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ABSTRACT 
 
Individuals vary in their liability to develop Posttraumatic Stress Disorder (PTSD), the 

symptoms of which are highly heterogeneous, following exposure to life-threatening 

trauma. Understanding genetic factors that contribute to the biology of PTSD is critical 

for refining diagnosis and developing new treatments. Using genetic data from more 

than 250,000 participants in the Million Veteran Program, genomewide association 

analyses were conducted using a validated electronic health record-based 

algorithmically-defined PTSD diagnosis phenotype (48,221 cases and 217,223 controls), 

and PTSD quantitative symptom phenotypes (212,007 individuals). We identified several 

genome-wide significant loci in the case-control analyses, and numerous such loci in the 

quantitative trait analyses, including some (e.g., MAD1L1; TCF4; CRHR1) that were 

associated with multiple symptom sub-domains and total symptom score, and others 

that were more specific to certain symptom sub-domains (e.g., CAMKV to re-

experiencing; SOX6 to hyperarousal). Genetic correlations between all pairs of symptom 

sub-domains and their total were very high (rg 0.93 – 0.98) supporting validity of the 

PTSD diagnostic construct. We also demonstrate strong shared heritability with a range 

of traits, show that heritability persists when conditioned on other major psychiatric 

disorders, present independent replication results, provide support for one of the 

implicated genes in postmortem brain of individuals with PTSD, and use this information 

to identify potential drug repositioning candidates. These results point to the utility of 

genetics to inform and validate the biological coherence of the PTSD syndrome despite 

considerable heterogeneity at the symptom level, and to provide new directions for 

treatment development. 
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INTRODUCTION 
 
Posttraumatic stress disorder (PTSD) is a common mental disorder that can occur after 

exposure to extreme, life threating stress (American Psychiatric Association, 2013). 

Although most Americans (50-85%) experience traumatic events over a lifetime, most do 

not develop PTSD – lifetime PTSD prevalence is approximately 7% (Kessler and Wang, 

2008), suggesting differential resilience to stress and vulnerability to the disorder (Atwoli 

et al., 2015). There is a substantial heritable basis for PTSD risk (Stein et al., 2002; Wolf 

et al., 2018), and evidence from genome-wide association studies (GWAS) shows that 

PTSD, like other mental disorders (Sullivan et al., 2018), is highly polygenic (Benjet et 

al., 2016; Daskalakis et al., 2018; Duncan et al., 2018; Nievergelt et al., 2018; Stein et 

al., 2016; Xie et al., 2013). 

 

PTSD symptoms vary widely among individuals, with the current DSM-5 definition 

permitting up to 163,120 unique conformations for assembly of the disorder (Galatzer-

Levy and Bryant, 2013).  Recognizing that this phenotypic heterogeneity may impair the 

detection of genetic risk factors (Stein, 2018), alternate phenotypes or sub-phenotypes 

that may reflect biologically more homogeneous entities have been examined. One such 

approach that we have used is to focus on a core component of the PTSD phenotype, 

re-experiencing (in DSM-IV, and referred to in DSM-5 as intrusion) symptoms, which has 

revealed numerous genome-wide significant risk loci, including some that had long been 

a priori functional candidates (e.g., CRHR1) (Gelernter et al., 2019). An additional 

advantage to looking at sub-phenotypes is the ability to measure them continuously, 

enabling the incorporation of more information and larger informative sample sizes (and 

therefore greater power) than is possible with a case-control design. Other approaches 

to surmounting phenotypic heterogeneity include the accrual of ever larger sample sizes, 

which has proven effective for other mental disorders such as schizophrenia (Sullivan et 

al., 2018) and major depression (Wray et al., 2018). The largest PTSD GWAS study to 

date, conducted by the PTSD Working Group of the Psychiatric Genomics Consortium 

(PGC-PTSD) included approximately 30,000 cases (Nievergelt et al., 2018), still 

moderately-powered by contemporary GWAS standards, assimilating information from 

over 60 separate heterogeneous sources. The use of biobanks with relatively large 

numbers of PTSD cases offers the opportunity to provide unprecedented sample size, 

ascertain granularity of symptoms and associated comorbid conditions and, importantly, 

uniformity of phenotypic and genotypic platforms (Radhakrishnan et al., 2019). 
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The current investigation was conducted within the US Veterans Affairs Million Veteran 

