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Abstract5

Our thoughts arise from coordinated patterns of interactions between brain structures that change6

with our ongoing experiences. High-order dynamic correlations in neural activity patterns reflect different7

subgraphs of the brain’s functional connectome that display homologous lower-level dynamic correlations.8

We tested the hypothesis that high-level cognition is reflected in high-order dynamic correlations in brain9

activity patterns. We developed an approach to estimating high-order dynamic correlations in timeseries10

data, and we applied the approach to neuroimaging data collected as human participants either listened to11

a ten-minute story or listened to a temporally scrambled version of the story. We trained across-participant12

pattern classifiers to decode (in held-out data) when in the session each neural activity snapshot was13

collected. We found that classifiers trained to decode from high-order dynamic correlations yielded the best14

performance on data collected as participants listened to the (unscrambled) story. By contrast, classifiers15

trained to decode data from scrambled versions of the story yielded the best performance when they16

were trained using first-order dynamic correlations or non-correlational activity patterns. We suggest that17

as our thoughts become more complex, they are reflected in higher-order patterns of dynamic network18

interactions throughout the brain.19

Introduction20

A central goal in cognitive neuroscience is to elucidate the neural code: the mapping between (a) mental21

states or cognitive representations and (b) neural activity patterns. One means of testing models of the22

neural code is to ask how accurately that model is able to “translate” neural activity patterns into known23

(or hypothesized) mental states or cognitive representations (e.g., Haxby et al., 2001; Huth et al., 2016, 2012;24

Kamitani & Tong, 2005; Mitchell et al., 2008; Nishimoto et al., 2011; Norman et al., 2006; Pereira et al., 2018;25

Tong & Pratte, 2012). Training decoding models on different types of neural features (Fig. 1a) can also help to26

elucidate which specific aspects of neural activity patterns are informative about cognition and, by extension,27

which types of neural activity patterns might compose the neural code. For example, prior work has used28

region of interest analyses to estimate the anatomical locations of specific neural representations (e.g., Etzel29

et al., 2009), or to compare the relative contributions to the neural code of multivariate activity patterns30
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Figure 1: Neural patterns. a. A space of neural features. Within-brain analyses are carried out within
a single brain, whereas across-brain analyses compare neural patterns across two or more individuals’
brains. Univariate analyses characterize the activities of individual units (e.g., nodes, small networks,
hierarchies of networks, etc.), whereas multivariate analyses characterize the patterns of activity across
units. Order 0 patterns involve individual nodes; order 1 patterns involve node-node interactions; order
2 (and higher) patterns relate to interactions between homologous networks. Each of these patterns may
be static (e.g., averaging over time) or dynamic. b. Summarizing neural patterns. To efficiently compute
with complex neural patterns, it can be useful to characterize the patterns using summary measures.
Dimensionality reduction algorithms project the patterns onto lower-dimensional spaces whose dimensions
reflect weighted combinations or non-linear transformations of the dimensions in the original space. Graph
measures characterize each unit’s participation in its associated network.

versus dynamic correlations between neural activity patterns (e.g., Fong et al., 2019; Manning et al., 2018).31

An emerging theme in this literature is that cognition is mediated by dynamic interactions between brain32

structures (Bassett et al., 2006; Demertzi et al., 2019; Friston, 2000; Grossberg, 1988; Lurie et al., 2018; Mack et33

al., 2017; Preti et al., 2017; Solomon et al., 2019; Sporns & Honey, 2006; Turk-Browne, 2013; Zou et al., 2019).34

Studies of the neural code to date have primarily focused on univariate or multivariate neural pat-35

terns (for review see Norman et al., 2006), or (more recently) on patterns of dynamic first-order correla-36

tions (i.e., interactions between pairs of brain structures; Demertzi et al., 2019; Fong et al., 2019; Lurie et al.,37

2018; Manning et al., 2018; Preti et al., 2017; Zou et al., 2019). What might the future of this line of work38

hold? For example, is the neural code implemented through higher-order interactions between brain struc-39

tures (e.g., see Reimann et al., 2017)? Second-order correlations reflect homologous patterns of correlation.40

2

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2020. ; https://doi.org/10.1101/763821doi: bioRxiv preprint 

https://doi.org/10.1101/763821
http://creativecommons.org/licenses/by-nc-nd/4.0/


In other words, if the dynamic patterns of correlations between two regions, A and B, are similar to those41

between two other regions, C and D, this would be reflected in the second-order correlations between (A–B)42

and (C–D). In this way, second-order correlations identify similarities and differences between subgraphs43

of the brain’s connectome. Analogously, third-order correlations reflect homologies between second-order44

correlations– i.e., homologous patterns of homologous interactions between brain regions. More generally,45

higher-order correlations reflect homologies between patterns of lower-order correlations. We can then ask:46

which “orders” of interaction are most reflective of high-level cognitive processes?47

One reason one might expect to see homologous networks in a dataset is related to the notion that48

network dynamics reflect ongoing neural computations or cognitive processing (e.g., Beaty et al., 2016). If49

the nodes in two brain networks are interacting (within each network) in similar ways then, according to50

our characterization of network dynamics, we refer to the similarities between those patterns of interaction51

as higher-order correlations. When higher-order correlations are themselves changing over time, we can52

also attempt to capture and characterize those high-order dynamics.53

Another central question pertains to the extent to which the neural code is carried by activity patterns54

that directly reflect ongoing cognition (e.g., following Haxby et al., 2001; Norman et al., 2006), versus the55

dynamic properties of the network structure itself, independent of specific activity patterns in any given56

set of regions (e.g., following Bassett et al., 2006). For example, graph measures such as centrality and57

degree (Bullmore & Sporns, 2009) may be used to estimate how a given brain structure is “communicating”58

with other structures, independently of the specific neural representations carried by those structures.59

If one considers a brain region’s position in the network (e.g., its eigenvector centrality) as a dynamic60

property, one can compare how the positions of different regions are correlated, and/or how those patterns61

of correlations change over time. We can also compute higher-order patterns in these correlations to62

characterize homologous subgraphs in the connectome that display similar changes in their constituent63

brain structures’ interactions with the rest of the brain.64

To gain insights into the above aspects of the neural code, we developed a computational framework65

for estimating dynamic high-order correlations in timeseries data. This framework provides an important66

advance, in that it enables us to examine patterns of higher-order correlations that are computationally67

intractable to estimate via conventional methods. Given a multivariate timeseries, our framework pro-68

vides timepoint-by-timepoint estimates of the first-order correlations, second-order correlations, and so69

on. Our approach combines a kernel-based method for computing dynamic correlations in timeseries70

data with a dimensionality reduction step (Fig. 1b) that projects the resulting dynamic correlations into71

a low-dimensional space. We explored two dimensionality reduction approaches: principle components72

analysis (PCA; Pearson, 1901), which preserves an approximately invertible transformation back to the73
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original data (e.g., this follows related approaches taken by Gonzalez-Castillo et al., 2019; McIntosh & Jirsa,74

2019; Toker & Sommer, 2019); and a second non-invertible algorithm for computing dynamic patterns in75

eigenvector centrality (Landau, 1895). This latter approach characterizes correlations between each feature76

dimension’s relative position in the network (at each moment in time) in favor of the specific activity histories77

of different features (also see Betzel et al., 2019; Reimann et al., 2017; Sizemore et al., 2018).78

