licenses/by/4.0/


fully-automated Deep learning-based system facilitates methodology reproducibility and 63

consistency in order to streamline an early DR detection process, increasing the access 64

to mass-screening services among the population-at-risk. 65

Fig 1. The examples of different stages of DR advancement on fundus
images. (A) No DR – healthy retina; (B) Mild DR – abnormal growth of blood vessels
and ‘cotton wool’ spots formation (early indication); (C) Moderate DR – abnormal
growth of blood vessels and ‘cotton wool’ spots formation (mid-stage indication); (D)
Severe DR – hard exudates, aneurysms and hemorrhages (advanced indication).

Materials and methods 66

Study design 67

The overarching aim of the study is the performance improvement of early DR detection 68

from fundus images of Mild DR and healthy retina through the extensive 69

experimentation. The associated objectives can be identified as follows: 70

• Comprehensive evaluation of 13 CNN architectures using concept of Transfer 71

learning; 72

• Models fine-tuning to reflect the specifics of the application case-study; 73

• Various Optimisers performance assessment and the optimal one selection; 74

• 2 datasets combination and augmentation for further accuracy improvement. 75

To illustrate the steps followed, the high-level process pipeline is presented in Fig 2. 76

Fig 2. The high-level process pipeline.

Data collection 77

The data was acquired from publicly available corpora, i.e. Kaggle and Messidor. 78

Kaggle dataset contains 35126 fundus images, annotated for 5-class identification (No 79

DR, Mild DR, Moderate DR, Severe DR, Proliferative DR), while Messidor dataset 80

contains 1200 fundus images, annotated for 4-class identification. Both datasets include 81

colour photographs of right and left eye. The images dimensions vary between 82

low-hundreds to low-thousands. The quality of data differs significantly between the 83

datasets. Messidor, despite its relatively small scale, is considered a high fidelity source 84

with reliable labelling, while Kaggle consists of a large number of noisy and often 85

misannotated images. The raw Kaggle data more closely reflects real-world scenario, 86

where images are taken under different conditions, thus resulting in various quality 87

levels. The challenge lies in the potential eye lesions detection despite the observed 88

noisiness in application dataset. Fig 3 demonstrates the comparative data distribution 89

for Messidor and Kaggle datasets among the respective DR classes (the exact numbers 90

of images for each dataset/class can be found in Table 2 ). 91

Fig 3. Data distribution for Messidor and Kaggle datasets.
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Transfer learning 92

The knowledge transfer from primary to secondary task frequently acts as an only 93

solution in highly-specialised disciplines, where the availability of large-scale quality 94

data proves challenging. The adoption of already pre-trained models is not only the 95

efficient optimisation procedure, but also supports the classification improvement. The 96

first layers of CNNs learn to recognise the generic features such as edges, patterns or 97

textures, whereas the top layers focus on more abstract and task-specific aspects of the 98

image, such as blood vessels or hemorrhages. Training only the top layers of target 99

dataset, while using the initialised parameters for the remaining ones is commonly 100

employed approach, in particular in computer vision domain. Apart from efficiency 101

gains, fewer parameters to train also reduce the risk of overfitting, which is a major 102

problem in Neural Networks training process [12]. The CNN models used in the 103

experiments along with their characteristics are presented in Table 1. 104

Table 1. The CNN models pre-trained on ImageNet and their characteristics.

Model Size Top-1 Accu-
racy *

Top-5 Accu-
racy *

Parameters Depth ** Reference

Xception 88 MB 0.790 0.945 22,910,480 126 Chollet [17]
VGG16 528 MB 0.713 0.901 138,357,544 23 Simonyan and Zisserman [18]
VGG19 549 MB 0.713 0.900 143,667,240 26
ResNet50 98 MB 0.749 0.921 25,636,712 - He et al. [19]
InceptionV3 92 MB 0.779 0.937 23,851,784 159 Szegedy et al. [20]
InceptionResNetV2 215 MB 0.803 0.953 55,873,736 572 Szegedy et al. [21]
MobileNet 16 MB 0.704 0.895 4,253,864 88 Howard et al. [22]
MobileNetV2 14 MB 0.713 0.901 3,538,984 88 Sandler et al. [23]
DenseNet121 33 MB 0.750 0.923 8,062,504 121 Huang et al. [24]
DenseNet169 57 MB 0.762 0.932 14,307,880 169
DenseNet201 80 MB 0.773 0.936 20,242,984 201
NASNetMobile 23 MB 0.744 0.919 5,326,716 - Zoph et al. [25]
NASNetLarge 343 MB 0.825 0.960 88,949,818 -