Program (MVP) (Gaziano et al., 2016) and included several PTSD phenotypic 

definitions: a validated, algorithmically-defined [binary] case-control approach using data 

from the electronic health record (EHR); and a quantitative trait approach encompassing 

sub-phenotypes based on recent self-reported symptoms: re-experiencing (in an 

expanded sample from that previously reported (Gelernter et al., 2019)), avoidance, 

hyperarousal and a total index of recent symptom severity (PCL total). Heritability of 

each of these phenotypes as well as observed (phenotypic) and genetic (rg) correlations 

were examined with the aim of determining coherence among them; rg with other 

behavioral and health-related traits were also examined. Results for the phenotype with 

greatest estimated heritability in MVP were replicated in an external dataset using 

polygenic risk scores (PRSs) (Wray et al., 2014) from MVP-PTSD as predictors of PTSD 

case-control status in PGC-PTSD Freeze 2.0 (Nievergelt et al., 2018). Postmortem brain 

expression analysis (Girgenti and Duman, 2018) was subsequently used to validate key 

GWAS observations. Additional post-GWAS analyses included enrichment (tissue; 

pathway) and transcriptome-wide (Gamazon et al., 2015) analyses.  Phenome-wide 

analysis (PheWAS) was conducted for the top GWAS hits against the VA-MVP EHR 

(Bush et al., 2016; Smoller, 2018) and possible drug candidates for repositioning were 

identified using publicly available drug-genomic databases. 

 

Aims of these analyses are to provide (1) the largest single-source GWAS of PTSD to 

date with the greatest multi-ethnic representation, (2) with replication of key associations 

in other datasets, along with ascertaining biological and clinical meaning by (3) 

exploration of brain regions and cell types implicated. These aims were all accomplished 

with the overarching goal of advancing biological understanding and identifying targets 

for (pharmacological and other) intervention and advancing precision medicine for 

PTSD. 
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RESULTS 

GWAS and GWGAS of EHR Algorithmically Defined Case-Control PTSD 
We performed genomewide association analysis (GWAS) of PTSD in American 

Veterans of European (EUR) and African (AFR) ancestry (initially separately, then meta-

analyzed together) basing diagnosis on a validated VA EHR algorithm (Harrington et al., 

2019) that had excellent discriminative ability for lifetime PTSD cases vs. controls as 

determined by chart review (0.90 sensitivity, 0.97 specificity, 0.87 positive predictive 

value, and 0.90 negative predictive value), and substantial agreement with gold-standard 

Clinician-Administered PTSD Scale (CAPS) interview (90.2% agreement and κ = 0.75 

[95% CI: 0.62, 0.88]) (Radhakrishnan et al., 2019). 

 

GWAS was carried out (on two tranches of data, distinguished by time when genotype 

results were available) on SNP dosages imputed from 1000 Genomes phase 3 using 

logistic regression in PLINK 2.0, separately by ancestry, adjusting for age, sex, and the 

first 10 principal components of ancestry.  Meta-analysis by tranche (and later by 

ancestral group) was performed using METAL (Willer et al., 2010). The intent of our 

study was to conduct GWAS in combat exposed Veterans (Radhakrishnan et al., 2019), 

but combat exposure information was available for only a subset (51.2%) of the sample 

(Table 1), and GWAS of that subset yielded no genomewide significant (GWS) findings.  

However, genetic correlation [rg] between the categorical trait (i.e., diagnosis of) PTSD in 

those combat-exposed and in all subjects irrespective of combat exposure status was 

0.969 ([se 0.049] p = 7.64x10-89), and therefore results for the latter larger, more 

informative, sample are presented here. 

Table 1. Sample sizes and descriptive characteristics of participants 

  European Ancestry African Ancestry 

  Case Control All Case Control All 

N 36301 178107 214408 11920 39116 51036 

Mean age (years) 58.29 67.19 65.68 57.07 59.91 59.25 

Female 6.6% 5.2% 5.6% 12.0% 10.8% 11.1% 

Combat exposure:             