We validated our approach using synthetic data where the underlying correlations were known. We79

then applied our framework to a neuroimaging dataset collected as participants listened to either an audio80

recording of a ten-minute story, listened to a temporally scrambled version of the story, or underwent a81

resting state scan (Simony et al., 2016). Temporal scrambling has been used in a growing number of studies,82

largely by Uri Hasson’s group, to identify brain regions that are sensitive to higher-order and longer-83

timescale information (e.g., cross-sensory integration, rich narrative meaning, complex situations, etc.)84

versus regions that are primarily sensitive to low-order (e.g., sensory) information. For example, Hasson et85

al. (2008) argues that when brain areas are sensitive to fine versus coarse temporal scrambling, this indicates86

that they are “higher order” in the sense that they process contextual information pertaining to further-87

away timepoints. By contrast, low-level regions, such as primary sensory cortices, do not meaningfully88

change their responses (after correcting for presentation order) even when the stimulus is scrambled at fine89

timescales.90

We used a subset of the story listening and rest data to train across-participant classifiers to decode91

listening times (of groups of participants) using a blend of neural features (comprising neural activity92

patterns, as well as different orders of dynamic correlations between those patterns that were inferred93

using our computational framework). We found that both the PCA-based and eigenvector centrality-based94

approaches yielded neural patterns that could be used to decode accurately (i.e., well above chance). Both95

approaches also yielded the best decoding accuracy for data collected during (intact) story listening when96

high-order (PCA: second-order; eigenvector centrality: fourth-order) dynamic correlation patterns were97

included as features. When we trained classifiers on the scrambled stories or resting state data, only98

(relatively) lower-order dynamic patterns were informative to the decoders. Taken together, our results99

indicate that high-level cognition is supported by high-order dynamic patterns of communication between100

brain structures.101

Results102

We sought to understand whether high-level cognition is reflected in dynamic patterns of high-order103

correlations. To that end, we developed a computational framework for estimating the dynamics of stimulus-104

4

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2020. ; https://doi.org/10.1101/763821doi: bioRxiv preprint 

https://doi.org/10.1101/763821
http://creativecommons.org/licenses/by-nc-nd/4.0/


driven high-order correlations in multivariate timeseries data (see Dynamic inter-subject functional connectivity105

(DISFC) and Dynamic higher-order correlations). We evaluated the efficacy of this framework at recovering106

known patterns in several synthetic datasets (see Synthetic data: simulating dynamic first-order correlations and107

Synthetic data: simulating dynamic higher-order correlations). We then applied the framework to a public fMRI108

dataset collected as participants listened to an auditorily presented story, listened to a temporally scrambled109

version of the story, or underwent a resting state scan (see Functional neuroimaging data collected during story110

listening). We used the relative decoding accuracies of classifiers trained on different sets of neural features111

to estimate which types of features reflected ongoing cognitive processing.112

Recovering known dynamic correlations from synthetic data113

Recovering dynamic first-order correlations114

We generated synthetic datasets that differed in how the underlying first-order correlations changed over115

time. For each dataset, we applied Equation 4 with a variety of kernel shapes and widths. We assessed how116

well the true underlying correlations at each timepoint matched the recovered correlations (Fig. 2). For every117

kernel and dataset we tested, our approach recovered the correlation dynamics we embedded into the data.118

However, the quality of these recoveries varied across different synthetic datasets in a kernel-dependent119

way.120

In general, wide monotonic kernel shapes (Laplace, Gaussian), and wider kernels (within a shape),121

performed best when the correlations varied gradually from moment-to-moment (Figs. 2a, c, and d). In the122

extreme, as the rate of change in correlations approaches 0 (Fig. 2a), an infinitely wide kernel would exactly123

recover the Pearson’s correlation (e.g., compare Eqns. 1 and 4).124

When the correlation dynamics were unstructured in time (Fig. 2b), a Dirac δ kernel (infinitely narrow)125

performed best. This is because, when every timepoint’s correlations are independent of the correlations at126

every other timepoint, averaging data over time dilutes the available signal. Following a similar pattern,127

holding kernel shape fixed, narrower kernel parameters better recovered randomly varying correlations.128

Recovering dynamic higher-order correlations129

Following our approach to evaluating our ability to recover known dynamic first-order correlations from130

synthetic data, we generated an analogous second set of synthetic datasets that we designed to exhibit131

known dynamic first-order and second-order correlations (see Synthetic data: simulating dynamic higher-132

order correlations). We generated a total of 40 datasets that varied in how the first-order and second-order133

correlations changed over time. We then repeatedly applied Equation 4 using the overall best-performing134
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Figure 2: Recovering known dynamic first-order correlations from synthetic data. Each panel displays
the average correlations between the vectorized upper triangles of the recovered correlation matrix at
each timepoint and either the true underlying correlation at each timepoint or a reference correlation
matrix. (The averages are taken across 10 different randomly generated synthetic datasets of the given
category.) Error ribbons denote 95% confidence intervals (taken across datasets). Different colors denote
different kernel shapes, and the shading within each color family denotes the kernel width parameter. For
a complete description of each synthetic dataset, see Synthetic data: simulating dynamic first-order correlations.
a. Constant correlations. These datasets have a stable (unchanging) underlying correlation matrix. b.
Random correlations. These datasets are generated using a new independently drawn correlation matrix
at each new timepoint. c. Ramping correlations. These datasets are generated by smoothly varying the
underlying correlations between the randomly drawn correlation matrices at the first and last timepoints.
The left panel displays the correlations between the recovered dynamic correlations and the underlying
ground truth correlations. The middle panel compares the recovered correlations with the first timepoint’s
correlation matrix. The right panel compares the recovered correlations with the last timepoint’s correlation
matrix. d. Event-based correlations. These datasets are each generated using five randomly drawn
correlation matrices that each remain stable for a fifth of the total timecourse. The left panel displays the
correlations between the recovered dynamic correlations and the underlying ground truth correlations. The
right panels compare the recovered correlations with the correlation matrices unique to each event. The
vertical lines denote event boundaries.
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EventRampingRandomConstant

Figure 3: Recovery of simulated first-order and second-order dynamic correlations. Each panel displays
the average correlations between the vectorized upper triangles of the recovered first-order and second-
order correlation matrices and the true (simulated) first-order and second order correlation matrices at each
timepoint and for each synthetic dataset. (The averages are taken across 10 different randomly generated
synthetic datasets of the given category.) Error ribbons denote 95% confidence intervals (taken across
datasets). For a complete description of each synthetic dataset, see Synthetic data: simulating dynamic
higher-order correlations. All estimates represented in this figure were computed using a Laplace kernel
(width = 20). a. Constant correlations. These datasets have stable (unchanging) underlying second-order
correlation matrices. b. Random correlations. These datasets are generated using a new independently
drawn second-order correlation matrix at each timepoint. c. Ramping correlations. These datasets are
generated by smoothly varying the underlying second-order correlations between the randomly drawn
correlation matrices at the first and last timepoints. d. Event-based correlations. These datasets are each
generated using five randomly drawn second-order correlation matrices that each remain stable for a fifth
of the total timecourse. The vertical lines denote event boundaries.

kernel from our first-order tests (a Laplace kernel with a width of 20; Fig. 2) to assess how closely the135

recovered dynamic correlations matched the dynamic correlations we had embedded into the datasets.136

Overall, we found that we could reliably recover both first-order and second-order correlations from137

the synthetic data (Fig. 3). When the correlations were stable for longer intervals, or changed gradually138

(constant, ramping, and event datasets), recovery performance was relatively high, and we were better able139

to recover dynamic first-order correlations than second-order correlations. We expected that this would140

happen, given that errors in our estimation procedure at lower orders necessarily propagate to higher orders141