Source: https://keras.io/applications/

* * The top-1 and top-5 accuracy refers to the model’s performance on the ImageNet validation dataset.

** ** Depth refers to the topological depth of the network. This includes activation layers, batch normalisation layers etc.

Experiment setting 105

The algorithms were implemented using Keras library1, with TensorFlow2 as a back-end. 106

The images resolution has been standardised to a uniform size in accordance with input 107

requirements of each model. The number of epochs, i.e. complete forward and backward 108

passes through the network, was set to 20 due to the already pre-trained models use. 109

The training/testing split was set to 60/40 given the small-to-moderate dataset size. 110

The stratified random sampling was performed in order to ensure the correct class 111

distribution and final findings reliability. The mini-batch size was set to 32, and the 112

cross-entropy loss function was selected due to its suitability for binary classification. 113

The default Optimiser was RMSProp. The standard evaluation metric of Accuracy on 114

testing dataset was used for final results validation. 115

1https://keras.io/
2https://www.tensorflow.org/guide/keras
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Performance improvement 116

Fine-tuning 117

The CNN models adopted in the study were pre-trained on a large-scale ImageNet 118

dataset that spans numerous categories includings flowers, fruits, animals etc. Such 119

models obtain high performance on classification tasks for the objects present in the 120

training dataset, while prove limiting in their application to niche domains, such as DR 121

detection. Diagnosis of pathological indications in fundoscopy depends on a wide range 122

of complex features, and their localisations within the image [1]. In each layer of CNN, 123

there is a new representation of input image by progressive extraction of the most 124

distinctive characteristics [10]. For example, the first layer is able to learn edges, while 125

the last layer can recognise exudates - a DR classification feature [1]. As a result, the 126

following scenarios were considered in the experiments: (1) only the top layer removal 127

and network re-train (the existing approaches); and (2) the n top layers removal and 128

network re-train (the proposed approach). The parameter n vary across the CNNs used, 129

and depends on the total number of layers present in each model structure. The 130

threshold of 100 was selected, and the subsequent layers of each model were ’un-frozen’ 131

and fine-tuned to the application dataset. The initial 100 layers were treated as a fixed 132

feature extractor [26], while the remaining layers were adapted to specific characteristics 133

of fundus photography. The potential classification improvement on DR detection task 134

was evaluated as a result of the proposed models customisation. In the study conducted 135

by Zhang et al. [5], the performance accuracy of Deep learning-based DR detection 136

system improved from 95.68% to 97.15% as a result of fine-tuning. 137

Optimisation 138

During the training process, the weights of Neural Network nodes are adjusted 139

accordingly in order to minimise the loss function. However, the magnitude and 140

direction of weights adjustment is strongly dependent on the Optimiser used. The most 141

important parameters that determine the Optimiser’s performance are: Learning rate 142

and Regularisation. Too large/too small value of Learning rate results in either 143

non-convergence of the loss function, or in the reach of the local, but not absolute 144

minima, respectively. At the same time, the Regularisation allows to avoid model 145

overfitting by penalising the dominating weights values for the correct predictions. 146

Consequently, the classifier generalisation capability improves, when exposed to the new 147

data. The Optimisers used in the experiments were as follows: (1) RMSprop, (2) SGD, 148

