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Abstract 

Persistent neuronal spiking has long been considered the mechanism underlying working 

memory, but recent proposals argue for alternative, “activity-silent” substrates for memory. 

Using monkey and human electrophysiology, we show here that ​attractor dynamics that 

control neural spiking during mnemonic periods interact with activity-silent mechanisms in 

PFC. This interaction allows memory reactivation, which enhance ​serial biases in spatial 

working memory. Stimulus information was not decodable between trials, but remained 

present in activity-silent traces inferred from spiking synchrony in PFC. Just prior to the new 

stimulus, this latent trace was reignited into activity that recapitulated the previous stimulus 

representation. Importantly, the reactivation strength correlated with the strength of serial 

biases in both monkeys and humans, as predicted by a computational model integrating 

activity-based and activity-silent mechanisms. Finally, single-pulse TMS applied to human 

prefrontal cortex prior to trial start enhanced serial biases, demonstrating the causal role of 

prefrontal reactivations in determining working memory behavior.  
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Introduction 

The mechanisms by which information is maintained in working memory are still not fully 

understood. Ample evidence supports a role of sustained neural activity in prefrontal ​1–3​ and 

other cortices ​4,5​, possibly supported by attractor dynamics in recurrently connected circuits 

6–9​. However, recent studies have argued that memories may be maintained without 

persistent firing rate tuning during memory periods ​10​. This “activity-silent” memory can be 

mediated by short-term synaptic plasticity ​11,12​, and possibly also by other activity-dependent 

intrinsic mechanisms with a long time constant​13–15​ that could allow reactivation of memories 

from a latent storage. This computational proposal has received support in neuroimaging 

studies: in some working memory tasks, even if memory performance is good, stimulus 

information cannot be retrieved from neural recordings during delay, but later robustly 

reappears ​16​ during comparison or response periods (but see ref. ​17​) 

The apparent incompatibility between activity-based and activity-silent memory maintenance 

has led to viewing them as exclusive alternatives ​10​. However, modeling studies that have 

successfully implemented activity-silent conditions invariably require the network to be 

configured close to the attractor regime ​11,18​, a plausible mechanism for persistent activity. 

The attractor non-linearity is necessary to increase the contrast of the fading subthreshold 

signal for successful memory reactivation. At the same time, mechanisms used for 

activity-silent memory may play a supportive role for persistent activity in attractor networks 

13,19–21​, albeit with the cost of serial biases ​13,22​. Serial biases in spatial working memory tasks 

denote small but systematic biases in reporting the location memorized in the current trial 

slightly attracted to nearby locations memorized in the previous trial ​23–26​. That these 

apparently non-adaptive serial biases reflect the direct interaction of persistent activity and 

activity-silent mechanisms is a theoretically appealing hypothesis that still lacks experimental 

support ​13,22,27​.  
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Both attractor dynamics ​24,28​ and activity-silent ​13,22,27​ mechanisms have been proposed to 

carry stimulus-selective information from one trial to the next to effect serial biases. 

However, dependencies of serial biases with delay and ITI durations ​24–26​, which 

demonstrate their relationship with memory maintenance, are largely consistent with 

activity-silent, and not activity-based mechanisms ​13,22,27​. Here, we sought to specify the 

interaction of activity-based and activity-silent prefrontal cortex (PFC) mechanisms in 

supporting serial biases while subjects performed a spatial working memory task that 

engages attractor dynamics in prefrontal cortex ​6​. We compared the encoding properties of 

brain activity in delay and inter-trial intervals (ITI) to identify the mechanistic basis of the 

memory trace that spans consecutive trials.  We used behavioral and electrophysiological 

data collected in monkeys and humans, with prefrontal multiple-unit recordings in monkeys, 

and scalp electroencephalography (EEG) in humans. Between successive persistent activity 

mnemonic codes, we found an activity-silent code in PFC that carried stimulus information 

through inter-trial periods. In addition, we found correlational and causal evidence that 

fixation-period PFC reactivation from this activity-silent trace enhances attractive serial 

biases. These findings underscore the behavioral relevance of the dynamic interplay 

between attractor and subthreshold network dynamics in PFC and reconcile these seemingly 

conflicting mechanisms: their interplay could be the basis of closely associated memory 

storage processes operating at different time scales, possibly serving different behavioral 

purposes ​29,30​.  

Results 

We trained four rhesus monkeys to perform an oculomotor delayed response task (ODR). 

The task consisted of remembering spatial locations at fixed eccentricity while maintaining 

fixation during a delay period of 3 s (Fig. 1a, Methods). The extinction of the fixation cue 

triggered the monkey to execute a saccade towards the remembered location and marked 
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the beginning of a fixed inter-trial interval (ITI) of 3.1 s, lasting until the appearance of the 

new trial’s stimulus cue (Fig. 1b). In addition, we tested 35 human participants in variations 

of the task performed by the monkeys (Methods). In all cases, we recorded the reported 

location and computed behavioral errors as angular distances to corresponding target 

locations. Following the methods described in previous studies ​23​, we analyzed the 

dependence of the current-trial error on relative previous trial location. Both monkeys and 

humans showed biased reports relative to previously remembered locations. These biases 

were attractive for short distances between previous-trial and current-trial locations, and 

repulsive for large previous-current distances (Fig. 1a, 2a). Our primary goal was to test the 

hypothesis that activity-silent and persistent activity working memory mechanisms interact to 

produce serial dependence effects. To this end, we investigated electrophysiological 

measurements in the ITI, including periods from the response to the subsequent fixation 

period. 

 

Reactivation of previous memory information in monkey dlPFC prior to new 

stimulus presentation 

We collected single-unit responses from the dorsolateral PFC (dlPFC) of two monkeys while 

they performed the task. A substantial fraction of neurons in this area showed tuned 

persistent delay activity during the mnemonic delay period ​6,31–34​ (n=206/822). These specific 

neurons are part of bump attractor dynamics characterizing the memory periods of this task 

6​. Based on our hypothesis that an interplay of activity-silent and attractor mechanisms 

would support serial biases, we focused our analyses on these neurons, and we grouped 

them in simultaneously recorded ensembles for decoding analyses (n=94 ensembles, size 

range 1-6 neurons, Supplementary Fig. 1a).  
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DlPFC single neuron average firing rates exhibited strong dynamics in the ITI, compared to 

the stability during mnemonic delay periods (Fig. 1b). Phasic rate increases at response 

execution (Fig. 1b, ​R​n-1​) and fixation onset (Fig. 1b, ​F​n​) were hallmarks in these dynamics, 

but we also noticed an increase of firing rate prior to stimulus presentation (Fig. 1b, ​S​n​), 

which could reflect anticipation of the upcoming stimulus due to fixed length fixation periods. 

We wondered if these rate changes were also related to dynamical changes in stimulus 

selectivity. Under the attractor-based hypothesis for serial biases ​28​, sustained stimulus 

selectivity would be expected to extend from the previous trial’s delay period into the next 

trial’s fixation period. We measured selectivity by training a linear decoder on spike counts of 

our small neuronal ensembles, and referenced its accuracy to that obtained by chance using 

a resampling approach (Methods). During the delay period, neuronal ensembles carried 

stimulus information and single neurons showed stimulus tuning (Fig. 1c, d red). After report, 

the memorized location was still decodable from ensemble activity but single neurons’ tuning 

curves showed a selective suppression of responses in their mnemonic preferred locations 

(Fig. 1c, green). This could reflect neuronal adaptation mechanisms or else saccade 

preparation towards the opposite direction to regain fixation. In the middle of the ITI, 

decoding accuracy was not different from chance and neurons were no longer tuned to the 

previous stimulus (Fig. 1c,d blue), suggesting that the encoding of the previous stimulus had 

disappeared from neural activity. However, aligned with anticipatory ramping activity at the 

end of the fixation period (Fig. 1b), previous stimulus was again decoded just prior to the 

new stimulus presentation, and single-neuron tuning reappeared (Fig. 1c,d orange). 

Although the existence of spiking selectivity during the ITI has already been previously 

reported ​28​, we show here that there is a period in which stimulus information cannot be 

decoded and then it reappears at the end of the fixation period (​late fixation​). Further, this 

code in late fixation is a reactivation of the representation active in the previous trial delay. 