(since lower-order correlations are used to estimate higher-order correlations). Interestingly, we also found142

that when the correlations were particularly unstable (random datasets), we better recovered second-order143

correlations.144

Taken together, our explorations using synthetic data indicated that we are able to partially, but not145

perfectly, recover ground truth dynamic first-order and second-order correlations. This suggests that our146

modeling approach provides a meaningful (if noisy) estimate of high-order correlations. We next turned147

to analyses of human fMRI data to examine whether the recovered dynamics might reflect the dynamics of148

human cognition during a naturalistic story-listening task.149
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Cognitively relevant dynamic high-order correlations in fMRI data150

We used across-participant temporal decoders to identify cognitively relevant neural patterns in fMRI data151

(see Forward inference and decoding accuracy). The dataset we examined (collected by Simony et al., 2016)152

comprised four experimental conditions that exposed participants to stimuli that varied systematically in153

how cognitively engaging they were. The intact experimental condition had participants listen to an audio154

recording of a 10-minute story. The paragraph-scrambled experimental condition had participants listen to a155

temporally scrambled version of the story, where the paragraphs occurred out of order (but where the same156

total set of paragraphs were presented over the full listening interval). All participants in this condition157

experienced the scrambled paragraphs in the same order. The word-scrambled experimental condition had158

participants listen to a temporally scrambled version of the story where the words in the story occurred in a159

random order. All participants in the word condition experienced the scrambled words in the same order.160

Finally, in a rest experimental condition, participants lay in the scanner with no overt stimulus, with their161

eyes open (blinking as needed). This public dataset provided a convenient means of testing our hypothesis162

that different levels of cognitive processing and engagement are reflected in different orders of brain activity163

dynamics.164

In brief, we computed timeseries of dynamic high-order correlations that were similar across participants165

in each of two randomly assigned groups: a training group and a test group. We then trained classifiers166

on the training group’s data to match each sample from the test group with a stimulus timepoint. Each167

classifier comprised a weighted blend of neural patterns that reflected up to nth-order dynamic correlations168

(see Feature weighting and testing, Fig. 10). We repeated this process for n ∈ {0, 1, 2, ..., 10}. Our examinations169

of synthetic data suggested that none of the kernels we examined were “universal” in the sense of optimally170

recovering underlying correlations regardless of the temporal structure of those correlations. We found a171

similar pattern in the (real) fMRI data, whereby different kernels yielded different decoding accuracies, but172

no single kernel emerged as the clear “best.” In our analyses of neural data, we therefore averaged our173

decoding results over a variety of kernel shapes and widths in order to identify results that were robust to174

specific kernel parameters (see Identifying robust decoding results).175

Our approach to estimating dynamic high-order correlations entails mapping the high-dimensional176

feature space of correlations (represented by a T by O(K2) matrix) onto a lower-dimensional feature space177

(represented by a T by K matrix). We carried out two sets of analyses that differed in how this mapping was178

computed. The first set of analyses used PCA to find a low-dimensional embedding of the original dynamic179

correlation matrices (Fig. 4a,b). The second set of analyses characterized correlations in dynamics of each180

feature’s eigenvector centrality, but did not preserve the underlying activity dynamics (Fig. 4c,d).181
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Figure 4: Across-participant timepoint decoding accuracy varies with correlation order and cognitive
engagement. a. Decoding accuracy as a function of order: PCA. Order (x-axis) refers to the maximum order
of dynamic correlations that were available to the classifiers (see Feature weighting and testing). The reported
across-participant decoding accuracies are averaged over all kernel shapes and widths (see Identifying
robust decoding results). The y-values are displayed relative to chance accuracy (intact: 1

300 ; paragraph:
1

272 ; word: 1
300 ; rest: 1

400 ; these chance accuracies were subtracted from the observed accuracies to obtain
the relative accuracies reported on the y-axis). The error ribbons denote 95% confidence intervals across
cross-validation folds (i.e., random assignments of participants to the training and test sets). The colors
denote the experimental condition. Arrows denote sets of features that yielded reliably higher (upward
facing) or lower (downward facing) decoding accuracy than the mean of all other features (via a two-tailed
t-test, thresholded at p < 0.05). Figure 5 displays additional comparisons between the decoding accuracies
achieved using different sets of neural features. The circled values represent the maximum decoding
accuracy within each experimental condition. b. Normalized timepoint decoding accuracy as a function
of order: PCA. This panel displays the same results as Panel a, but here each curve has been normalized
to have a maximum value of 1 and a minimum value of 0 (including the upper and lower bounds of the
respective 95% confidence intervals). Panels a and b used PCA to project each high-dimensional pattern
of dynamic correlations onto a lower-dimensional space. c. Timepoint decoding accuracy as a function of
order: eigenvector centrality. This panel is in the same format as Panel a, but here eigenvector centrality has
been used to project the high-dimensional patterns of dynamic correlations onto a lower-dimensional space.
d. Normalized timepoint decoding accuracy as a function of order: eigenvector centrality. This panel is
in the same format as Panel b, but here eigenvector centrality has been used to project the high-dimensional
patterns of dynamic correlations onto a lower-dimensional space. See Figures S1 and S2 for decoding results
broken down by kernel shape and width, respectively.
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Figure 5: Statistical summary of decoding accuracies for different neural features. Each column of
matrices displays decoding results for one experimental condition (intact, paragraph, word, and rest). We
considered dynamic activity patterns (order 0) and dynamic correlations at different orders (order > 0).
We used two-tailed t-tests to compare the distributions of decoding accuracies obtained using each pair of
features. The distributions for each feature reflect the set of average decoding accuracies (across all kernel
parameters), obtained for each random assignment of training and test groups. In the upper triangles of
each matrix, warmer colors (positive t-values) indicate that the neural feature indicated in the given row
yielded higher accuracy than the feature indicated in the given column. Cooler colors (negative t-values)
indicate that the feature in the given row yielded lower decoding accuracy than the feature in the given
column. The lower triangles of each map denote the corresponding p-values for the t-tests. The diagonal
entries display the relative average optimized weight given to each type of feature in a decoder that included
all feature types (see Feature weighting and testing).
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Both sets of temporal decoding analyses yielded qualitatively similar results for the auditory (non-rest)182

conditions of the experiment (Fig. 4: pink, green, and teal lines; Fig. 5: three leftmost columns). The highest183

decoding accuracy for participants who listened to the intact (unscrambled) story was achieved using high-184

order dynamic correlations (PCA: second-order; eigenvector-centrality: fourth-order). Scrambled versions185

of the story were best decoded by lower-order correlations (PCA/paragraph: first-order; PCA/word: order186

zero; eigenvector centrality/paragraph: order zero; eigenvector centrality/word: order zero). The two sets187

of analyses yielded different decoding results on resting state data (Fig. 4: purple lines; Fig. 5: rightmost188

column). We note that, while the resting state times could be decoded reliably, the accuracies were only very189

slightly above chance. We speculate that the decoders might have picked up on attentional drift, boredom,190

or tiredness; we hypothesize that these all increased throughout the resting state scan. The decoders might191

be picking up on aspects of these loosely defined cognitive states that are common across individuals. The192

PCA-based approach achieved the highest resting state decoding accuracy using order zero features (non-193

correlational, activation-based), whereas the eigenvector centrality-based approach achieved the highest194

resting state decoding accuracy using second-order correlations. Taken together, these analyses indicate195

that high-level cognitive processing (while listening to the intact story) is reflected in the dynamics of high-196

order correlations in brain activity, whereas lower-level cognitive processing (while listening to scrambled197

versions of the story that lack rich meaning) is reflected in the dynamics of lower-order correlations and198

non-correlational activity dynamics. Further, these patterns are associated both with the underlying activity199

patterns (characterized using PCA) and also with the changing relative positions that different brain areas200

occupy in their associated networks (characterized using eigenvector centrality).201