(3) Adagrad, (4) Adadelta, (5) Adam, (6) Adamax and (7) Nadam. 149

Volume 150

Deep learning benefits from high-volume data. The larger number of both No DR as 151

well as Mild DR instances significantly increases model’s reliability and allows for more 152

distinctive patterns detection. Thus, the previously-used small-scale Messidor dataset 153

has been combined with large-scale Kaggle dataset, i.e. the respective No DR and Mild 154

DR classes have been merged together. Table 2 presents the numbers of images used in 155

each scenario along with the descriptions of the particular DR stages. The severity scale 156

used is in accordance with the Early Treatment Diabetic Retinopathy Study 157

(ETDRS) [5]. The horizontal line separates No DR (M0,K0) and Mild DR (M1,K1) 158

from all cases available in Messidor and Kaggle datasets. 159
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Table 2. The DR severity levels according to ETDRS and the number of images used in each experiment.

Severity
level

Id Description M K K M + K M + K

(raw) (aug) (raw) (aug)

No DR 0 No abnormalities. 546 25810 50976 26356 51522
Mild DR 1 Microaneurysms only. 153 2443 55410 2596 55563
Moderate DR 2 More than just microaneurysms, but less than severe

NPDR.
247 5292 - - -

Severe DR 3 Any of the following and no signs of proliferative
retinopathy: (1) severe intraretinal hemorrhages and
microaneusrysms in each of four quadrants; (2) def-
inite venous beading in two or more quadranta; (3)
prominent IRMA in one or more quadrants.

254 873 - - -

Proliferative
DR

4 One or both of the following: (1) neovascularisation;
(2) vitreous/preretinal hemorrhage.

- 708 - - -

Legend: M - Messidor, K - Kaggle, NPDR - Non-Proliferative Diabetic Retinopathy, IRMA - Intraretinal Microvascular
Abnormalities.

Augmentation 160

Compared to the Messidor dataset, the Kaggle dataset consists of larger proportion of 161

low fidelity data. The images were captured with different fundus cameras, resulting in 162

various quality levels. The relatively noisy character of images is observed through their 163

blurriness, under/over-exposure, presence of unrelated artifacts, and so on. The raw 164

format of Kaggle dataset closely reflects the nature of DR detection in real-world 165

settings, where substantial variability in data quality is observed between the 166

institutions. 167

In order to evaluate the potential classification improvement due to pre-processing 168

techniques applied, the following steps have been performed: (1) crop, (2) resize, (3) 169

rotate and (4) mirror. The example of the original image, and the augmentation steps 170

implemented are presented in Fig 4. Cropping and resizing (1 + 2) allows to focus on 171

pathological indications with greater level of detail, which proves important for DR 172

discrimination. Additionally, the subsequent rotating and mirroring (3 + 4) 173

substantially expands the dataset, alleviating the imbalance issues between the classes. 174

The comparison of images volumes before and after augmentation is included in Fig 5. 175

Fig 4. The examples of data augmentation steps performed on Mild DR
fundus image from Kaggle dataset. (A) Original; (B) Crop; (C) Rotate 90°;(D)
Rotate 120°; (E) Rotate 180°; (F) Rotate 270°; (G) Mirror.

Fig 5. Data distribution before and after augmentation for No DR and
Mild DR classes.

Results 176

Models comparison 177

The 13 pre-trained CNNs were compared in terms of yielded Accuracy on testing 178

dataset (Table 3). Additionally, the fine-tuning was applied as an alternative to the 179
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default option. After removal and re-training of n layers from 100 onwards (n was 180

CNN-dependent), the performance obtained for each model was used for comparison 181

purposes. The fine-tuning effect was calculated in terms of percentage Accuracy 182

increase/decrease. Then, the maximum Accuracy was selected for each model (either 183

default or after fine-tuning). Finally, the top 3 CNN architectures with highest 184

classification performance on Messidor dataset progressed to the subsequent 185

optimisation procedure (Fig 2). 186

The Accuracy after each epoch was further plotted in order to investigate the models 187

convergence capabilities in the default and fine-tuning scenario (Fig 6). As a result, the 188

computational intensity was additionally evaluated. 189

Table 3. The accuracy comparison of pre-trained CNN models.