     Exposed to combat 40.0% 25.0% 27.5% 23.9% 9.4% 12.8% 

     Not exposed to combat 5.8% 34.1% 29.3% 5.2% 18.1% 15.1% 

     Unknown exposure to combat 54.2% 40.9% 43.1% 70.9% 72.5% 72.1% 
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The categorical trait (diagnosis) GWAS for the EUR sample included 36,301 

algorithmically defined probable PTSD cases and 178,107 controls. Considering LD 

independent loci (r2 > 0.1), we identified three distinct GWS (p < 5x10-8) genomic risk loci 

(Figure 1 [top] and Table 2) on Chr11:28707675, rs10767744, (p=1.75x10-10) nearest to 

METTL15; on Chr7:70219946, rs137999048, (p=1.03x10-8) nearest to AUTS2; and on 

Chr7:1855531, rs7680, (p=4.17x10-8) nearest to MAD1L1, respectively.  
 
 
Table 2. Genomewide significant (p < 5x10-8) findings with lead SNPs for EUR case-control 
GWAS (36,301 cases and 178,107 controls) 
 

LD 
Independent 

Lead SNP 
Chr 

Effect 
Allele 

(Frequency) 
Odds Ratio  

(95% CI) P-value BP 
(GRCh37) 

Nearest 
Gene 

rs10767744 11 C  
(0.3911) 

0.945 
[0.929-0.962]  

1.75E-10 28707675 METTL15 

rs137999048 7 CCA 
(0.0473) 

1.123 
[1.079-1.168] 1.03E-08 70219947 AUTS2 

rs7680 7 G 
(0.1411) 

0.931 
[0.908-0.955] 4.17E-08 1855531 MAD1L1 

 
 

We also conducted genomewide gene-set-based association tests (GWGAS) using 

MAGMA (de Leeuw et al., 2015), which identified 8 additional genes (Table 3 and 

Figure 1 [bottom]) significantly associated with PTSD diagnosis. 
 
 
Table 3. Genomewide significant (p = 0.05/17,927 = 2.79×10-6) findings for EUR PTSD case-
control GWGAS 
 

GENE CHR BP START BP STOP 
SNPS 

(N) 
Z 

SCORE P-value 
OPN1SW 7 128412545 128415844 13 5.086 1.83E-07 
CALU 7 128379346 128411861 86 4.9023 4.74E-07 
LEMD1 1 205350506 205425082 270 4.8115 7.49E-07 
LXN 3 158363611 158390482 102 4.7231 1.16E-06 
MOV10 1 113215763 113243368 63 4.6828 1.41E-06 
GFM1 3 158362067 158410364 187 4.6128 1.99E-06 
SND1 7 127292234 127732661 787 4.6052 2.06E-06 
CDC16 13 115000362 115038198 108 4.5731 2.40E-06 
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Figure 1. Top: Manhattan Plot of EUR Case-Control PTSD Phenotype GWAS 

    Bottom: Manhattan Plot of EUR Case-Control PTSD Phenotype GWGAS 

The GWAS for the AFR sample included 11,920 algorithmically-defined probable PTSD 
cases and 39,116 controls. We identified two distinct GWS loci, one on Chr3:1259951, 

rs4684090 (p=3.59x10-8) intronic to CNTN6 and one on Chr20:6724577, rs112149412 

(p=3.18x10-8) near BMP2. GWGAS using MAGMA identified two additional genes 

(MAPK13 on Chr6 and CDC14B on Chr9). 

GWAS for the 48,221 cases and 217,223 controls in the trans-ancestral analysis (i.e., 
meta-analysis of EUR and AFR samples) (data not shown) identified as GWS SNPs in 

two of the same genes found GWS in the EUR GWAS: a different lead SNP on Chr7: 

1959634 (rs137944087, a common indel/deletion) in moderate LD with the variant 

identified in the EUR sample (r2=0.38, D’=0.78), and a different lead SNP on Chr11: 

28678870 (rs10767739) in LD with the variant identified in the EUR sample (r2=0.54, 

D’=0.84). 
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GWAS of PTSD Symptom Sub-phenotypes and Total Symptoms 
The MVP surveys included the PTSD Checklist for DSM-IV (PCL), a widely used 17-item 

self-report measure of past-month PTSD symptoms covering the 3 DSM-IV diagnosis 

components – re-experiencing, avoidance, and hyperarousal – as well as a total 

symptom severity score as the sum of those 3 sub-phenotypes (Blanchard et al., 1996). 