Having established that patterns of high-order correlations are informative to decoders, we next won-202

dered which specific networks of brain regions contributed most to these patterns. As a representative203

example, we selected the kernel parameters that yielded decoding accuracies that were the most strongly204

correlated (across conditions and orders) with the average accuracies across all of the kernel parameters we205

examined. Using Figure 4c as a template, the best-matching kernel was a Laplace kernel with a width of 50206

(Fig. 9d; also see Fig. S7). We used this kernel to compute a single K by K nth-order DISFC matrix for each207

experimental condition. We then used Neurosynth (Rubin et al., 2017) to compute the terms most highly208

associated with the most strongly correlated pairs of regions in each of these matrices (Fig. 6; see Reverse209

inference).210

For all of the story listening conditions (intact, paragraph, and word; top three rows of Fig. 6), we211

found that first- and second-order correlations were most strongly associated with auditory and speech212

processing areas. During intact story listening, third-order correlations reflected integration with visual213

areas, and fourth-order correlations reflected integration with areas associated with high-level cognition214
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Figure 6: Top terms associated with the most strongly correlated nodes at each order. Each color corre-
sponds to one order of inter-subject functional correlations. To calculate the dynamic correlations, eigen-
vector centrality has been used to project the high-dimensional patterns of dynamic correlations onto a
lower-dimensional space at each previous order, which allows us the map the brain regions at each order by
retaining the features of the original space. The inflated brain plots display the locations of the endpoints
of the 10 strongest (absolute value) correlations at each order, thresholded at 0.999, and projected onto the
cortical surface (Combrisson et al., 2019). The lists of terms on the right display the top five Neurosynth
terms (Rubin et al., 2017) decoded from the corresponding brain maps for each order. Each row displays
data from a different experimental condition. Additional maps and their corresponding Neurosynth terms
may be found in the Supplementary materials (intact: Fig. S3; paragraph: Fig. S4; word: Fig. S5; rest: Fig. S6).
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and cognitive control, such as the ventrolateral prefrontal cortex. However, when participants listened to215

temporally scrambled stories, these higher-order correlations instead involved interactions with additional216

regions associated with speech and semantic processing (second and third rows of Fig. 6). By contrast, we217

found a much different set of patterns in the resting state data (Fig. 6, bottom row). First-order resting state218

correlations were most strongly associated with regions involved in counting and numerical understand-219

ing. Second-order resting state correlations were strongest in visual areas; third-order correlations were220

strongest in task-positive areas; and fourth-order correlations were strongest in regions associated with221

autobiographical and episodic memory. We carried out analogous analyses to create maps (and decode222

the top associated Neurosynth terms) for up to fifteenth-order correlations (Figs. S3, S4, S5, and S6). Of223

note, examining fifteenth-order correlations between 700 nodes using conventional methods would have224

required storing roughly 7002×15

2 ≈ 1.13 × 1085 floating point numbers– assuming single-precision (32 bits225

each), this would require roughly 32 times as many bits as there are molecules in the known universe!226

Although these fifteenth-order correlations do appear (visually) to have some well-formed structure, we227

provide this latter example primarily as a demonstration of the efficiency and scalability of our approach.228

Discussion229

We tested the hypothesis that high-level cognition is reflected in high-order brain network dynamics (e.g.,230

see Reimann et al., 2017; Solomon et al., 2019). We examined high-order network dynamics in functional231

neuroimaging data collected during a story listening experiment. When participants listened to an auditory232

recording of the story, participants exhibited similar high-order brain network dynamics. By contrast,233

when participants instead listened to temporally scrambled recordings of the story, only lower-order brain234

network dynamics were similar across participants. Our results indicate that higher orders of network235

interactions support higher-level aspects of cognitive processing (Fig. 7).236

The notion that cognition is reflected in (and possibly mediated by) patterns of first-order network237

dynamics has been suggested by or proposed in myriad empirical studies and reviews (e.g., Chang &238

Glover, 2010; Demertzi et al., 2019; Fong et al., 2019; Gonzalez-Castillo et al., 2019; Liégeois et al., 2019; Lurie239

et al., 2018; Manning et al., 2018; Park et al., 2018; Preti et al., 2017; Roy et al., 2019; Turk-Browne, 2013;240

Zou et al., 2019). Our study extends this line of work by finding cognitively relevant higher-order network241

dynamics that reflect ongoing cognition. Our findings also complement other work that uses graph theory242

and topology to characterize how brain networks reconfigure during cognition (e.g., Bassett et al., 2006;243

Betzel et al., 2019; McIntosh & Jirsa, 2019; Reimann et al., 2017; Sizemore et al., 2018; Toker & Sommer, 2019;244

Zheng et al., 2019).245
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Figure 7: Proposed high-order network dynamics underlying high-level cognition during story listen-
ing. Schematic depicts higher orders of network interactions supporting higher-level aspects of cognitive
processing. When tasks evoke richer, deeper, and/or higher-level processing, this is reflected in higher-order
network interactions.

An open question not addressed by our study pertains to how different structures integrate incom-246

ing information with different time constants. For example, one line of work suggests that the cortical247

surface comprises a structured map such that nearby brain structures process incoming information at248

similar timescales. Low-level sensory areas integrate information relatively quickly, whereas higher-level249

regions integrate information relatively slowly (Baldassano et al., 2017; Chien & Honey, 2019; Hasson et250

al., 2015, 2008; Honey et al., 2012; Lerner et al., 2014, 2011). A similar hierarchy appears to play a role in251

predicting future events (C. S. Lee et al., 2020). Other related work in human and mouse brains indicates252

that the temporal response profile of a given brain structure may relate to how strongly connected that253

structure is with other brain areas (Fallon et al., 2019). Further study is needed to understand the role of254

temporal integration at different scales of network interaction, and across different anatomical structures.255

Importantly, our analyses do not speak to the physiological basis of higher-order dynamics, and could256

reflect nonlinearities, chaotic patterns, non-stationarities, and/or multistability, etc. However, our decoding257

analyses do indicate that higher-order dynamics are consistent across individuals, and therefore unlikely to258

reflect non-stimulus-driven dynamics that are unlikely to be similar across individuals.259

Another potential limitation of our approach relates to recent work suggesting that the brain undergoes260

rapid state changes, for example across event boundaries (e.g., Baldassano et al., 2017). Shappell et al.261

(2019) used hidden semi-Markov models to estimate state-specific network dynamics (also see Vidaurre et262

al., 2018). Our general approach might be extended by considering putative state transitions. For example,263

rather than weighting all timepoints using a similar kernel (Eqn. 4), the kernel function could adapt on a264

timepoint-by-timepoint basis such that only timepoints determined to be in the same “state” were given265

non-zero weight.266

Identifying high-order network dynamics associated with high-level cognition required several impor-267
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tant methods advances. First, we used kernel-based dynamic correlations to extended the notion of (static)268

inter-subject functional connectivity (Simony et al., 2016) to a dynamic measure of inter-subject functional269

connectivity (DISFC) that does not rely on sliding windows (e.g., as in Manning et al., 2018), and that may270

be computed at individual timepoints. This allowed us to precisely characterize stimulus-evoked network271

dynamics that were similar across individuals. Second, we developed a computational framework for272

efficiently and scalably estimating high-order dynamic correlations. Our approach uses dimensionality273

reduction algorithms and graph measures to obtain low-dimensional embeddings of patterns of network274

dynamics. Third, we developed an analysis framework for identifying robust decoding results by carrying275

out our analyses using a range of parameter values and identifying which results were robust to specific276

parameter choices. By showing that high-level cognition is reflected in high-order network dynamics, we277

have elucidated the next step on the path towards understanding the neural basis of cognition.278