This is supported by 2 pieces of evidence. On the one hand, information reappearance 
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occurred more strongly in those neuronal ensembles that maintained more stimulus 

information during the delay period (Fig. 1c and Supplementary Fig. 1). Secondly, the 

converging pattern of noise correlations at the end of the delay ​6​ and in late fixation 

suggested a similar attractor-like network activation in both periods. Indeed, when the 

preceding stimulus appeared between two neurons’ preferred locations, these PFC neuron 

pairs exhibited negative noise correlations in late fixation (Supplementary Fig. 2) – a 

signature of a fixed-shape bump that diffuses from the initial stimulus location, moving closer 

to one neuron’s preferred location and away from the other, thus increasing one and 

decreasing the other neuron’s firing rate ​6​. Negative correlations appeared exclusively during 

late fixation, strongly suggesting a bump reactivation (Supplementary Fig. 2). Taken 

together, these results support a faithful reactivation of the memory-period representation in 

the fixation period (​reactivation period​), following a period of absent selective neuronal firing 

in dlPFC. This reactivation suggests a relationship between mechanisms of delay memory 

encoding, and mechanisms bridging the ITI to facilitate reactivation prior to the new stimulus.  

 

Previous trial memory information is reactivated in the fixation period of 

human EEG  

In line with monkey electrophysiology, we found similar previous-trial traces in human EEG 

(n=15). We extracted alpha power from all electrodes and used a linear decoder to 

reconstruct the target location from EEG in each trial ​35​ (Methods). The target representation 

was significantly sustained during delay, response, and the next trial’s fixation period (Fig. 

2b, diagonal axis). Considering that EEG is a global measure, this code could be sustained 

by different representational components (e.g. stimulus, memory, response). We thus 

trained different linear decoders during delay (500-1000 ms after stimulus onset, ​delay code​) 

and around the response (250 ms before to 250 ms after response, ​response code​), and 

used the respective weights to extract previous-stimulus information throughout different 
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periods of the trial (Fig. 2c). The delay code was stable during stimulus presentation and 

delay, but disappeared during the ITI, around the time of response. In contrast, the response 

code did not generalize beyond the time at which the decoder was trained (Fig. 2c). We 

found that the previous trial’s delay code re-appeared during the fixation period (Fig. 2c, and 

Fig. 2d, orange), similar to monkey neurophysiology (Fig. 1c). These results provide a 

confirmatory correspondence with the time-course of mnemonic decoding in the monkey 

data, but they also show the temporal continuity between qualitatively distinct memory and 

response codes. The bidirectional transfer of information between memory and response 

representations in different brain areas could provide a bridge between the memory and 

‘reactivation’ periods observed in PFC. Alternatively, response codes may just reflect the 

output motor commands and mnemonic codes may subsist subthreshold in PFC to allow 

reactivations. We tested this hypothesis with cross-correlation analysis of PFC units.  

 

Increased cross-correlation suggests a latent trace during ITI 

We sought experimental validation that activity-silent mechanisms in dlPFC still maintained 

stimulus information during the ITI. We reasoned that if such latent activation (e.g. a synaptic 

trace ​11​ ) affected a group of interconnected neurons, these would be more likely to exceed 

their spiking threshold in synchrony ​10​. Specifically following a preferred cue, neurons would 

increase their activity in the delay and maintain a latent activity-silent activation in the 

subsequent ITI that would be reflected in enhanced synchrony, but not enhanced rates. 

Moreover, we deduced that this reasoning was pertinent only to excitatory interactions: 

neurons interacting through effective inhibition should instead show reduced spike 

synchrony following preferred stimuli in the previous trial.  

 

To test this hypothesis, we selected collinear pairs of neurons (distance between the 

neurons’ preferred locations smaller than 30°, n=67 pairs, Methods) so they had consistent 
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activation (high/low firing rate) in the delay. Following previous studies, we divided the 

selected pairs based on their whole-trial cross-correlation peak sign in excitatory (​exc​) and 

inhibitory (​inh​) interactions (refs. ​36,37​, Methods). We considered two conditions (Fig. 3a, 

Methods): trials in which the previous stimulus was shown close to either preferred location 

(​pref​, maximum distance of 40°) or far from preferred locations (​anti-pref​, all other trials). 

Then, we computed a cross-correlation selectivity index (CCSI) by subtracting the amplitude 

of the central peak of the jitter-corrected cross-correlation function (coincident spikes within 

20 ms, Methods, similar to ref. ​38​) for ​pref​ and ​anti-pref​ trials for each neuron pair (Fig. 3b). 

Our hypothesis predicts positive (negative) CCSI for ​exc​ (​inh​) pairs in the ITI, i.e. higher 

(lower) spike synchrony following preferred stimuli. The CCSI computed in a period of the ITI 

where firing rate had ceased to represent the stimulus (​activity-silent period​, Fig. 1c,d, blue) 

was positive, reflecting selectivity in neuronal synchrony to the previous stimulus for all 

interactions (Fig. 3c). We then investigated changes in CCSI for ​exc​/​inh​ interactions across 

our two periods of interest: the activity-silent and reactivation periods (Fig 1c, blue and 

orange, respectively). We found that their reactivation-period CCSI differed significantly, 

being negative for ​inh​ interactions and positive for ​exc​ interactions (Fig. 3c). Finally, we 

explored the dynamics of selectivity throughout the trial (Fig. 3d): with the exception of 

immediately after the previous response, where neurons showed anti-tuning to previous-trial 

stimulus (Fig. 1c), CCSI for ​exc​ pairs was always positive, indicating stronger central-peak 

cross-correlation when the previous stimulus was preferred (Fig. 3d, orange). On the other 

hand, for ​inh​ interactions CCSI was negative (stronger inhibitory interactions following a 

preferred stimulus) only during reactivation and the previous-trial delay period (Fig. 3d, 

green), the periods where PFC firing rates showed stimulus selectivity. This pattern is 

consistent with the latent memory mechanism residing in excitatory neurons and only being 

reflected in inhibitory interactions through the collective engagement in bump attractor 

dynamics, during the delay and at the time of reactivation.  
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This proves the existence of a latent trace of the stimulus in PFC during the ITI, but it could 

still be reflecting inputs from a different area. To strengthen the idea that stimulus 

information is directly transferred from an activity-based to an activity-silent code in PFC, we 

tested if the selectivity of ​exc​ interactions during the activity-silent period depended  on 

spiking activity of corresponding neurons in the previous delay period. Assuming a 

neuron-specific activity-dependent mechanism supporting the activity-silent code in the ITI, 

we predicted that the magnitude of the cross-correlation central peak in the activity-silent 

period would correlate on a trial-by-trial basis with the mean spike count recorded in the 

preceding delay period and specifically for ​pref​ (and not for ​anti-pref​) trials (Methods). This 

prediction was confirmed in the experimental data (Fig. 3e). Thus, this cross-correlation 

analysis supports the hypothesis that previous, currently irrelevant stimulus information 

remains in prefrontal circuits in latent states, undetected by linear decoders that do not take 

spike timing into consideration (Figs. 1c, 3f).  

 

Bump-reactivation as a mechanism for stimulus information reappearance 

Based on our electrophysiology results and on prior modeling studies ​11​, we formulated the 

bump-reactivation hypothesis to explain our data. We hypothesized that information held in 

memory as an activity bump during the previous trial’s delay period ​6​ would be imprinted in 

neuronal synapses as a latent, activity-silent trace during the ITI. This latent bump could be 

reactivated by the unspecific anticipatory signal seen in mean firing activity in PFC (Fig. 1b), 

or anticipatory mechanisms following an external cue that predicts stimulus presentation, 

such as the onset of a fixation dot (Fig. 2c). In fact, in a separate EEG experiment where 

fixation lengths were jittered so as to make stimulus onsets unpredictable, we could not find 

any delay code reactivation (Supplementary Fig. 3). 
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To test the bump-reactivation hypothesis, we built a bump attractor network model of spiking 

excitatory and inhibitory neurons. Based on our electrophysiology findings, short-term 

plasticity (STP) dynamics were included only in excitatory synapses (Methods). In each trial, 

stimulus information was maintained in activity bumps during the delay, supported by 

recurrent connectivity between neurons selective to the corresponding stimulus. During the 

ITI period, model neurons had no detectable tuning to the previous-trial stimulus (Fig. 4a, 

black line and Fig. 4b, blue) ​22,27​. However, the synapses of neurons that had participated in 

memory maintenance in the previous delay were facilitated due to STP (Fig. 4a, blue line). 