GWAS with these phenotypes in the EUR sample (N = 186,689 individuals) using linear 

regression revealed multiple GWS loci including some that were associated with total 

symptom score as well as multiple symptom sub-domains (e.g., MAD1L1; TCF4; 

TSNARE1), and others that were more strongly associated with certain symptom sub-

domains (e.g., CAMKV to re-experiencing; SOX6 to hyperarousal) (Table 4). The 

overlap in risk loci for the 3 sub-phenotypes and their total is shown in Figure 2 (and as 

stacked Manhattan plots in Figure 3). 

 
Figure 2. Circle Manhattan Plot for PCL phenotypes in European Americans.  The results, from 
outermost to innermost circle, are Total PCL, Re-experiencing, Avoidance, and 
Hyperarousal.  Red dots indicate genome-wide significant findings (p<5x10-8) and yellow dots 
indicate suggestive findings (p<5x10-6).  The numbers around the circle indicate the 
chromosome.  Vertical dashed grey lines are drawn through genome-wide significant findings to 
indicate overlap between analyses. 
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Table 4. Genomewide significant (p < 5x10-8) findings with lead SNPs for EUR PCL Total 
and Sub-Phenotype GWASs (N = 186,689 individuals) 

Total PCL 

LD 
Independent 

Lead SNP 
Chr Effect Allele OR P-value SNP 

location Nearest Gene 

rs542933551 17 AAAAACAAAAC 1.581 2.02E-13 43557054 PLEKHM1 

rs10235664 7 C 0.693 1.82E-11 2086814 MAD1L1 

rs35761884 1 C 0.735 3.46E-10 73787732 LINC01360 

rs111488606 3 CA 1.363 1.72E-09 49864924 TRAIP 

rs13262595 8 G 0.754 2.20E-09 143316970 TSNARE1 

rs2314662 19 C 0.696 3.78E-09 18702515 C19orf60 

rs10171148 2 A 1.324 5.87E-09 22466171 LOC102723362 

rs62465629 7 C 0.675 6.30E-09 110153866 IMMP2L 

rs1496246 11 G 1.346 6.60E-09 133548061 OPCML 

rs251350 5 C 0.775 1.03E-08 140225137 PCDHA1 

rs11507683 9 T 1.512 1.15E-08 140262424 EXD3 

rs599550 18 A 1.484 1.18E-08 53252388 TCF4 

rs4364183 3 A 1.355 1.22E-08 18809536 SATB1-AS1 

rs62417832 6 T 1.339 2.90E-08 88640221 SPACA1 

rs111950471 5 TATTA 0.758 4.34E-08 107450098 FBXL17 

Re-
experiencing 

LD 
Independent 

Lead SNP 
Chr Effect Allele OR P-value SNP 

location Nearest Gene 

rs35371867 18 A 1.105 1.24E-10 53193027 TCF4 

rs2777888 3 G 1.097 2.26E-10 49898000 CAMKV 

rs10235664 7 C 0.899 4.66E-10 2086814 MAD1L1 

rs242925 17 T 0.911 5.50E-10 43888866 CRHR1 

rs139356208 11 CACAAAACAAA 0.914 9.63E-09 28631779 RASEF 

rs1501485 1 G 0.919 1.22E-08 73995259 LRRIQ3 

rs11773880 7 G 0.906 1.97E-08 106540171 PIK3CG 

rs34177209 19 A 1.128 2.34E-08 18474978 PGPEP1 

rs10977193 9 A 0.910 4.17E-08 8542019 PTPRD 

rs6031014 20 G 1.386 4.63E-08 42274460 IFT52 
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Avoidance 