Model Accuracy Accuracy
(F-T*)

F-T*
effect

Accuracy
(max)

Xception 0.809 0.809 ±00.0% 0.809
VGG16 0.809 0.809 ±00.0% 0.809
VGG19 0.813 0.813 ±00.0% 0.813
ResNet50 0.813 0.816 +00.4% 0.816
InceptionV3 0.806 0.795 −01.3% 0.806
InceptionResNetV2 0.812 0.582 −28.4% 0.812
MobileNet 0.583 0.556 −04.7% 0.583
MobileNetV2 0.781 0.656 −16.0% 0.781
DenseNet121 0.795 0.778 −02.2% 0.795
DenseNet169 0.569 0.642 +12.8% 0.642
DenseNet201 0.797 0.795 −00.2% 0.797
NASNetMobile 0.799 0.802 +00.4% 0.802
NASNetLarge 0.813 0.809 −00.4% 0.813

* Fine-Tuning

Fig 6. The validation accuracy achieved for the respective epochs. (A)
Default; (B) Fine-tuning.

Performance improvement 190

Following the top 3 CNN models selection (Table 3), the 7 most common in Deep 191

learning applications Optimisers were evaluated as part of the hyper-parameters 192

optimisation procedure. The most robust Optimiser in terms of validation accuracy for 193

each of the 3 models was indicated. The highest performing model+Optimiser was 194

selected for further augmentation process. The respective classes of both Messidor and 195

Kaggle datasets (M0+K0,M1+K1) were merged together and used to train the 196

max-accuracy model, as determined. The increase in dataset volume was expected to 197

contribute towards performance improvement. Next, the augmentation of imbalanced 198

low quality Kaggle data was conducted to further evaluate impact of image 199

pre-processing on classification accuracy. The results of both scenarios (i.e. (I) Messidor 200

+ Kaggle (raw) data; and (II) Messidor + Kaggle (augmented)) are presented in Table 5. 201
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Table 4. The Optimisers performance evaluation.

VGG19 ResNet50 NASNetLarge

Optimiser Accuracy Accuracy Accuracy
RMSprop * 0.813 0.816 0.813
SGD 0.812 0.812 0.812
Adagrad 0.812 0.802 0.815
Adadelta 0.812 0.812 0.812
Adam 0.812 0.812 0.792
Adamax 0.812 0.739 0.802
Nadam 0.812 0.756 0.809

* default

Table 5. The effect of volume increase and data augmentation.

Dataset Accuracy

Scenario I Messidor + Kaggle (raw) 0.905
Scenario II Messidor + Kaggle (aug) 0.860

Discussion 202

Automated DR detection 203

Increasing life expectancy, popular indulgent lifestyles and other contributing factors 204

indicate that the number of people with Diabetes is projected to raise [12,27]. This in 205

turn places an enormous amount of pressure on available resources and 206

infrastructure [28]. For instance, most of the patients with DR in China often neglect 207

their condition, and fail to secure timely interventions resulting in severe state 208

development [5]. Early identification of pathological indications effectively prevents 209

further condition aggravation, and its impact on the affected individuals, their families, 210

and associated medical expenses. Thus, the DR detection system allows to either (i) 211

fully-automate the eye-screening process; or (ii) semi-automate the eye-screening 212

process. First option requires sufficient level of accuracy, equivalent to that of retinal 213

experts. According to British Diabetic Association guidelines, a minimum standard of 214

80% sensitivity and 95% specificity must be obtained for sight-threatening DR detection 215

by any method [29]. Second option allows to downsize the large-scale mass-screening 216

outputs to the potential DR cases, followed by human examination. Both scenarios 217

significantly reduce the burden on skilled ophthalmologists and specialised facilities, 218

making the process accessible to wider population, especially in low-resource settings. 219

Performance improvement 220

The first part of the experiment included feature extraction initialised via Transfer 221

learning using the pre-trained CNN models, followed by the removal of the top layer 222

(existing approach). The comprehensive evaluation of total of 13 CNN architectures 223