Parallel to our analysis in Fig. 3, this was reflected in the central peak of the ITI 

cross-correlation for pairs of excitatory model neurons, which maintained selectivity to the 

previous stimulus (Fig. 4a) even in the absence of single neuron firing rate selectivity (Fig. 

4a, blue). We found that single neuron tuning could be recovered from the hidden synaptic 

trace using a nonspecific input (​drive)​ to the whole population (Fig. 4a,c, Methods). Our 

biologically constrained computational model was thus an explicit implementation of the 

bump-reactivation hypothesis that we had formulated. 

 

The impact of bump reactivation on serial biases 

We next used our computational model to derive behavioral and physiological predictions to 

test in our data, in particular in relation to serial biases. In order to simulate serial biases with 

our computational model, we ran pairs of consecutive trials with varying distance between 

the two stimuli presented in each simulation. We used the final location of the bump in the 

second trial (current-trial memory) as the “behavioral” output of the model in that trial. We 

were able to model the profile of serial biases observed experimentally (Fig. 4d, black; 

Supplementary Fig. 4), similar to previous models ​22,27​. To test the impact of 

bump-reactivation in serial biases, we compared the behavioral output of simulations with 

and without drive before the second trial stimulus (Methods). Bump reactivation resulted in 
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stronger attractive biases for similar successive stimuli, and in repulsive biases for more 

dissimilar successive stimuli (Fig. 4d, green line). We found that tuned intracortical inhibition 

was necessary for this emergence of repulsive biases upon bump reactivation 

(Supplementary Fig. 4), showing that repulsive biases are caused by repulsive interactions 

between simultaneously active bumps in the network ​39,40​, and are absent when there is no 

reignited bump that recruits localized inhibition at the flanks of the pre-cue bump of activity. 

We finally tested the dependence of this behavioral effect on the strength of the nonspecific 

drive. A very short but strong impulse to the whole network during the ITI quickly saturated 

all the synaptic facilitation variables, effectively removing all serial biases in the output of the 

network (Fig. 4d, blue). Thus, in this model bump reactivation affects serial biases 

non-linearly as reactivation strength is varied. In sum, our model can reproduce behavioral 

and neurophysiological findings described in Figs. 1-3 and derives predictions concerning 

memory reactivations from silent traces that we then tested in the data.  

 

Previous stimulus reactivation increases serial biases 

The model predicts that higher reactivation of previous memories in the fixation period 

should be associated with stronger increases in serial biases (Fig. 4d). We tested this 

prediction in our neural recordings from monkey PFC and EEG recordings on the human 

scalp.  

 

Monkey PFC.​ We first classified each trial based on leave-one-out decoding of previous 

stimulus in two different time windows during fixation: during a period with no stimulus 

information (​activity-silent​ period, Fig. 1, blue), and at the time of reactivation (Fig. 1, 

orange). For each of these 2 windows we separated high-decoding trials (first quartile) from 

low-decoding trials (all other trials) and computed bias curves separately. We found that 

serial biases were indistinguishable in the activity-silent period (Fig. 5a) but they were 
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stronger for high-decoding than for low-decoding trials at the time of bump reactivation (Fig. 

5b). This follows the prediction of our computational model, assigning behavioral relevance 

to the bump reactivation prior to stimulus onset. This result was not dependent on a singular 

selection of trial separations: for different proportions of high- and low-decoding trials the 

serial bias strengths (Methods) changed smoothly and remained consistent with the reported 

result (Supplementary Fig. 5). We then repeated the same analysis at different time points of 

the ITI. A significant difference in serial bias strength (Methods) emerged only when trials 

were classified as low- vs. high-decoding in the reactivation period (Fig. 1c, 5c, orange), and 

serial biases remained virtually indistinguishable at all other time points (Fig. 5c).  

 

Human EEG.​ Analogous to the analysis performed in monkey data, we grouped trials by 

their leave-one-out decoding accuracy of the previous stimulus (Methods). We separated 

high- and low-decoding trials on two different time points: at the time of reactivation (Fig. 2, 

5f, orange) and in an arbitrary time point without stimulus information (​activity-silent​, Fig. 5c, 

black). Consistent with monkey data and our model’s prediction, we found stronger serial 

bias for high-decoding than for low-decoding trials for the reactivation period (Fig. 5d), but 

not for the activity-silent period (Fig. 5e), where previous memory content was not decodable 

(Fig. 2c). The analysis was repeated for all other time points during the fixation period (Fig. 

5f). Indeed, behavior exclusively depended on decoding accuracy at the time of delay code 

reactivation (Fig. 2, orange). Taken together, these results support the hypothesis that 

previous trial memory reactivation prior to stimulus onset controls serial biases.  

 

TMS-induced reactivations modulate serial biases 

As a causal validation of pre-stimulus PFC reactivation as a mechanism controlling serial 

biases, we designed a transcranial magnetic stimulation (TMS) perturbation study. This is a 

relevant experiment because memory-dependent changes in human EEG alpha-power 
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cannot be unequivocally ascribed to a specific brain region, which limits the correspondence 

of our EEG and monkey dlPFC data. In particular, representations in larger and more 

organized occipital cortices might contribute strongly to visual EEG signals ​35,41,42​, but could 

yet be driven by top-down projections from association cortices ​43​. Inspired by a previous 

study that reported reactivation of latent memories using TMS ​16​, we causally tested the 

implication of dlPFC in serial biases by applying single-pulse TMS during the fixation period. 

We had two control conditions to test our hypotheses: (1) we targeted the TMS coil at dlPFC 

and vertex in interleaved blocks; and (2) we randomly chose TMS intensity relative to the 

subject’s resting motor threshold (RMT) in each trial (​sham: ​0%​,​ ​weak-tms: ​70%, and 

strong-tms​: 130% of RMT, Methods). We found that TMS modulated serial biases when 

targeted at dlPFC but not at vertex (Fig. 6). Moreover, our computational model predicted a 

non-linear dependence with stimulation strength (Fig. 4d), which was supported by the data 

(Fig. 6b). Interestingly, the behavioral impact of PFC TMS stimulation declined throughout 

the session, as if subjects desensitized to the TMS pulse (Supplementary Fig. 6). 

Importantly, we show combined results from two separate experiments of n=10 subjects 

each, one being a pre-registered replication (Methods, Supplementary Figs. 7, 8). These 

results provide causal evidence for the involvement of PFC in the serial bias machinery 

during the ITI. Further, we show that TMS impacts serial biases nonlinearly, as predicted by 

model simulations that implement the bump reactivation hypothesis via the interplay of bump 

attractor and activity-silent mechanisms.  

Discussion 

By studying the neural basis of serial biases, we have shown how the interplay of 

bump-attractor spiking dynamics and silent mechanisms in prefrontal cortex maintains 

information in spatial working memory tasks. In these delayed-response tasks, prefrontal 

tuned persistent activity consistent with bump attractor dynamics characterizes the delay 
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period and correlates with behavioral precision ​6,44​. We have now seen that this sustained 

activation disappears from the prefrontal network between trials, but it is reactivated before 

the new trial (Figs. 1,2) and enhances behavioral serial biases (Figs. 5,6). This reactivation 

is directly linked to activity recorded in the previous trial: it emerges specifically in those 

neural ensembles that showed strongest persistent tuning in the delay (Fig. 1c, 

Supplementary Fig. 1), it is decoded from the human EEG with identical decoders (Fig. 2), 

and it has the specific fingerprints of bump attractors as evaluated with pairwise spike-count 

correlations (Supplementary Fig. 2). Activity-silent mechanisms in prefrontal cortex bridge 

these two disconnected periods of persistent activity, carrying stimulus selectivity from one 

trial to the next (Fig. 3). Importantly, this latent tuning is directly associated with trial-by-trial 

spiking activity in the preceding delay period (Fig. 3e), thus establishing a coupling between 

activity-based and activity-silent mechanisms in PFC. Taken together, our results are 

consistent with the view that attractor-based and activity-silent mechanisms are jointly 

represented in the local prefrontal circuit and that their tight interplay supports behavior in 

spatial working memory. We specified this in a computational network model: delay-period 

attractor dynamics imprint activity-silent mechanisms, which then retain information between 

trials and allow reactivations to recapitulate attractor states (Fig. 4). 