LD 
Independent 

Lead SNP 
Chr Effect Allele OR P-value SNP 

location Nearest Gene 

rs55925547 17 C 1.213 2.08E-13 43556807 PLEKHM1 

rs199913382 17 C 1.193 1.05E-12 44625866 LRRC37A2 

rs35761884 1 C 0.870 9.72E-11 73787732 LINC01360 

rs251350 5 C 0.887 8.15E-10 140225137 PCDHA1 

rs4129585 8 C 0.882 1.25E-09 143312933 TSNARE1 

rs2314662 19 C 0.852 2.74E-09 18702515 C19orf60 

rs62465629 7 C 0.839 3.54E-09 110153866 IMMP2L 

rs62417832 6 T 1.142 7.04E-09 88640221 SPACA1 

rs11507683 9 T 1.201 7.74E-09 140262424 EXD3 

rs10171148 2 A 1.128 1.07E-08 22466171 LOC102723362 

rs10235664 7 C 0.874 2.17E-08 2086814 MAD1L1 

rs1496246 11 G 1.131 3.66E-08 133548061 OPCML 

Hyperarousal 

LD 
Independent 

Lead SNP 
Chr Effect Allele OR P-value SNP 

location Nearest Gene 

rs377112142 17 CT 1.141 3.06E-13 43663455 MAPK8IP1P2 

rs55789728 7 G 0.877 4.62E-13 2107649 MAD1L1 

rs576430065 9 CA 0.886 1.67E-11 96373697 PHF2 

rs140288713 17 A 1.137 3.11E-11 44690708 NSFP1 

rs1496246 11 G 1.109 1.77E-10 133548061 OPCML 

rs547649546 3 CA 0.910 1.59E-09 49789921 IP6K1 

rs2887882 1 T 0.894 1.89E-09 113170389 CAPZA1 

rs7519147 1 T 0.913 1.90E-09 73994416 LRRIQ3 

rs13032994 2 C 0.907 3.73E-09 52709559 NRXN1 

rs113341106 7 GC 1.096 3.82E-09 114039998 FOXP2 

rs12420134 11 G 1.130 6.45E-09 16260861 SOX6 

rs17209774 9 C 0.913 7.97E-09 4145163 GLIS3 

rs60958094 14 T 1.100 1.99E-08 54711168 CDKN3 

rs4129585 8 C 0.919 2.07E-08 143312933 TSNARE1 

rs549326362 5 T 0.915 4.46E-08 107444481 FBXL17 
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Figure 3. Stacked Manhattan Plots for all 4 traits (from top to bottom: total symptoms, re-
experiencing, avoidance and hyperarousal) in the EUR sample 
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MAGMA identified 77 genes that were significant (p = 0.05/15659 = 3.19X10-6) in the 

gene-based analysis of PCL-total score in EUR (Supplemental Table 1). Virtually all 

these genes also had SNPs associated with PCL-total and/or sub-phenotype scores in 

the EUR GWAS (e.g., MAD1L1, TCF4, PLEKHM1, CRHR1) although several new genes 

were also implicated (e.g., WNT3, which is part of the LD block on Chr17 that also 

includes CRHR1).  

 

B.  Heritability of PTSD Phenotypes and Partitioned Heritability 

SNP-chip heritability (on the liability scale, assuming 10% prevalence of PTSD in US 

Veterans) for MVP-PTSD (algorithmic case-control) in EUR using LDSC is 0.064 (se 

0.0055). SNP-chip heritability estimates (on the observed scale) in EUR for the 4 

quantitative traits were not significantly different from one another: PCL-total (0.092 [se 

0.0052]), PCL-reexperiencing (0.093 [se 0.005]), PCL-avoidance (0.093 [se 0.0055]), 

and PCL-hyperarousal (0.101 [se 0.0058]).  Heritability was significantly stronger for the 

PCL-total (z-score = 17.73) than for the algorithmic case control phenotype (z-score = 

11.62) (p=0.0002). Subsequent post-GWAS analyses were therefore conducted, unless 

otherwise specified, on the most genetically informative phenotype, i.e., the PCL-total 

quantitative trait. 
 

Partitioning heritability of PCL-total in EUR revealed 1.32- fold to 1.38-fold enrichment of 

SNPs associated with three GTEx cortical tissue types: brain cortex, brain frontal cortex 

(BA9), and brain anterior cingulate cortex (BA24) (FDR p < 0.05); intronic regions had 

1.27-fold enrichment (p=2.78x10-4). Cell-type analyses support heritability enrichment 

of the frontal cortex (BA9) gene sets (tau-c=4.64x10-9, p=0.002) and frontal cortex (BA9) 

and anterior cingulate cortex (BA24) gene expression profiles (BA9 tau-c=5.30x10-9, 

p=8.41x10-4; BA24 tau-c=6.28x10-9, p=2.26x10-4), above that of all other genomic 

annotations. (Data not shown.) 
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C1.  Phenotypic and Genetic Correlations Across PTSD Phenotypes 

Table 5 shows the phenotypic (above the diagonal) and genetic (below the diagonal) 

correlations in EUR between the algorithmic case-control diagnosis, and each of the 4 

continuous PTSD measures (reexperiencing, avoidance, hyperarousal, and their total). 