Methods279

Our general approach to efficiently estimating high-order dynamic correlations comprises four general280

steps (Fig. 8). First, we derive a kernel-based approach to computing dynamic pairwise correlations in281

a T (timepoints) by K (features) multivariate timeseries, X0. This yields a T by O(K2) matrix of dynamic282

correlations, Y1, where each row comprises the upper triangle and diagonal of the correlation matrix at283

a single timepoint, reshaped into a row vector (this reshaped vector is
(

K2
−K
2 + K

)
-dimensional). Second,284

we apply a dimensionality reduction step to project the matrix of dynamic correlations back onto a K-285

dimensional space. This yields a T by K matrix, X1, that reflects an approximation of the dynamic correlations286

reflected in the original data. Third, we use repeated applications of the kernel-based dynamic correlation287

step to Xn and the dimensionality reduction step to the resulting Yn+1 to estimate high-order dynamic288

correlations. Each application of these steps to a T by K time series Xn yields a T by K matrix, Xn+1, that289

reflects the dynamic correlations between the columns of Xn. In this way, we refer to n as the order of the290

timeseries, where X0 (order 0) denotes the original data and Xn denotes (approximated) nth-order dynamic291

correlations between the columns of X0. Finally, we use a cross-validation–based decoding approach to292

evaluate how well information contained in a given order (or weighted mixture of orders) may be used293

to decode relevant cognitive states. If including a given Xn in the feature set yields higher classification294

accuracy on held-out data, we interpret this as evidence that the given cognitive states are reflected in295

patterns of nth-order correlations.296

All of the code used to produce the figures and results in this manuscript, along with links to the297

corresponding datasets, may be found at github.com/ContextLab/timecorr-paper. In addition, we have298
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Figure 8: Estimating dynamic high-order correlations. Given a T by K matrix of multivariate timeseries
data, Xn (where n ∈N,n ≥ 0), we use Equation 4 to compute a timeseries of K by K correlation matrices, Yn+1.
We then approximate Yn+1 with the T by K matrix Xn+1. This process may be repeated to scalably estimate
iteratively higher-order correlations in the data. Note that the transposes of Xn and Xn+1 are displayed in
the figure for compactness.

released a Python toolbox for computing dynamic high-order correlations in timeseries data; our toolbox299

may be found at timecorr.readthedocs.io.300

Kernel-based approach for computing dynamic correlations301

Given a T by K matrix of observations, X, we can compute the (static) Pearson’s correlation between any

pair of columns, X(·, i) and X(·, j) using (Pearson, 1901):

corr(X(·, i),X(·, j)) =

∑T
t=1

(
X(t, i) − X̄(·, i)

) (
X(t, j) − X̄(·, j)

)√∑T
t=1 σ

2
X(·,i)σ

2
X(·, j)

, where (1)

X̄(·, k) =
1
T

T∑
t=1

X(t, k), and (2)

σ2
X(·,k) =

1
T

T∑
t=1

(
X(t, k) − X̄(·, k)

)2 (3)

We can generalize this formula to compute time-varying correlations by incorporating a kernel function that302

takes a time t as input, and returns how much the observed data at each timepoint τ ∈ [−∞,∞] contributes303

to the estimated instantaneous correlation at time t (Fig. 9; also see Allen et al., 2012, for a similar approach).304

305
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Figure 9: Examples of kernel functions. Each panel displays per-timepoint weights for a kernel centered at
t = 50, evaluated at 100 timepoints (τ ∈ [1, ..., 100]). a. Uniform kernel. The weights are timepoint-invariant;
observations at all timepoints are weighted equally, and do not change as a function of τ. This is a special
case kernel function that reduces dynamic correlations to static correlations. b. Dirac δ kernel. Only the
observation at timepoint t is given a non-zero weight (of 1). c. Gaussian kernels. Each kernel’s weights fall
off in time according to a Gaussian probability density function centered on time t. Weights derived using
several different example width parameters (σ2) are displayed. d. Laplace kernels. Each kernel’s weights
fall off in time according to a Laplace probability density function centered on time t. Weights derived
using several different example width parameters (b) are displayed. e. Mexican hat (Ricker wavelet)
kernels. Each kernel’s weights fall off in time according to a Ricker wavelet centered on time t. This
function highlights the contrasts between local versus surrounding activity patterns in estimating dynamic
correlations. Weights derived using several different example width parameters (σ) are displayed.

Given a kernel function κt(·) for timepoint t, evaluated at timepoints τ ∈ [1, ...,T], we can update the

static correlation formula in Equation 1 to estimate the instantaneous correlation at timepoint t:

timecorrκt

(
X(·, i),X(·, j)

)
=

∑T
τ=1

(
X(τ, i) − X̃κt (·, i)

) (
X(τ, j) − X̃κt (·, j)

)
√∑T

τ=1 σ̃
2
κt

(X(·, i))̃σ2
κt

(X(·, j))
, where (4)

X̃κt (·, k) =

T∑
τ=1

κt(τ)X(τ, k), (5)

σ̃2
κt

(X(·, k)) =

T∑
τ=1

(
X(τ, k) − X̃κt (·, k)

)2
. (6)

Here timecorrκt (X(·, i),X(·, j)) reflects the correlation at time t between columns i and j of X, estimated using306

the kernel κt. We evaluate Equation 4 in turn for each pair of columns in X and for kernels centered on each307

timepoint in the timeseries, respectively, to obtain a T by K by K timeseries of dynamic correlations, Y. For308

convenience, we then reshape the upper triangles and diagonals of each timepoint’s symmetric correlation309

matrix into a row vector to obtain an equivalent T by
(

K2
−K
2 + K

)
matrix.310

Dynamic inter-subject functional connectivity (DISFC)311

Equation 4 provides a means of taking a single observation matrix, Xn and estimating the dynamic cor-

relations from moment to moment, Yn+1. Suppose that one has access to a set of multiple observation

matrices that reflect the same phenomenon. For example, one might collect neuroimaging data from several

experimental participants, as each participant performs the same task (or sequence of tasks). Let X1
n, X2

n,
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..., XP
n reflect the T by K observation matrices (n = 0) or reduced correlation matrices (n > 0) for each of P

participants in an experiment. We can use inter-subject functional connectivity (ISFC; Simony & Chang, 2020;

Simony et al., 2016) to compute the stimulus-driven correlations reflected in the multi-participant dataset

at a given timepoint t using:

C̄(t) = M

R

 1
2P

P∑
p=1

Z
(
Yp

n+1(t)
)>

+ Z
(
Yp

n+1(t)
)
 , (7)

where M extracts and vectorizes the upper triangle and diagonal of a symmetric matrix, Z is the Fisher

z-transformation (Zar, 2010):

Z(r) =
log(1 + r) − log(1 − r)

2
, (8)

R is the inverse of Z:

R(z) =
exp(2z − 1)
exp(2z + 1)

, (9)

and Yp
n+1(t) denotes the correlation matrix at timepoint t (Eqn. 4) between each column of Xp

n and each

column of the average Xn from all other participants, X̄\pn :