 

Our data provides experimental support that non-specific PFC stimulation can revive 

subthreshold information, similar to the modeling ideas put forward in ref. ​11​. While a recent 

study ​28​ found neural firing selectivity from previous cues bridging brief ITIs in the frontal eye 

field, our study, involving longer ITIs, did not find such continuous selectivity in PFC 

single-neuron firing rates. Rather, information was still present in synchrony parameters, 

thus revealing a latent subthreshold tuning, and this tuning could be reinstated in firing rates 

when triggered by external events, as previous neuroimaging and EEG studies have 

speculated ​16,45–47​. However, our data also supports the idea that activity-silent and 

 
14 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2019. ; https://doi.org/10.1101/763938doi: bioRxiv preprint 

http://f1000.com/work/citation?ids=82949,4219283&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=83223&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1419293&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=2739390,3468474,1763900,6848050&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://doi.org/10.1101/763938
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

attractor-based mechanisms are not orthogonal, alternative mechanisms but they are largely 

co-expressed in the circuit and underlie different behaviors: whereas persistent 

attractor-based activity is engaged during active maintenance of memories, activity-silent 

maintenance supports secondary, possibly involuntary memory traces, here expressed in 

small serial biases. Similar ideas have been proposed in the context of attended and 

unattended memories ​16,29,30,45​. Note, however, that in our proposed framework the close 

interplay between attractor-based and activity-silent mechanisms does not allow 

activity-silent memories to be protected from intervening attractor-based activations in the 

circuit. This yields the prediction that serial-bias-like patterns of interference between 

unattended and attended memories should be observed in these experiments.  

 

Critically, we demonstrated that the proposed mechanisms can be directly linked with 

behavior: we found robust evidence for the role of bump reactivations from activity-silent 

traces in generating working memory serial biases (Fig. 5). This explicit demonstration of the 

possible behavioral impact of activity-silent traces is an advance over previous studies ​36,48​. 

Note however that recent causal evidence in rodents ​49​ may also be interpreted as revealing 

the impact of parietal reactivations in history-dependent biases. Direct evidence could be 

sought with activation optogenetics at different time points in the ITI, which should increase 

biases. In addition, we obtained explicit causal evidence supporting the role of reactivations 

prior to the trial in enhancing serial biases by using a TMS perturbation approach and 

validating the predicted behavioral effects (note the pre-registered replication, underscoring 

the robustness of the results, Methods, Supplementary Figs. 6-8). Previous single-pulse 

TMS studies in working memory have failed to find strong behavioral effects when pulses 

were applied in the delay period ​16​. Our application of pulses in the possibly quiescent 

fixation period may have enhanced the effect of the TMS pulse and facilitated its impact on 

behavioral reports. Our TMS experiment also clarified our EEG results by demonstrating the 
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role of prefrontal cortex in serial biases. Because we did not concurrently acquire EEG 

during the TMS study, we could not directly measure the stimulus representation reactivation 

induced by the TMS pulse. However, prior work has shown the reactivation of EEG memory 

representations with TMS​16​, albeit in different conditions (pulses in the memory period). 

Intriguingly, serial biases for trials without TMS stimulation in PFC-stimulation blocks were 

repulsive (Figure 6b). We speculate that this was due to suppressive carry-over effects in 

PFC from previous TMS-stimulated trials in the block. In fact, studies combining TMS with 

single unit recordings report that a fast, excitatory TMS effect is often followed by a 

long-lasting inhibitory effect ​50,51​. Future work involving more fine-grained TMS intensities 

and carefully controlled block designs will be necessary to clarify these results further. 

 

We proposed a computational model that can parsimoniously explain our data using 

short-term facilitation in the synapses of a recurrent network. Short-term plasticity has also 

been used in previous computational models of interacting activity-based and activity-silent 

dynamics ​11,12,15​ and of serial biases ​22,27​. Beyond previous modeling efforts, we explored the 

mechanistic requirements of code reactivations prior to a new trial, and we derived 

predictions whose validation conferred plausibility to the model. Of course, our findings do 

not unequivocally identify this mechanism and we could have chosen another mechanism 

with a long time constant to implement our hypothesis computationally (e.g. 

calcium-activated depolarizing currents ​52​, depolarization-induced suppression of inhibition 

13​, short-term potentiation ​53​, etc). Still, several lines of evidence support the involvement of 

short-term plasticity in prefrontal function. First, there is explicit evidence for enhanced 

short-term facilitation and augmentation among PFC neurons in ​in vitro​ studies ​54,55​. Second, 

extracellular recordings in behaving animals cannot directly probe activity-silent 

mechanisms, but indirect evidence for synaptic plasticity has been gathered in cortical 

activity correlations of animals engaged in working memory tasks ​36,48​. Our study also follows 
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this approach to seek evidence for activity-silent stimulus encoding, but we apply it 

specifically at time periods without firing rate codes for task stimuli, thus unambiguously 

decoupling activity-silent from activity-based selectivity. 

 

In sum, we provide experimental evidence that subthreshold traces of recent memories 

remain imprinted in PFC circuits, and influence behavioral output in working memory in 

particular through network reactivations of recent experiences. Our findings suggest that the 

dynamic interplay between attractor and subthreshold network dynamics in PFC supports 

closely associated memory storage processes: from effortful memory to occasional 

reactivation of fading experiences. 
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Figure 1. Previous-trial stimulus code reactivates prior to the forthcoming stimulus.  

a)​ General task design (​monkeys​ / ​EEG ​/ TMS) and serial bias for 4 monkeys. Trials with 

clockwise previous reports relative to the current stimulus were collapsed into clockwise 

trials (​folded errors​, Methods). Positive (negative) values indicate response attraction 

(repulsion) toward  previous stimuli presented at that relative distance from the current 

stimulus. Shading indicates bootstrapped ±s.e.m. Black solid bars represent p<0.05 

(permutation test). ​b)​ Averaged, normalized firing rate of n=206 neurons during the ITI (spike 

counts of 300-ms causal square kernel, z-scored in interval [-4.5 s, 1.5 s]). Gray bars mark 

response and stimulus cue periods. ​c)​ Decoding accuracy of previous-trial stimulus, 

computed as the distance from the mean of decoding accuracy in shuffled surrogates, in 

units of their standard deviation σ (Methods), averaged over ensembles with strong (red) 

and weak (gray) decoding in delay (Methods). Aligned with anticipatory ramping in late 

fixation (panel b), previous-trial stimulus code reappears, specifically in ensembles with 

better delay code (Supplementary Fig. 1). Black bars mark timepoints for which decoding 

accuracy 99.5% C.I. is above zero. ​d)​ Tuning to previous-trial stimulus, aligning responses to 

preferred cue as defined in delay, and computed in different trial epochs (color-coded in b, 

bootstrap-test at preferred location: p=0.015, c.i.=[-0.3,-0.03], Cohen’s d=-0.17 (green), 

p=0.865, c.i.=[-0.12,14], Cohen’s d=0.15 (blue), p=0.025, c.i.=[0.024,0.33], Cohen’s d=0.012 

(orange), n=206 neurons, shading depicts ±s.e.m.). Unless stated otherwise, in all panels 

error-shading marks 95% C.I. 
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Figure 2. In human EEG, the delay code also reactivates in fixation.  

a)​ Folded serial bias (Methods) for 15 human subjects. Shading shows ±s.e.m. ​b)​ Temporal 

generalization of previous-stimulus code for all combinations of training and testing times 

(independent windows of 50 samples, ~ 97.77ms) from previous trial stimulus onset ( )Sn−1  

and response ( ), to current trial fixation onset ( ) and stimulus onset ( ). Solid whiteRn−1 F n Sn  

lines mark the discontinuity of EEG fragments aligned to , , and , respectively.Sn−1 Rn−1 Sn  

Dashed lines indicate the temporal center of transversal sections shown in c. ​c)​ Decoding of 

previous stimulus during previous-trial delay (left), response (middle), and current-trial 

fixation period (right), for decoders trained in previous-trial delay (mid-delay, 0.5s - 1.0s after 