As shown, even when phenotypic correlations were modest, genotypic correlations were 

consistently high (> 0.9). 

Table 5. Phenotypic (above diagonal) and genetic (below the diagonal) correlations 
between algorithmic case-control diagnosis, PCL-total, and PCL-sub-scores. Shown are 
point estimates for correlations, 95% CIs, and n (sample size) 

 
* Point-biserial correlations. All others are Pearson correlations. 

 

C2. Genetic Correlation Using LD Score Regression in External Datasets 

In the EUR sample, we estimated genetic correlations between PCL-total score and 

health-related traits available in LDHub. The many significant genetic correlations 

included: depressive symptoms (rg = 0.741, p = 2.26X10-67), neuroticism (rg = 0.637, p = 

2.07X10-47), intelligence (rg = -0.460, p = 5.26X10-34), subjective well-being (rg = -0.393, 

p = 4.90X10-21), and insomnia (rg = 0.489, p = 9.15X10-20) (Figure 4 and Supplemental 
Table 2a). 

 

 

Algorithm* Total PCL Reexp Avoid Hyper

Algorithm* 
h2: 6.4%

0.86
0.857-0.860
n=111362

0.83
0.831-0.835

n=91879

0.82
0.824-0.826
n=110739

0.8
0.796-0.800
n=112133

Total PCL 
h2: 9.2%

0.959
0.903-1.014

0.92
0.923-0.925
n=141076

0.96
0.964-0.965
n=160504

0.93
0.932-0.934
n=162348

Reexp 
h2: 9.3%

0.977
0.903-1.014

0.973
0.966-0.979

0.85
0.849-0.852
n=130341

0.80
0.801-0.805
n=145990

Avoid 
h2: 9.3%

0.915
0.856-0.974

0.984
0.98-0.988

0.931
0.916-0.946

0.85
0.849-0.852
n=159002

Hyper 
h2: 10.1%

0.953
0.896-1.009

0.979
0.972-0.987

0.935
0.919-0.951

0.943
0.929-0.958

0.85
0.849-0.852
n=159002
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Figure 4. LDSC analyses showing traits from LDHub with the most significant genetic 
correlations (rg on the x-axis and -log10 p-value [Bonferroni-corrected] on the y-axis) with PCL-
total in EUR. Blue diamonds indicate statistically significant negative rg; red diamonds indicate 
statistically significant positive rg; black diamonds indicate non-significant rg. 

 

C3. Replication of GWAS Findings 

We compared our top SNP associations from the PTSD case-control and PCL-total 

results against the largest available PTSD external dataset, PGC-PTSD 2.0 (Nievergelt 

et al., 2018). For our case-control phenotype, we used the lead SNPs in MVP, and for 

our continuous PTSD symptom scores (PCL) we considered independent GWS variants 

(r2<0.1).  

 

For the EUR case-control phenotype, there was nominal replication for 1 of 3 SNPs: for 

rs7680*A nearest to MAD1L1, with a beta of -0.0712 (se 0.013, p=4.17x10-8) in MVP 

and a beta of -0.0639 (se 0.0215, p=0.00312) in PGC-PTSD 2.0. For the EUR PCL-total 

symptom scores, there were 6 of 15 possible nominal replications (including, notably, in 

MAD1L1, TSNARE, and EXD3). Details are provided in Supplemental Table 3. 
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We also applied a PRS in EUR for the algorithmic case-control phenotype and the PCL-

total quantitative trait. Both PRSs strongly and significantly predicted into PGC-PTSD 2.0 

with the MVP case-control PRS explaining approximately 0.4% of the variance 

(p=2.4x10-74) in the PGC-PTSD 2.0 phenotype at p-value thresholds (pT) > 0.05, with the 

MVP PCL-total PRS explaining 0.7%-0.8% of the variance (p=2.2X10-134) in the PGC-

PTSD 2.0 phenotype at pT > 0.05  (Figure 5). 

 

 

Figure 5. Polygenic risk score (PRS) from MVP EUR case-control (left) and EUR PCL-total (right) 
applied to PGC-PTSD 2.0 case-control phenotype with varying P-value thresholds (PT) on x-axis 
and explained (R2) on y-axis. 