(including state-of-the-art) was performed. In the second part, the N layers were 224

’un-frozen’ (over the threshold of 100), and subsequently re-trained to better adapt to 225

the specifics of the application case-study (proposed approach). The combination of 226

Messidor and Kaggle datasets was performed to further support model generalisation, 227

given the variety of images provided for system training, as well as to benefit the model 228

performance due to higher volume of training examples. The size of data used in 229

training greatly affects the outcome of Neural Networks process [9]. The numerous 230

pre-processing steps were implemented to measure potential accuracy improvement for 231
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No DR/Mild DR image classification. As Mild DR proves extremely challenging to 232

identify from healthy retina due to only subtle indications of the disease, the data 233

augmentation undertaken was believed to enhance pathological features visibility (e.g. 234

zoom and crop). 235

The top 3 CNN architectures with the top layer removed and re-trained were 236

VGG19, ResNet50 and NASNetLarge, yielding the accuracy of 81.3% (Table 3). The 237

lowest performance was obtained by DenseNet169 (56.9%) and MobileNet (58.3%), 238

respectively. In terms of DenseNet169, the characteristic feature of its structure that 239

connects each layer to every other layer in a feed-forward manner did not prove to 240

enhance the performance on No DR/Mild DR classification task. As for MobileNet, the 241

results only confirmed its intended purpose for mobile applications due to its lightweight 242

and streamlined architecture, which comes at a cost of the Accuracy. 243

The effect of fine-tuning (un-freezing the layers from 100 onwards) differed across 244

the models. The Accuracy improvement observed was only minor, suggesting the 245

relative suitability of pre-trained models to DR detection task. In other words, the CNN 246

models were able to identify Mild DR from healthy retina despite being trained on 247

un-related pictures from ImageNet repository. When no Accuracy increase is achieved, 248

the further layers un-freezing is not recommended due to unnecessary computational 249

time and cost incurred. 250

To complete the analysis on the effect of fine-tuning, the graphs depicting each CNN 251

architecture performance at the respective epochs (single pass of the full training set) 252

has been performed, as illustrated in Fig6. Despite no major influence on the 253

classification Accuracy, faster model’s convergence was observed due to the fine-tuning 254

applied. The higher number of layers un-frozen and re-trained made the models more 255

task-specific, leading to an improved use of resources due to reduced training time for 256

the most optimal performance. The finding was particularly noticable for the following 257

models Xception, MobileNet and DenseNet169. 258

Next, the various Optimisers have been evaluated on the top 3 CNN architectures. 259

Table 4 presents the Accuracy outputs obtained for each model. While there was no 260

major impact on the classification performance for VGG19, the higher variability was 261

observed for ResNet50, proving its sensitivity to the most suitable Optimiser selection. 262

Overall, RMSProp proved the most optimal choice for 2 out of 3 263

models.ResNet50+RMSProp was selected as the max-Accuracy model+Optimiser 264

option for No DR/Mild DR classification task. 265

As the last step, the 2 scenarios were considered, namely (i) volume increase and (ii) 266

data augmentation. As expected, the datasets combination, i.e. Messidor + Kaggle 267

(aug) further improved the classification Accuracy by +5% (86%). Where as, 268

combination of the datasets, i.e. Messidor + Kaggle (raw) results (90.5%) which is 269

consider as case of data imbalance. Therefore, the augmented images helps in data 270

imbalance, and did introduce greater variability of training examples required for the 271

increased model performance and the improved generalisability. As a result, the max 272

classification Accuracy on No DR/Mild DR classification task was achieved for 273

ResNet50 model with fine-tuning and RMSProp Optimiser trained on the combined 274

Messidor + Kaggle (aug) datasets. 275

Approach limitations 276

The several shortcomings of the study have been identified. Firstly, due to limited 277

availability of Mild DR images, only small-to-moderate dataset size was used in the 278

study. As a compensation procedure, the CNN models pre-trained on large-scale 279