, lower dashed line in b and during previous-trial response (in a window of 0.5s centeredSn−1  

on ​R​n-1​, upper dashed line in b. The delay code is stable during delay, disappears during the 

response, and reappears in current-trial fixation (black line with 95% C.I. error-shading), see 

also panel d. In contrast, previous-trial information during the response is dynamic and stays 
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around zero in fixation. ​d)​ Centered average reconstruction of previous stimulus at different 

epochs for the delay decoder, marked in c (bootstrap-test preferred vs. anti-preferred 

location: p<0.1e-6, c.i.=[-0.83,-0.27], Cohen’s d=-3.41 (red), p=0.96, c.i.=[-0.29,0.49], 

Cohen’s d=-0.01 (blue), p=0.002, c.i.=[-0.92,0.13], Cohen’s d=-0.81 (orange), n=15 subjects, 

shading shows ±s.e.m.). Upper black bars mark significant deviation from zero (bootstrap, 

p<0.05 in a, p<0.005 in c. 
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Figure 3. Cross-correlation selectivity to previous-trial stimulus suggests an 

activity-silent trace in PFC.  

a) ​Scheme of trial selection: For neuron pairs with similar preferred location (< 60°) we 

separated trials with stimulus near the pair’s preferred locations (blue, pref) from those 

where they were far (gray, anti-pref). ​b)​ Cross-correlation of sample PFC pair shows 

zero-lag peak selectivity to previous-trial stimulus ​in activity-silent period (permutation test, 

p=0.025, Cohen’s d=0.10).​ ​c)​ CCSI was consistently positive in activity-silent period, but it 

became negative for inh interaction pairs in the reactivation period (permutation test, 

interaction period x exc/inh, p=0.03, Cohen’s d=-0.6). At reactivation, CCSI for ​exc​ and ​inh 

differed significantly (**, permutation test, p=0.006, d=0.75). P-values indicated in figure 

panel report results of one-tailed permutation tests according to our hypotheses (CCSI>0 for 

exc​, CCSI<0 for ​inh​). ​d) ​ CCSI in the ITI (1-s windows, 50-ms steps) for ​exc​ and ​inh​ pairs. 

Except immediately after report, where neurons show anti-tuning (Fig. 1d), CCSI was 

positive for ​exc​ interactions. CCSI was negative for ​inh​ interactions during previous delay 

and reactivation. Smoothed with 5-sample square filter. ​e)​ ​Trial-by-trial correlation between 

exc​ pairs’ previous delay spike counts and ITI cross-correlation central peak (activity-silent 

period in d) is positive only for the ​pref​ condition (permutation test p=0.017, interaction 

p=0.01)​. ​f)​ Absence of mean firing rate difference between ​pref​ and ​anti-pref​ conditions 

(n=67 pairs) discards confound between rate selectivity and CCSI. Error bars in b and e, 

95% C.I; in c and d, s.e.m.  
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Figure 4. Bump-attractor model with STP accounts for serial dependence and 
neurophysiology.  

a)​ Average firing rate tuning (black) and synaptic tuning (green) for 5,000 simulations of two 

successive trials during delay (Methods). In the mnemonic period (red triangle), both rate 

and synaptic tuning are at their maximum, both driven by persistent bump-attractor activity 

(red plot in b). Following the memory period, a nonspecific inhibitory input resets the 

baseline network state for the duration of the ITI (blue triangle and plot in b). This is reflected 

in vanishing rate tuning, but long-lasting synaptic tuning that can regenerate firing rate tuning 

(orange plot in b) through reactivation by a non-specific input drive (light green bar). ​b) 
Averaged single-neuron tuning to previous-trial stimulus at different epochs marked with 

colored triangles in a. ​c)​ Cross-correlation of model neurons in the ITI differed for 

previous-trial stimulus in the preferred location (pref, blue) and for anti-pref trials (gray) 

despite no firing rate selectivity (a,b, blue). ​d)​ Serial bias plots computed from “behavioral 

responses” (Methods) in 3 different conditions of non-specific excitatory drive. A weak 

anticipatory drive increases attractive serial biases and produces a repulsive lobe, while a 

strong drive removes serial biases. 
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Figure 5. Bump reactivation from a hidden trace increases serial biases.  

Serial bias curves for trials where previous-trial stimulus information in neurophysiological 

recordings was high (upper quartile, red) and for all other trials (black), in monkeys (a-c) and 

in humans (d-f). ​a)​ Trials selected based on a decoder trained and tested early in the fixation 

period (black triangle in c), did not reveal differences in serial bias. ​b)​ Serial biases were 

markedly enhanced for high-decoding trials when training and testing the decoder at the time 

of reactivation (Fig. 1c, orange triangle in c). ​c)​ Difference in serial bias curves between 

high-decoding​ and ​other​ trials became significant only at pre-cue, concomitant with 

reactivation (Fig. 1c). Triangles mark center of 1 s decoding windows for the splits shown in 

a, b. ​d-f) ​ same analyses for human EEG (n=15). Note that for humans, d corresponds to an 

activity-silent period in late fixation (black triangle in f), and e to the reactivation period in 

early fixation (Fig. 2c, orange triangle in f). ​f) ​As for monkeys, serial bias differences in 

humans were significant only during reactivation. In c and f, time courses of differences 

between ​high-decoding​ and ​other​ trials were smoothed in time using a 5-sample square 

filter. Black bars mark significant differences between ​high-decoding​ and ​other​ trials (p<0.05, 

permutation test). Error-bars in c and f, 95% C.I; in a,b,d, e ±s.e.m.  
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Figure 6. Single-pulse TMS on dlPFC during fixation modulates serial biases 
non-linearly 

Serial bias plots computed in vertex ​(a)​ and ​ ​PFC ​(b) ​ blocks, separately for trials with strong 

fixation-applied TMS pulse (130% of resting motor threshold, RMT, blue), weak (70% RMT, 

green) and sham (0% RMT, black) for the first 225 trials in each session (n=20 participants, 

2 sessions/participant, Supplementary Figs. 6,7,8). Serial biases were modulated by TMS in 

PFC, but not in Vertex ​(previous-current stimulus distance (​prev-curr​) ✕ ​TMS intensity ​ ✕ 

coil location​, t​18272​=2.21, p=0.027. For dlPFC: ​prev-curr​ ✕ ​TMS intensity ​, t​11087​=2.13, 

p=0.032. For Vertex: t​7166​=0.03, p=0.97. Methods, ​Linear mixed models; ​analysis performed 

on the whole session)​. In PFC, serial bias modulation depended nonlinearly with stimulation 

strength (​ΔAIC=4.6, relative likelihood 0.9, for the comparison of regression models with 

non-linear vs. linear TMS intensity factor; Methods)​. ​c)​ Difference between serial biases 

computed for sham and weak-tms trials in vertex (black) and in PFC (red) blocks. Error bars 

are bootstrapped ​±s.e.m.​. Solid black bars mark significant differences (permutation test, 

p<0.05).  

 
32 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2019. ; https://doi.org/10.1101/763938doi: bioRxiv preprint 

https://doi.org/10.1101/763938
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 

 

Materials and Methods 

Behavioral task and recordings 

Monkey behavioral task and recordings. ​Four adult, male rhesus monkeys (​Macaca mulatta​) 

were trained in an oculomotor delayed response task requiring them to fixate, view a 

peripheral visual stimulus on a screen at a distance of 50 cm and make a saccadic eye 

movement to its location after a delay period. During execution of the task, 

neurophysiological recordings were obtained from the dorsolateral prefrontal cortex (dlPFC). 

Detailed methods of the behavioral task, training, surgeries and recordings, as well as 

descriptions of neuronal responses in the task have been published previously ​6,31–34​ and are 

only summarized briefly here. Visual stimuli were 1° squares, flashed for 500 ms at an 

eccentricity of either 12° or 14°. Stimuli were presented randomly at 1 out of 8 possible 

locations around the fixation point. A delay period lasting 3 s followed the presentation of the 

stimulus, at the end of which the fixation point turned off, and a saccade terminating within 5° 

from the location of the remembered stimulus was reinforced with liquid reward. Although 

fixation was maintained through cue and delay periods, we denote “fixation period” the 

interval between fixation onset and cue onset, when the only behavior expected was fixation 

(​fixation period​, Fig. 1b). A fixed inter-trial interval (ITI) of 3.1 seconds elapsed between 

fixation cue extinction and the start of a new trial with fixation onset (​ITI​, Fig. 1b). Eye 

position was monitored with a scleral eye coil system in two monkeys and an ISCAN camera 

in the other two. From 2 of those monkeys, ​we collected single-unit responses from dlPFC 

using tungsten electrodes of 1–4-MΩ impedance at 1 kHz, ​while they were performing the 

task. Simultaneous recordings were obtained by arrays of 2-4 microelectrodes, spaced 0.2 – 

1 mm apart of each other. A substantial fraction of neurons in this area showed tuned 

persistent delay activity during the mnemonic delay period of the task (n=206/822, ​6,31–34​). For 
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decoding analyses, we grouped those neurons in simultaneously recorded ensembles (total 

of n=94 neural ensembles, 1-6 neurons per ensemble, Supplementary Fig. 1a). ​All 

experiments were conducted in accordance with the guidelines set forth by the US National 

Institutes of Health, as reviewed and approved by the Yale University Institutional Animal 

Care and Use Committee.  