 

D.  Enrichment in Biological Tissues and Pathways Using MAGMA and PrediXcan 

Results from MAGMA, using the PCL-total EUR results revealed significant enrichment 

according to GTEx V7 in two (cerebellum and cerebellar hemispheres) of 57 tissues. 

 
PrediXcan-S (Barbeira et al., 2018) was used to correlate tissue-specific expression 

determined by association with reference transcriptome datasets with the PCL-total 

quantitative trait results. Significant negative correlation with predicted expression of the 

protein product of the pseudogene LRRC37A4P (aka LRRC37 and LRRC37A4) in brain 

(amygdala, substantia nigra, putamen/basal ganglia, multiple cortical regions including 

anterior cingulate), adrenal gland, and whole blood was observed. Also noted was 
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significant positive correlation with predicted expression of CRHR1 (notably CRHR1-IT1-

CRHR1 readthrough protein) in brain (amygdala, hippocampus), adrenal gland and 

whole blood. (Data not shown.) 

 

E. Postmortem Brain Findings in Subgenual Cingulate Cortex 

Following up on the PrediXcan-S results for CRHR1, postmortem brain tissue from 

subgenual prefrontal cortex (BA25) from subjects with PTSD matched to controls were 

assayed for gene expression changes by quantitative real-time PCR.   Normalized log-

corrected Ct values for CRHR1 were used to calculate fold change.  This analysis 

revealed a significant 1.3-fold increase in CRHR1 expression (Figure 6) (Bonferroni-

corrected P< 0.001, n=22, error bars indicate ± SEM).  There were no significant 

differences in gene expression between subjects with PTSD who were medicated and 

nonmedicated at time of death. 

 
	
Figure 6. Gene expression analysis of target genes in postmortem human BA25. A) Box plots of 
normalized Ct values calculated for CRHR1 in controls (white) and PTSD (red) subjects.  B.) Log 
2-fold change of CRHR1 in human subgenual PFC (Bonferroni corrected, P<0.001, n=22).  Error 
bars indicate ± SEM. 

 

F. Genomic Relationship of PTSD to Major Depression and Other Major Mental 
Disorders 

We used mtCOJO (Zhu et al., 2018) to address the genetic relationship between PTSD 

and other major mental disorders.  By applying the most recent PGC GWAS results for 8 

mental health traits — autism spectrum disorder, major depression, anorexia nervosa, 

anxiety (case-control), alcohol dependence, schizophrenia, bipolar disorder, attention 

deficit hyperactivity disorder (Duncan et al., 2017; Grove et al., 2019; Howard et al., 

2019; Martin et al., 2018; Otowa et al., 2016; Schizophrenia Working Group of the 

Psychiatric Genomics, 2014; Stahl et al., 2019; Walters et al., 2018) — and all the 
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aforementioned traits to our PCL-total quantitative phenotype in EUR, we were able to 

parse out the genetic signal attributable to PTSD alone. PCL-total remained highly 

genetically correlated with the unconditioned GWAS when conditioned on genetically 

correlated psychiatric disorders independently and simultaneously (Figure 7). 

Conditioning with all 8 mental disorder traits significantly reduced the observed-scale 

heritability of PCL-total by 5.10% (PCL-total original h2 = 9.21%, p=1.39x10-67; PCL-total 

conditioned h2 = 4.11%, p=2.61x10-52) relative to the unconditioned GWAS 

(pdifference=1.52x10-13), but this reduction in heritability did not significantly alter 

associations with biological pathways or tissues associated with genetic risk for PTSD 

(Figure 7).  

 

  
 
Figure 7. First figure shows observed scale h2 and rg relative to original PCL-total. Second figure 
shows linear relationship between GO term enrichment in original PCL-total and conditioned 
PCL-total. Third figure shows linear relationship between GTEx tissue enrichment in original PCL-
total and conditioned PCL-total. 
 