X̄\pn =
1

P − 1

∑
q∈\p

Xq
n, (10)

where \p denotes the set of all participants other than participant p. In this way, the T by
(

K2
−K
2 + K

)
DISFC312

matrix C̄ provides a time-varying extension of the ISFC approach developed by Simony et al. (2016).313

Low-dimensional representations of dynamic correlations314

Given a T by
(

K2
−K
2 + K

)
matrix of nth-order dynamic correlations, Yn, we propose two general approaches315

to computing a T by K low-dimensional representation of those correlations, Xn. The first approach uses316

dimensionality reduction algorithms to project Yn onto a K-dimensional space. The second approach uses317

graph measures to characterize the relative positions of each feature (k ∈ [1, ...,K]) in the network defined318

by the correlation matrix at each timepoint.319
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Dimensionality reduction-based approaches to computing Xn320

The modern toolkit of dimensionality reduction algorithms include Principal Components Analysis (PCA;321

Pearson, 1901), Probabilistic PCA (PPCA; Tipping & Bishop, 1999), Exploratory Factor Analysis (EFA;322

Spearman, 1904), Independent Components Analysis (ICA; Comon et al., 1991; Jutten & Herault, 1991),323

t-Stochastic Neighbor Embedding (t-SNE; van der Maaten & Hinton, 2008), Uniform Manifold Approxi-324

mation and Projection (UMAP; McInnes et al., 2018), non-negative matrix factorization (NMF; D. D. Lee325

& Seung, 1999), Topographic Factor Analysis (TFA; Manning et al., 2014), Hierarchical Topographic Fac-326

tor analysis (HTFA; Manning et al., 2018), Topographic Latent Source Analysis (TLSA; Gershman et al.,327

2011), dictionary learning (J. Mairal et al., 2009; J. B. Mairal et al., 2009), and deep auto-encoders (Hinton328

& Salakhutdinov, 2006), among others. While complete characterizations of each of these algorithms is329

beyond the scope of the present manuscript, the general intuition driving these approaches is to compute330

the T by K matrix, X, that is closest to the original T by J matrix, Y, where (typically) K � J. The different331

approaches place different constraints on what properties X must satisfy and which aspects of the data are332

compared (and how) in order to optimize how well X approximates Y.333

Applying dimensionality reduction algorithms to Y yields an X whose columns reflect weighted combi-334

nations (or nonlinear transformations) of the original columns of Y. This has two main consequences. First,335

with each repeated dimensionality reduction, the resulting Xn has lower and lower fidelity (with respect to336

what the “true” Yn might have looked like without using dimensionality reduction to maintain tractability).337

In other words, computing Xn is a lossy operation. Second, whereas each column of Yn may be mapped338

directly onto specific pairs of columns of Xn−1, the columns of Xn reflect weighted combinations and/or339

nonlinear transformations of the columns of Yn. Many dimensionality reduction algorithms are invertible340

(or approximately invertible). However, attempting to map a given Xn back onto the original feature space341

of X0 will usually require O(TK2n
) space and therefore becomes intractable as n or K grow large.342

Graph measure approaches to computing Xn343

The above dimensionality reduction approaches to approximating a given Yn with a lower-dimensional344

Xn preserve a (potentially recombined and transformed) mapping back to the original data in X0. We also345

explore graph measures that instead characterize each feature’s relative position in the broader network of346

interactions and connections. To illustrate the distinction between the two general approaches we explore,347

suppose a network comprises nodes A and B, along with several other nodes. If A and B exhibit uncorrelated348

activity patterns, then by definition the functional connection (correlation) between them will be close to349

0. However, if A and B each interact with other nodes in similar ways, we might attempt to capture those350
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similarities between A’s and B’s interactions with those other members of the network.351

In general, graph measures take as input a matrix of interactions (e.g., using the above notation, a K352

by K correlation matrix or binarized correlation matrix reconstituted from a single timepoint’s row of Y),353

and return as output a set of K measures describing how each node (feature) sits within that correlation354

matrix with respect to the rest of the population. Widely used measures include betweenness centrality (the355

proportion of shortest paths between each pair of nodes in the population that involves the given node356

in question; e.g., Barthélemy, 2004; Freeman, 1977; Geisberger et al., 2008; Newman, 2005; Opsahl et al.,357

2010); diversity and dissimilarity (characterizations of how differently connected a given node is from others358

in the population; e.g., Lin, 2009; Rao, 1982; Ricotta & Szeidl, 2006); eigenvector centrality and pagerank359

centrality (measures of how influential a given node is within the broader network; e.g., Bonacich, 2007;360

Halu et al., 2013; Lohmann et al., 2010; Newman, 2008); transfer entropy and flow coefficients (a measure of361

how much information is flowing from a given node to other nodes in the network; e.g., Honey et al., 2007;362

Schreiber, 2000); k-coreness centrality (a measure of the connectivity of a node within its local subgraph; e.g.,363

Alvarez-Hamelin et al., 2005; Christakis & Fowler, 2010); within-module degree (a measure of how many364

connections a node has to its close neighbors in the network; e.g., Rubinov & Sporns, 2010); participation365

coefficient (a measure of the diversity of a node’s connections to different subgraphs in the network; e.g.,366

Rubinov & Sporns, 2010); and subgraph centrality (a measure of a node’s participation in all of the network’s367

subgraphs; e.g., Estrada & Rodrı́guez-Velázquez, 2005); among others.368

For a given graph measure, η : RK×K
→ RK, we can use η to tranform each row of Yn in a way that369

characterizes the corresponding graph properties of each column. This results in a new T by K matrix,370

Xn, that reflects how the features reflected in the columns of Xn−1 participate in the network during each371

timepoint (row).372

Dynamic higher-order correlations373

Because Xn has the same shape as the original data X0, approximating Yn with a lower-dimensional Xn374

enables us to estimate high-order dynamic correlations in a scalable way. Given a T by K input matrix, the375

output of Equation 4 requires O(TK2) space to store. Repeated applications of Equation 4 (i.e., computing376

dynamic correlations between the columns of the outputted dynamic correlation matrix) each require377

exponentially more space; in general the nth-order dynamic correlations of a T by K timeseries occupies378

O(TK2n
) space. However, when we approximate or summarize the output of Equation 4 with a T by K matrix379

(as described above), it becomes feasible to compute even very high-order correlations in high-dimensional380

data. Specifically, approximating the nth-order dynamic correlations of a T by K timeseries requires only381
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O(TK2) additional space– the same as would be required to compute first-order dynamic correlations. In382

other words, the space required to store n + 1 multivariate timeseries reflecting up to nth order correlations383

in the original data scales linearly with n using our approach (Fig. 8).384

Data385

We examined two types of data: synthetic data and human functional neuroimaging data. We constructed386

and leveraged the synthetic data to evaluate our general approach (for a related validation approach see387

Thompson et al., 2018). Specifically, we tested how well Equation 4 could be used to recover known dynamic388

correlations using different choices of kernel (κ; Fig. 9), for each of several synthetic datasets that exhibited389

different temporal properties. We also simulated higher-order correlations and tested how well Equation 4390

could recover these correlations using the best kernel from the previous synthetic data analyses. We then391

applied our approach to a functional neuroimaging dataset to test the hypothesis that ongoing cognitive392

processing is reflected in high-order dynamic correlations. We used an across-participant classification test393

to estimate whether dynamic correlations of different orders contain information about which timepoint in394

a story participants were listening to.395

Synthetic data: simulating dynamic first-order correlations396

We constructed a total of 40 different multivariate timeseries, collectively reflecting a total of 4 qualitatively397

different patterns of dynamic first-order correlations (i.e., 10 datasets reflecting each type of dynamic pat-398

tern). Each timeseries comprised 50 features (dimensions) that varied over 300 timepoints. The observations399

at each timepoint were drawn from a zero-mean multivariate Gaussian distribution with a covariance matrix400

defined for each timepoint as described below. We drew the observations at each timepoint independently401

from the draws at all other timepoints; in other words, for each observation st ∼ N (0,Σt) at timepoint t,402

p(st) = p(st|s\t).403

Constant. We generated data with stable underlying correlations to evaluate how Equation 4 characterized

correlation “dynamics” when the ground truth correlations were static. We constructed 10 multivariate

timeseries whose observations were each drawn from a single (stable) Gaussian distribution. For each

dataset (indexed by m), we constructed a random covariance matrix, Σm:

Σm = CC>, where (11)

C(i, j) ∼ N(0, 1), and where (12)
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i, j ∈ [1, 2, ..., 50]. In other words, all of the observations (for each of the 300 timepoints) within each dataset404

were drawn from a multivariate Gaussian distribution with the same covariance matrix, and the 10 datasets405

each used a different covariance matrix.406

Random. We generated a second set of 10 synthetic datasets whose observations at each timepoint were407

drawn from a Gaussian distribution with a new randomly constructed (using Eqn. 11) covariance matrix.408

Because each timepoint’s covariance matrix was drawn independently from the covariance matrices for all409

other timepoints, these datasets provided a test of reconstruction accuracy in the absence of any meaningful410

underlying temporal structure in the dynamic correlations underlying the data.411

Ramping. We generated a third set of 10 synthetic datasets whose underlying correlations changed grad-

ually over time. For each dataset, we constructed two anchor covariance matrices using Equation 11, Σstart

and Σend. For each of the 300 timepoints in each dataset, we drew the observations from a multivariate

Gaussian distribution whose covariance matrix at each timepoint t ∈ [0, ..., 299] was given by

Σt =
(
1 −

t
299

)
Σstart +

t
299
Σend. (13)

The gradually changing correlations underlying these datasets allow us to evaluate the recovery of dynamic412

correlations when each timepoint’s correlation matrix is unique (as in the random datasets), but where the413

correlation dynamics are structured and exhibit first-order autocorrelations (as in the constant datasets).414

Event. We generated a fourth set of 10 synthetic datasets whose underlying correlation matrices exhibited415

prolonged intervals of stability, interspersed with abrupt changes. For each dataset, we used Equation 11416

to generate 5 random covariance matrices. We constructed a timeseries where each set of 60 consecutive417

samples was drawn from a Gaussian with the same covariance matrix. These datasets were intended to418

simulate a system that exhibits periods of stability punctuated by occasional abrupt state changes.419

Synthetic data: simulating dynamic high-order correlations420

We developed an iterative procedure for constructing timeseries data that exhibits known dynamic high-421

order correlations. The procedure builds on our approach to generating dynamic first-order correlations.422

Essentially, once we generate a timeseries with known first-order correlations, we can use the known first-423

order correlations as a template to generate a new timeseries of second-order correlations. In turn, we can424

generate a timeseries of third-order correlations from the second-order correlations, and so on. In general,425

we can generate order n correlations given a timeseries of order n − 1 correlations, for any n > 1. Finally,426
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given the order n timeseries, we can reverse the preceding process to generate an order n − 1 timeseries, an427

order n − 2 order timeseries, and so on, until we obtain an order 0 timeseries of simulated data that reflects428

the chosen high-order dynamics.429

The central mathematical operations in our procedure are two bookkeeping functions, vec(·) and mat(·).

The vec(·) function takes as input a K×K symmetric matrix and returns as output a
(

K2
−K
2 + K

)
-dimensional

column vector containing the entries in the upper triangle and diagonal. The mat(·) function inverts vec(·) by

taking as input a
(

K2
−K
2 + K

)
-dimensional column vector and returning a K ×K symmetric matrix as output.

We can then generate an order n correlation matrix (for one timepoint, t) from an order n− 1 template (from

the same timepoint) as follows:

Σn(t) = mat(vec(Σn−1(t)) ⊗ vec(Σn−1(t))>). (14)

Given a timeseries of order n correlation matrices, we can draw an order n−1 correlation matrix for each

timepoint t using

σn−1(t) ∼ N (0,Σn(t)) (15)

Σn−1(t) = mat(σn−1(t)). (16)

We can then use repeated applications of Equations 15 and 16 in order to obtain a synthetic dataset.430

When the template first-order correlations are constructed to exhibit different temporal profiles (e.g.,431

using the constant, random, ramping, and event procedures described above), the resulting high-order432

correlations and synthetic data will exhibit the same category of temporal profile. Following our approach433

to generating synthetic data exhibiting known first-order correlations, we constructed a total of 40 addi-434

tional multivariate timeseries, collectively reflecting a total of 4 qualitatively different patterns of dynamic435

correlations (i.e., 10 datasets reflecting each type of dynamic pattern: constant, random, ramping, and436

event).437

Functional neuroimaging data collected during story listening438

We examined an fMRI dataset collected by Simony et al. (2016) that the authors have made publicly available439

at arks.princeton.edu/ark:/88435/dsp015d86p269k. The dataset comprises neuroimaging data collected as440

participants listened to an audio recording of a story (intact condition; 36 participants), listened to temporally441

scrambled recordings of the same story (17 participants in the paragraph-scrambled condition listened to442

the paragraphs in a randomized order and 36 in the word-scrambled condition listened to the words in a443
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randomized order), or lay resting with their eyes open in the scanner (rest condition; 36 participants). Full444

neuroimaging details may be found in the original paper for which the data were collected (Simony et al.,445

2016).446

Hierarchical topographic factor analysis (HTFA). Following our prior related work, we used HTFA (Man-447

ning et al., 2018) to derive a compact representation of the neuroimaging data. In brief, this approach ap-448

proximates the timeseries of voxel activations (44,415 voxels) using a much smaller number of radial basis449

function (RBF) nodes (in this case, 700 nodes, as determined by an optimization procedure described by450

Manning et al., 2018). This provides a convenient representation for examining full-brain network dynamics.451

All of the analyses we carried out on the neuroimaging dataset were performed in this lower-dimensional452

space. In other words, each participant’s data matrix, X0, was a number-of-timepoints by 700 matrix of453

HTFA-derived factor weights (where the row and column labels were matched across participants). Code454

for carrying out HTFA on fMRI data may be found as part of the BrainIAK toolbox (Capota et al., 2017),455

which may be downloaded at brainiak.org.456

Temporal decoding457

We sought to identify neural patterns that reflected participants’ ongoing cognitive processing of incoming458

stimulus information. As reviewed by Simony et al. (2016), one way of homing in on these stimulus-driven459

neural patterns is to compare activity patterns across individuals (e.g., using ISFC analyses). In particular,460

neural patterns will be similar across individuals to the extent that the neural patterns under consideration461

are stimulus-driven, and to the extent that the corresponding cognitive representations are reflected in462

similar spatial patterns across people (also see Simony & Chang, 2020). Following this logic, we used an463

across-participant temporal decoding test developed by Manning et al. (2018) to assess the degree to which464

different neural patterns reflected ongoing stimulus-driven cognitive processing across people (Fig. 10). The465

approach entails using a subset of the data to train a classifier to decode stimulus timepoints (i.e., moments466

in the story participants listened to) from neural patterns. We use decoding (forward inference) accuracy467

on held-out data, from held-out participants, as a proxy for the extent to which the inputted neural patterns468

reflected stimulus-driven cognitive processing in a similar way across individuals.469