 

Human participants and behavioral task. ​Thirty-five (35) neurologically and psychologically 

healthy volunteers with normal or corrected vision (EEG experiment n=15 (4 male), 21.27 ± 

4.86 years, (mean ± std); TMS experiments n=20 (6 male), 29.86 years ± 9.55 years (mean 

± std)) from the Barcelona area provided written informed consent and were monetarily 

compensated for their participation, as reviewed and approved by the Research Ethics 

Committee of Hospital Clínic (Barcelona). During both EEG and TMS experiments, each 

participant performed two sessions of approximately 1.5 h. To perform behavioral and EEG 

analyses, we concatenated the two sessions for each subject. Stimuli were presented on a 

17’’ HP ProBook using Psychopy (version 1.82.01) viewed at a distance of 65 cm. The TMS 

study consisted of a first experiment with 10 subjects, and a pre-registered replication 

experiment (​https://osf.io/rguzn/​) with 10 more subjects (Supplementary Figs. 6-8). For all 3 

studies (one EEG and two TMS experiments), we recruited independent subject pools. 

 

In each 1.5 h EEG session, participants completed 12 blocks of 48 trials (except for one 

participant, who completed 12 blocks in one, and 11 blocks in the second session). Each 

trial began with the presentation of a central black fixation dot (.5 x .5 cm) on a gray 

background. After 1.1 s of fixation, a single colored circle (stimulus, diameter 1.4 cm) 

appeared for .25 s at any of 360 circular locations at a fixed radius of 4.5 cm, randomly 

sampled from a uniform distribution. In 66.67% of trials (a total of 768 trials per subject), the 

stimulus was followed by a 1 s delay in which only the fixation dot remained visible. In the 
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remaining trials, the delay duration was either 3 s (16.67% of trials, 192 trials per subject) or 

0 s (16.67% of trials, 192 trials per subject). Trials with 0 s delay were excluded from the 

analyses in this study. The change of the fixation dot color (from black to the stimulus color) 

instructed participants to respond (response probe). Participants responded by making a 

mouse click at the remembered location. A transparent circle with a white border indicated 

the stimulus’ radial distance, so the participant was only asked to remember its angular 

location. After the response was given, the cursor had to be moved back to the fixation dot to 

self-initiate a new trial (median 1.5 s). Participants were instructed to maintain fixation during 

pre-stimulus fixation, stimulus presentation, and delay and were free to move their eyes 

during response and when returning the cursor to the fixation dot. Colors (1 out of 6 colors 

with equal luminance) were randomly chosen with equal probability for each trial. 

 

Stimuli and trial structure in the TMS task were similar to the EEG task, except for the 

fixation period duration (0.6 s) screen background (white), stimulus color (black), and 

response probe color (red). At the end of the fixation period (16.7 ms prior to stimulus onset), 

a single TMS pulse was applied in half of vertex trials (weak/strong tms or sham trials), and 

in two thirds of prefrontal trials (weak, strong or sham trials). See TMS details below. Only 

delays of 1 s were used in this experiment. Participants completed 4 blocks of 90 (vertex) 

and 4 blocks of 130 (PFC) trials within each session. In the first TMS study, these 8 blocks 

were randomly shuffled for each session. In the replication TMS study, we successively 

alternated vertex and PFC blocks within each session, and the 2 sessions of a given 

participant started alternatively with each area in a counterbalanced design. 

 

EEG recordings and preprocessing. ​We recorded EEG from 43 electrodes attached directly 

to the scalp. The electrodes were located at Modified Combinatorial Nomenclature sites Fp1, 

Fpz, Fp2, AF7, AFz, AF8, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, A1, T7, C5, C3, Cz, 
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C4, C6, T8, A2, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, PO7, PO3, POz, PO4, PO8, 

O1, Oz and O2. Sites were referenced to an average of mastoids A1 and A2 and 

re-referenced offline to an average of all electrodes. We further recorded horizontal EOG 

from both eyes, vertical EOG from an electrode placed below the left eye and ECG to detect 

cardiac artifacts. We used a Brainbox® EEG-1166 EEG amplifier with a .017-100 Hz 

bandpass filter and digitized the signal at 512 Hz using Deltamed Coherence® software 

(version 5.1). 

We visually identified and excluded outlier trials based on each trial’s EEG summary 

statistics (variance and kurtosis of samples within segmented periods of time). To reduce 

artifacts in the remaining data, we ran an independent component analysis (ICA) on the 

trial-segmented data and corrected the signal for blinks, eye movements, and ECG signals, 

as identified by visual inspection of all components. Data were Hilbert-transformed (using the 

FieldTrip function “ft_freqanalysis.m”) to extract frequencies in the alpha-band (8-12 Hz) and 

total power was calculated as the squared complex magnitude of the signal. Finally, we 

excluded trials in which lognormal alpha-power at any electrode exceeded the time-resolved 

trial average of lognormal alpha-power by more than 4 standard deviations. In total, we 

rejected an average of 1.87% ± 1.24% (mean ± std) of trials per participant. Excluding 

rejected trials and trials with 0 sec delay, we used 935.12 ± 29.03 trials per participant. To 

concatenate data from the two sessions for the same subject, we normalized each session's 

alpha-power for each electrode separately. 

 

Transcranial Magnetic Stimulation​. Stimulation was performed in the TMS study using a 

Magstim Rapid 2 machine with a 70 mm figure-of-eight coil. TMS target points were located 

using a BrainSight navigated brain stimulation system that allowed coordination of the coil 

position based on the participant’s structural MRI (sMRI) scan. A region of interest in dlPFC 

was defined using NeuroSynth ​56​ term-based meta-analysis of 53 fMRI studies associated 
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with the key phrase ‘spatial working memory’. This mask was transformed into each 

subject’s sMRI space. Vertex target points were defined using 10-20 measurement system. 

Stimulator intensity, coil position, and coil orientation were held constant for each participant 

for the duration of each session. In order to mask the sound of TMS coil discharge, we had 

participants listen to white noise through earphones for the duration of the session. White 

noise volume was selected based on participant threshold for detecting TMS click using the 

staircase method (2-up, 1-down). Stimulation intensity was determined by the 

individually-defined resting motor threshold (RMT). We applied 2 different TMS intensities at 

70% RMT (weak-tms) and 130% RMT (strong-tms), depending on the trial (see text). To 

reduce the number of trials per session, we applied strong-tms at Vertex in the original 

study, but weak-tms for the replication study (pre-registered at ​https://osf.io/rguzn/​, 

Supplementary Figs. 7 and 8). The stimulation parameters were in accordance with 

published TMS guidelines ​57​. In a post-experiment debriefing session, we collected 

information about the subjective experience of the participants. Many participants (13 out of 

20) reported facial muscle twitching in dlPFC blocks. This is an unlikely explanation for the 

effects observed in Fig. 6 because (1)  twitching is expected to increase with TMS intensity 

but we instead observed a non-linear dependency in our effect (Fig. 6b), and (2) behavioral 

performance in our task as measured by the precision of the responses was not modulated 

by TMS intensity in dlPFC blocks (linear mixed model as described below: θ ​e​
2​ ~ ​intensity​ + 

(1|​subject​), p>0.5), suggesting that our reported intensity-dependent effect (Fig. 6b) was not 

the result of a general behavioral impairment caused by facial twitching.  