ImageNet database have been adopted. The appropriate data augmentation techniques 280

have been further applied to expand the dataset, i.e. rotation, horizontal/vertical flip, 281

etc. Secondly, the default hyper-parameters were followed, while training the classifiers 282
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(i.e. batch size, dropout, loss function, etc.). These are considered the best practice 283

within the field. Still, the experiments with various Optimisers have been performed. 284

Finally, the ’black-box’ nature of Deep learning-based solution is frequently criticised, 285

causing resistance in wider approach adoption by the practitioners. Models learn the 286

features given the input data, and associate them with labels provided, the exact factors 287

affecting the final prediction are not transparent and straightforward. According to 288

Wong et al. [6], the major mindset shift is required in how clinicians and patients 289

entrust clinical care to machines. The methodology also highlights the importance of 290

accurate annotation process, as directly impacting the classifier performance. While 291

Messidor dataset has been verified and labelled by trained ophthalmologists, the 292

numerous mis-annotated images can be found in Kaggle dataset. 293

Future work 294

As it is the initial study focusing on binary No DR/Mild DR classification, future work 295

will cover finer-grained information extraction from cases previously identified as Mild 296

DR. For instance, upon sufficient data availabilty, the model will allow to recognise the 297

particular lesions such as exudates or aneurysms. The more in-depth classification will 298

further assist the retinal practitioners in more efficient eye-screening procedure. Also, 299

the highly varied input data (e.g. in terms of ethnicity, age group, level of lighting) will 300

support the model robustness and flexibility. Additionaly, different scenarios with 301

respect to the number of layers and nodes will be experimented with using TensorBoard 302

for dynamic visualisation. Increased convolution layers are perceived to allow the model 303

to learn deeper features [9, 12]. This in turn will enable the most optimal CNN 304

architecture design (depth and width of the network) for maximum classification 305

accuracy. An increase network dimensionality is the most direct way to enhance model 306

performance [16]. Future work will also place more emphasis on outputs visualisation in 307

order to obtain greater insight into the models internal workings, and further improve 308

the classification capability. In particular, the identification of exact image regions that 309

are associated with specific classification results will be highlighted, as well as the 310

magnitude of each feature intensity (so called attention/saliency maps [8]). Improved 311

understanding of the algorithm workings will facilitate the automated system wider 312

adoption and acceptance among physicians [6]. Finally, the experiments with ensembling 313

approach will be conducted, where the results of Neural Networks models trained on the 314

same data will be averaged in order to evaluate further classification accuracy gains. 315

Conclusion 316

Early detection and immediate treatment of DR is considered critical for irreversible 317

vision loss prevention. The automated DR recognition has been a subject of many 318

studies in the past, with main focus on binary No DR/DR classification [12]. According 319

to the results, an identification of moderate to severe indications do not pose major 320

difficulties due to pathological features high visibility. The issue arises with Mild DR 321

instances recognition, where only minute lesions prove indicative of the condition, 322

frequently undetected by the classifiers. Mild DR cases prediction is further challenged 323

by the low quality of fundus photography that additionally complicates the recognition 324

of subtle lesions in the eye. Thus, the study proposed the system that focuses entirely 325

on Mild DR detection among the No DR instances, as unaddressed sufficiently in prior 326

literature. Given the empirical nature of Deep learning, the numerous performance 327

improvement techniques have been applied (i.e. (i) fine-tuning, (ii) data augmentation, 328

and (iii) volume increase). Additional benefit of Deep learning incorporates the 329

automatic features detection that are most discriminative between the classes. Such 330
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approach allows to avoid the shortcomings associated with empirical, and often 331

subjective manual feature extraction methods. Furthermore, the study used the 332

combined datasets from various sources to evaluate system robustness in its ability to 333

adapt to the real-world scenarios. As stated by Wan et al. [16], the single data 334

collection environment poses difficulty in accurate model validation. The system 335

successfully facilitates the streamlining of labour-intensive eye-screening procedure, and 336

serves as an auxiliary diagnostic reference whilst avoiding human subjectivity. 337
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