Forward inference and decoding accuracy470

We used an across-participant correlation-based classifier to decode which stimulus timepoint matched471

each timepoint’s neural pattern(Fig. 10. We first divided the participants into two groups: a template group,472

24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2020. ; https://doi.org/10.1101/763821doi: bioRxiv preprint 

https://brainiak.org/
https://doi.org/10.1101/763821
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gtemplate (i.e., training data), and a to-be-decoded group, Gdecode (i.e., test data). We used Equation 7 to473

compute a DISFC matrix for each group (C̄template and C̄decode, respectively). We then correlated the rows of474

C̄template and C̄decode to form a number-of-timepoints by number-of-timepoints decoding matrix, Λ. In this475

way, the rows of Λ reflected timepoints from the template group, while the columns reflected timepoints476

from the to-be-decoded group. We used Λ to assign temporal labels to each row C̄decode using the row of477

C̄template with which it was most highly correlated. We then repeated this decoding procedure, but using478

Gdecode as the template group and Gtemplate as the to-be-decoded group. Given the true timepoint labels (for479

each group), we defined the decoding accuracy as the average proportion of correctly decoded timepoints,480

across both groups. We defined the relative decoding accuracy as the difference between the decoding accuracy481

and chance accuracy (i.e., 1
T ).482

Feature weighting and testing483

We sought to examine which types of neural features (i.e., activations, first-order dynamic correlations, and484

higher-order dynamic correlations) were informative to the temporal decoders. Using the notation above,485

these features correspond to X0, X1, X2, X3, and so on.486

One challenge to fairly evaluating high-order correlations is that if the kernel used in Equation 4 is487

wider than a single timepoint, each repeated application of the equation will result in further temporal488

blur. Because our primary assessment metric is temporal decoding accuracy, this unfairly biases against489

detecting meaningful signal in higher-order correlations (relative to lower-order correlations). We attempted490

to mitigate temporal blur in estimating each Xn by using a Dirac δ function kernel (which places all of its491

mass over a single timepoint; Fig. 9b, 10a) to compute each lower-order correlation (X1,X2, ...,Xn−1). We492

then used a new (potentially wider, as described below) kernel to compute Xn from Xn−1. In this way,493

temporal blurring was applied only in the last step of computing Xn. We note that, because each Xn is a494

low-dimensional representation of the corresponding Yn, the higher-order correlations we estimated reflect495

true correlations in the data with lower-fidelity than estimates of lower-order correlations. Therefore, even496

after correcting for temporal blurring, our approach is still biased against finding meaningful signal in497

higher-order correlations.498

After computing each X1,X2, ...,Xn−1 for each participant, we divided participants into two equally sized499

groups (±1 for odd numbers of participants): Gtrain and Gtest. We then further subdivided Gtrain into Gtrain1500

andGtrain2 . We then computedΛ (temporal correlation) matrices for each type of neural feature, usingGtrain1501

and Gtrain2 . This resulted in n + 1 Λ matrices (one for the original timeseries of neural activations, and one502

for each of n orders of dynamic correlations). Our objective was to find a set of weights for each of these503
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Figure 10: Decoding analysis pipeline. a. Computing dynamic correlations from timeseries data. Given
a timeseries of observations as a T × K matrix (or a set of S such matrices), we use Equation 4 to compute
each participant’s DISFC (relative to other participants in the training or test sub-group, as appropriate).
We repeat this process twice– once using the analysis kernel (shown here as a Gaussian in the upper row of
the panel), and once using a δ function kernel (lower row of the panel). b. Projecting dynamic correlations
into a lower-dimensional space. We project the training and test data into K-dimensional spaces to create
compact representations of dynamic correlations at the given order (estimated using the analysis kernel).
c. Kernel trick. We project the dynamic correlations computed using a δ function kernel into a common
K-dimensional space. These low-dimensional embeddings are fed back through the analysis pipeline in
order to compute features at the next-highest order. d. Decoding analysis. We split the training data into
two equal groups, and optimize the feature weights (i.e., dynamic correlations at each order) to maximize
decoding accuracy. We then apply the trained classifier to the (held-out) test data.
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Λ matrices such that the weighted average of the n + 1 matrices yielded the highest decoding accuracy.504

We used quasi-Newton gradient ascent (Nocedal & Wright, 2006), using decoding accuracy (for Gtrain1 and505

Gtrain2 ) as the objective function to be maximized, to find an optimal set of training data-derived weights,506

φ0,1,...,n, where
∑n

i=0 φi = 1 and where φi ≥ 0∀i ∈ [0, 1, ...,n].507

After estimating an optimal set of weights, we computed a new set of n + 1 Λ matrices correlating the508

DISFC patterns from Gtrain and Gtest at each timepoint. We use the resulting decoding accuracy of Gtest509

timepoints (using the weights in φ0,1,...,n to average the Λ matrices) to estimate how informative the set of510

neural features containing up to nth order correlations were.511

We used a permutation-based procedure to form stable estimates of decoding accuracy for each set of512

neural features. In particular, we computed the decoding accuracy for each of 10 random group assignments513

of Gtrain and Gtest. We report the mean accuracy (along with 95% confidence intervals) for each set of neural514

features.515

Identifying robust decoding results516

The temporal decoding procedure we use to estimate which neural features support ongoing cognitive517

processing is governed by several parameters. In particular, Equation 4 requires defining a kernel function,518

which can take on different shapes and widths. For a fixed set of neural features, each of these parameters519

can yield different decoding accuracies. Further, the best decoding accuracy for a given timepoint may be520

reliably achieved by one set of parameters, whereas the best decoding accuracy for another timepoint might521

be reliably achieved by a different set of parameters, and the best decoding accuracy across all timepoints522

might be reliably achieved by still another different set of parameters. Rather than attempting to maximize523

decoding accuracy, we sought to discover the trends in the data that were robust to classifier parameters524

choices. Specifically, we sought to characterize how decoding accuracy varied (under different experimental525

conditions) as a function of which neural features were considered.526

To identify decoding results that were robust to specific classifier parameter choices, we repeated our527

decoding analyses after substituting into Equation 4 each of a variety of kernel shapes and widths. We528

examined Gaussian (Fig. 9c), Laplace (Fig. 9d), and Mexican Hat (Fig. 9e) kernels, each with widths of 5, 10,529

20, and 50 samples. We then report the average decoding accuracies across all of these parameter choices.530

This enabled us to (partially) factor out performance characteristics that were parameter-dependent, within531

the set of parameters we examined.532
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Reverse inference533

The dynamic patterns we examined comprise high-dimensional correlation patterns at each timepoint. To534

help interpret the resulting patterns in the context of other studies, we created summary maps by computing535

the across-timepoint average pairwise correlations at each order of analysis (first order, second order, etc.).536

We selected the 10 strongest (absolute value) correlations at each order. Each correlation is between the537

dynamic activity patterns (or patterns of dynamic high-order correlations) measured at two RBF nodes538

(see Hierarchical Topographic Factor Analysis). Therefore, the 10 strongest correlations involved up to 20 RBF539

nodes. Each RBF defines a spatial function whose activations range from 0 to 1. We constructed a map540

of RBF components that denoted the endpoints of the 10 strongest correlations (we set each RBF to have a541

maximum value of 1). We then carried out a meta analysis using Neurosynth (Rubin et al., 2017) to identify542

the 10 terms most commonly associated with the given map. This resulted in a set of 10 terms associated543

with the average dynamic correlation patterns at each order.544
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