 

Serial bias analysis 

Human.​ ​For each trial, we measured the response error ( ) as the angular distanceθe  

between the angle of the presented stimulus and the angle of the response. To exclude 

responses produced by guessing or motor imprecision, we only analyzed responses within 
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an angular distance of 1 radian and a radial distance of 2.25 cm from the stimulus. Further, 

we excluded trials in which the time of response initiation exceeded 3 s, and trials for which 

the time between the previous trial’s response probe and the current trial’s stimulus 

presentation exceeded 5 s. On average, 2.99% ± 4.51% (mean ± std) of trials per participant 

were rejected. 

 

We measured serial biases as the average error in the current trial as a function of the 

circular distance between the previous and the current trial’s target location ( ) in slidingθd  

windows with size  and in steps of . To increase power and correct for global/3π /20π  

response biases, we calculated a ‘folded’ version of serial biases as follows ​58​. We multiplied 

trial-wise errors by the sign of : , and used absolute values of θd  θ )θ′e =  e * sign(θd .θd  

Positive mean folded errors should be interpreted as attraction towards the previous stimulus 

and negative mean folded errors as repulsion away from the previous location. For 

difference in serial bias analyses (Fig 5f), we averaged folded errors for close prev-curr 

distances (between 0 and )./2π  

 

Monkey. ​In contrast with the human experiments, the stimulus distribution was discrete for all 

the monkey experiments. On each trial, the subject was cued to 1 of 8 possible cue locations 

equidistant on a circle. This restricted the minimal angular distance between cues in two 

consecutive trials to be . To have a finer resolution to calculate serial biases, we/4π  

capitalized on the response variability on each trial: we computed  as the distanceθd  

between the current trial’s stimulus and the previous trial’s response (instead of the previous 

trial’s stimulus). Similar methods to humans were used, except for Fig. 1a, where we used 

smaller sliding window sizes (  in steps of , essential to capture the thinner/10π /100)π  

attractive serial bias profile in monkeys (Fig. 1a). We attribute specific differences in our 

monkey and human serial bias curves (Fig. 1a, 2a) to our specific monkey samples, as 
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studies with larger samples (5+2) have reported monkey behavioral biases more consistent 

with the human literature ​24,28​.  

 

Statistical methods  

Unless stated otherwise, all hypothesis testing were two-tailed (permutation tests or 

bootstrap hypothesis test, n=10 ​6​) and confidence intervals (c.i.) are at [2.5, 97.5] percentiles 

of a bootstrapped distribution. Using bootstrap distributions, we avoid assuming normality for 

our statistical tests. One exception was the linear model used for TMS data analyse, in 

which normality was assumed. Supplementary Fig. 9 shows the distribution of residuals of 

this model and corresponding qqplot. There was a significant deviation from normality in 

extreme values. This did not compromise our statistical inference, because of the large 

sample size (n= 18299) ​59​ and because the interaction of interest was confirmed by 

model-free analyses (Fig. 6, Supplementary Fig. 6-8).To test the effect of TMS on serial 

biases, we fit a linear mixed-effects model using the R function ​ lme​ ​60​. ​In particular, we 

modeled trial-wise behavioral errors as a linear model with interaction terms for ​coil θe  

location (PFC vs. vertex)​, TMS ​intensity (strong-tms, sham, and weak-tms)​ and the sine of 

(​prev-curr​), which approximates the expected dependency of θ ​e​ on  in the presence ofθd θd  

serial biases  We incorporated the non-linear dependency of serial bias onθ  ∝ sin(θ )).( e d  

stimulation intensity that our model simulations predicted, by using -1, 0 and 1 for 

strong-tms, sham and weak-tms, respectively. In one model, we used instead the nominal 

percent of RMT TMS intensity used (70, 0, 130, respectively) for comparison (Fig. 6b). We 

accounted for subject-by-subject variability by including random-effect intercepts and 

random-effect coefficients of​ prev-curr​. The full, three-way interaction model was:  

 

~ coil location * intensity * prev-curr + (1 + prev-curr | subject).θe   
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Decoding stimulus information  

 

Monkeys. 

Population decoder. ​For each recorded ensemble, we decoded stimulus in trial byθj j   

modelling it as a linear combination of the spike counts of simultaneously recorded neurons 

 computed in sliding windows of 0.5 s and steps of 0.1 s during that trial:,ni   

 

  

 

For each set of neurons, we trained two sets of weights and on 80% of randomly βi ωi  

selected trials and tested in the remaining trials. We applied Monte-Carlo cross-validation 

with 50 random splits to obtain angle estimates  We obtained a measure of error (​err​) by. θjˆ  

averaging across splits the mean absolute error ( ) in each split. θ|
| j

ˆ − θj ||  

 

Accuracy of ensembles: Distance from shuffle.​ To establish the significance of decoding 

accuracy  we compared each ensemble’s decoding error , to the distribution ofz),( err)(  

decoding errors in 1,000 shuffled stimulus sequences . By shuffling the list of stimulierr )( s  

presented in the particular recording of each ensemble, we maintained the characteristics of 

the distribution (e.g. unbalanced distribution of stimuli), but effectively destroyed correlations 

between stimuli and neural activity.  
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In Fig. 1c and Supplementary Fig. 1b, we tested separately ensembles that had the 

strongest and weakest decoding accuracy in the delay by obtaining  from spike counts inz  

the delay period, and classifying the ensembles based on : ensembles within the top tertilez  

(​high-decoding delay​ ensembles), and those in the bottom tertile (​low-decoding delay 

ensembles).  

 

Accuracy of single trials: Leave-one-out decoder.​ To measure stimulus information on a 

trial-by-trial basis, we used leave-one-out cross-validation. We regressed the  and βi ωi  

weights in all trials, except the one left out for testing. For these analyses we computed spike 

counts in windows of 1 s in steps of 50 ms. 

 

Humans. 

Linear decoder. ​EEG alpha power is known to decrease in occipital sites contralateral to 

attended locations and locations being actively maintained in working memory ​35,41,42,61​. We 

used this feature to decode the stimulus’ angular position from the distribution of alpha 

power over all 43 electrodes. We trained the decoder on the previous trial’s stimulus label 

and decoded this information throughout previous and current trial. Trialwise alpha power for 

each electrode was modeled as a linear combination of a set of regressors representing the 

stimulus location in the corresponding trial, where is a  matrix of alphaWM ,U =    U  × KJ  

power measured at electrode  in trial ,  ​is the  design matrix of values forj k M  × KN  

regressor in trial , and  is the  weight matrix, mapping the weight for regressor n k W  × NJ  

 to electrode .  and  (determined by the stimulus, see below) were given by then j U M  

experiment, while  was fitted using least squares (see below).W  

 

Design matrix M. ​The design matrix  is a set of eight regressors  representingM M n  

expected “feature activations” ​62​ for feature  in trial . The value of regressor  in trial n k M n k  
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was determined as , where  indicates which one ofsin(nπ/8 s π/8 π/2) || −  k +  7 [0 .. 7]sk =   

eight angular location bins (width π/8 rad) included the stimulus shown in trial .k  

 

Similar to monkey analyses, we measured single-trial stimulus representations using 

leave-one-out cross-validation, ensuring equal number of trials from each location bin in the 

training set (  and ). We estimated the weight matrix  and the left-out trial ’s designU t M t Ŵ k  

matrix by:M k  

 

 

 

For each trial and time point, we repeated this analysis 100 times with randomly chosen 

training sets (except for the temporal generalization matrix, for which 10 repetitions were run, 

Fig 2b), and averaged over all repetitions. Finally, we estimated the predicted angle asM̂  θ̂k  

the direction of the vector sum of feature vectors with length  pointing at angular locationM̂nk  

bin centers  (​n​=1..8). ​Trialwise decoding strength ​was then defined as nπ/8bn =   

os(θ ).c k̂ − θk  

 

Cross-temporal decoding.​ To explore the temporal generalization of the mnemonic and the 

response code over time, we trained decoders in independent time windows of the previous 

and current trial, and tested them in all time points of consecutive trials (from .25 s to 1.25 s 

after previous stimulus onset (Fig. 2c, left), -.25 s to .25 s after previous response (Fig. 2c, 

middle), and -1.25 s to .25 s after the current trial’s stimulus onset (Fig. 2c, right)). For the 

temporal generalization matrix (Fig. 2b), we averaged training and test data over 50 samples 

(≈ 97.77 ms). High-resolution time courses of mnemonic and response code (Fig. 2c) were 

obtained by training the decoder on averaged data from 0.5 s to 1 s after previous stimulus 
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onset and -.25 s to .25 s relative to the response time (dashed lines in Fig. 2b), respectively, 

and by testing on averaged data from five samples (≈ 9.77 ms) through consecutive trials.  

 

Preferred location 

We computed the preferred locations of each neuron. Similar to ref. ​6​, preferred location was 

determined by computing the circular mean of the cue angles (0° to 315°, in steps of 45°) 

weighted by the neuron’s mean spike count over the delay period (3 s) following each cue 

presentation. 

 

Cross-correlations 

Dataset.​ For the estimation of functional connectivity we estimated cross-correlations by 

computing the jittered cross-covariances ​63​ of spike counts from simultaneously recorded 

neuron pairs, whose preferred locations where separated by a maximum of 60º (n=67). We 

included pairs of neurons recorded from the same electrode (n=21) and pairs recorded from 

different electrodes (n=46), and we confirmed that the results held when analyzing only pairs 

from different electrodes (Fig. 3c, ​exc​ p=0.01, n=20; ​inh​ p=0.04, n=13, one-sided 

permutation test). For each pair we selected those trials where the presented cue fell within 

the preferred range (​pref​, within 40º from either preferred locations) or outside the preferred 

range ​ ​(​anti-pref​, all the other trials). We discarded those trials without at least 1 spike for 

each neuron in the pair.  

 

Jittered cross-covariance. ​We used the Python function scipy.signal.correlate to compute 

cross-covariances between spike trains of simultaneously recorded pairs. Spikes were 

counted in independent windows of 10 ms ​38,64​. For each trial, 1000 jittered 

cross-covariances were computed as follows ​63​. We shuffled the spike counts within 

non-overlapping windows of 50ms and computed cross-covariance for each of these jittered 

 
43 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2019. ; https://doi.org/10.1101/763938doi: bioRxiv preprint 

http://f1000.com/work/citation?ids=82949&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=717024&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=277152,7172367&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=717024&pre=&suf=&sa=0
https://doi.org/10.1101/763938
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

spike counts. This captured all the cross-covariance caused by slow dynamics (>50ms) but 

destroyed any faster dynamics.  Finally, we removed the mean of these jittered 

cross-covariances from each trial’s cross-covariance, ending up with correlations due to 

faster dynamics (<=50ms). We considered the magnitude of the central peak of the 

cross-covariance in our analyses by averaging 3 bins (+1/-1 bin from the zero-lag bin). For 

the time resolved cross-correlation function (Fig. 3c,d), we repeated this process for sliding 

windows of 1 s and steps of 50ms, and averaged across trials and neuronal pairs. 

 

Putative excitatory and inhibitory interaction. ​Similarly to ref. ​36​, based on the average central 

peak of the cross-correlation function in the whole trial [-4.5 s, 2.5 s], we classified each pair 

into 3 subgroups: 1) those with positive peak for both preferred and anti-preferred trials were 

classified as putative ​excitatory ​interactions​ ​(​exc​),​ ​2)​ ​those with negative peak for both 

preferred and anti-preferred trials were classified as putative ​inhibitory​ interactions​ ​(​inh​)​ ​and 

3) we discarded those with inconsistent peak sign between ​pref​ and ​anti-pref​ trials. In total, 

we analysed the cross-correlation time course of n=47 pairs of neurons (n=27 ​exc​ and n=20 

inh​; from the same electrode n=20 ​exc​ and n=13 ​ inh​). 

 

Delay rate vs ITI cross-correlation analyses.​ In Fig. 3e we sought evidence for an interplay 

between attractor and subthreshold network dynamics in PFC. To this end, we computed the 

trial-by-trial correlation between the cross-covariance peak (see above) in the ITI - at a time 

point when there was no firing rate tuning (​activity-silent ​period ​, ​Fig. 3d) - and the mean 

firing rate of the two neurons at the end of the preceding delay period (last 2 seconds, 

delay-fr​, Fig. 3e), for ​exc ​interaction pairs under the ​pref​ and ​anti-pref ​condition (see above). 

A local activity-dependent subthreshold mechanism for ITI memory traces predicts that for 

pref​ trials, but not for ​anti-pref​ trials, firing rate variations in the delay period determines the 

degree of latent variable loading (cross-covariance peak) in the ITI (Fig. 3e). 
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Simulating bump reactivation 

We used a previously proposed computational model ​39,65,66​ to study serial dependence 

between two consecutive trials. The model consists of a network of interconnected 2048 

excitatory and 512 inhibitory leaky integrate-and-fire neurons ​67​. This network was organized 

according to a ring structure: excitatory and inhibitory neurons were spatially distributed on a 

ring so that nearby neurons encoded nearby spatial locations. Excitatory connections were 

all-to-all and spatially tuned, so that nearby neurons with similar preferred directions had 

stronger than average connections, while distant neurons had weaker connections. All 

inhibitory connections were all-to-all and untuned. Network parameters were taken from 

(Compte et al. 2000) except for:  

 

0.1 nS, G 0.192 nS,GEE, AMPA =   EI , AMPA =   

0.42 nS, G .49 nS,  GEE, NMDA =   EI , NMDA = 0   

.7413  nS, G .9163 nS,GII , GABA = 0  IE, GABA = 0  

.8 nS, g .915 nS,gext, I = 5  ext, E = 5  

 deg.7.1, σ 8, J  .2, σ 32J+
EE =   EE = 1  +

EI = J+
IE = 2  EI = σIE =   

 

Short-term plasticity.​ Simulation of “activity-silent” mechanisms during the inter-trial period, 

was done by adding two more variables  and , as described in refs. ​11,68​ , to excitatoryx u  

presynaptic neurons: 
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With ​t ​sp​ marking all spike times and  being the Dirac delta function. We used ​parameters(t)δ  

. ​The effective conductance of each excitatory synapse.2, τ .2 ms, τ  500 msU = 0  x = 0  x = 1  

was then , with  being the corresponding maximum conductance parameter (see⋅u⋅xg g  

above). These short-term plasticity dynamics affected only AMPAR-mediated recurrent 

connections in the network.  

 

Stimulation and behavioral readout.​ External stimuli were fed into the circuit as weak inputs 

(0.25 nA) to neurons selective to the stimulus as described in Compte et al. (2000). Each 

simulation of our computational model consisted in two trials run in sequence: a first stimulus 

of duration 250 ms, a first delay period of 1000 ms, a network resetting input (nonspecific 

current -2.61e-10 nA, duration 300 ms), an intertrial interval of duration 1300 ms, a second 

stimulus (250ms) and a second delay period of 1000 ms. The first and second cue stimuli 

were independently drawn randomly from 360 uniformly distributed angular values, and only 

the network readout of the second trial was analyzed to obtain a “behavioral readout”. The 

readout was obtained with a “bump tracking” procedure: starting at cue presentation the 

instantaneous network readout was derived as the angular direction of the population vector 

of single-neuron firing rates​ (computed in windows of 250 ms, sliding by 100 ms)​ considering 

the ​ ±100 neurons​ surrounding the readout estimated in the previous time step. The 

instantaneous readout was iteratively derived to track the center of the bump (and ignoring 

possible elevated activity extending from the fixation period) and the final behavioural output 

was defined as the readout in the last 250 ms of the trial. Serial bias was calculated by 

measuring single-trial errors (behavioral readout minus target location) in relation to 

previous-current distance of stimulus cue values, as described above for experimental data. 

 

Consecutive trials and re-ignition. ​Re-ignition of previous trial stimulus during the re-ignition 

period (300 ms before the second stimulus onset) was accomplished stimulating all 

 
46 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2019. ; https://doi.org/10.1101/763938doi: bioRxiv preprint 

https://doi.org/10.1101/763938
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

excitatory neurons with a non-specific external stimulus. This stimulus increased 

exponentially with a rate s​-1​ as , with being the reactivation strength0 α = 1 (1 e )β −  −α(t−t )0 β  

and ​t​0​ the time of onset of the stimulus. Reactivation strength was weak ( 0.17 nA) orβ =  

strong ( 2.9 nA).β =   

 

Rate and synaptic tuning. ​For each simulation in Fig. 3a,b we computed the firing rate (r) 

and synaptic (s = u・x) tuning, by computing for both measures the difference between 

neurons within (± 50º) and outside (180º ± 50º) the previous bump location.  
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