 
 
G. PheWAS 
A phenome-wide association study (PheWAS) within the VA-MVP EHR sample 

(N=381,609) of the top GWS SNPs from the PCL-total quantitative trait GWAS revealed 

several directionally consistent (i.e., effect allele associated with increased risk for the 

disorder and for increased PTSD symptoms) and significant (p<3.75X10-5) associations 

with a group of mental disorders (e.g., “anxiety, phobic and dissociative disorders” 

(p=8.74X10-6) in the case of rs11507683 on Chr9 near EXD3; and with mood disorders 

(p=5.3X10-7) and tobacco use disorder (p=1.15X10-6) in the case of rs35761884 on Chr1 

in LINC01360). Also noted were directionally consistent and significant associations with 
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several physical disorders, including rs542933551 (on Chr17 in PLEKHM1) with 

hypothyroidism (p=4.91X10-14) and kidney stones (p=2.12X10-8); and of rs111488606 

(near TRAIP on Chr3) with chronic airway obstruction (p=1.47X10-5). (Data not shown.) 

 

H. Drug Repositioning Analysis 

We selected the GWS genes from the gene-based analysis (conducted using MAGMA) 

of PCL-total, filtered the list by those genes that were also GWS in the GWAS for this 

trait (including CRHR1, which was part of a large LD block in Chr17 and also was 

prominently implicated in the PrediXcan-S analyses, noted above), and added METTL15 

and AUTS2 which were GWS in the case-control analysis. We then imported this list of 

10 genes (MAD1L1, METTL15, AUTS2, TSNARE1, EXD3, PLEKHM1, TCF4, TRAIP, 

C19orf60, CRHR1) into the Drug Gene Interaction Database v3.0 

(dgidb.genome.wustl.edu) (Cotto et al., 2018) to determine if there were interactions with 

available drug treatments that might indicate potential novel drug strategies for PTSD. 

Drug repositioning analysis was also carried out in the Connectivity Map (CMap) 

database (https://www.broadinstitute.org/connectivity-map-cmap) for the same set of 10 

genes (Subramanian et al., 2017). CRHR1 was identified in both databases as being a 

potential drug target with experimental medications available. Given the positive 

association between PTSD symptoms and imputed CRHR1 expression in brain, in 

concert with the direct observation of upregulated CRHR1 expression in postmortem 

PTSD brain, a CRHR1 antagonist would be hypothesized to be potentially therapeutic. 

Also identified was TCF4 in association with drugs such as darinaparsin (an apoptosis 

stimulant under investigation to treat some cancers). CMap also indicated strong 

functional overlap (based on knockdown expression profiles) of TCF4 with PLXNA1 

(CMap expression similarity score = 98) which has as a druggable target the 

acetycholine M2 receptor antagonist otenzepad. Another gene, PLEKHM1, which was 

among the top 3 genes (p = 1.39X10-11) in the GWGAS for PCL-total, was considered by 

CMap as highly likely to share biological effects with several classes of drugs, including 

dopamine receptor antagonists, acetylcholine receptor antagonists, and angiotensin 

receptor antagonists.  
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DISCUSSION 
 
The past decade has seen a proliferation in the use and usefulness of GWAS, with the 

prediction that continued sample size growth will result in even richer findings (Visscher 

et al., 2017).  The field of psychiatric genomics has capitalized on the uses of GWAS, 

with substantial gains made in the understanding of serious mental disorders such as 

schizophrenia, major depression, and bipolar disorder (Smoller, 2019; Sullivan et al., 

2018). The utility and interpretability of the results depend on the data source, including 

the specificity of available phenotype information and the homogeneity of the sample; or, 

if it is heterogenous, whether it is heterogenous in known ways. Notably, PTSD has 

lagged behind these other disorders in assembling adequately powered studies, though 

recent advances are noteworthy (Duncan et al., 2018; Gelernter et al., 2019; Nievergelt 

et al., 2018; Stein et al., 2016). We present here the largest single-source case-control 

GWAS of PTSD to date, and we augment its informativeness with the GWAS of several 

other self-report PTSD phenotypes, including a quantitative trait corresponding to 

symptom severity, which proved more genetically informative than the case-control 

analysis. We examined whether traits that correspond to the main PTSD symptom 

groups employed in clinical diagnosis are related genetically, and the extent to which 

they are related phenotypically in this sample, the largest-ever studied for this purpose. 

This study is the first to compare and contrast genetic risk for PTSD from various 

phenotypic perspectives and, to the best of our knowledge, the first to robustly replicate 

a polygenic signal in an independent case-control sample and, importantly, to replicate 

(nominally) in several specific, newly-identified variants (e.g., in MAD1L1) in external 

datasets. These analyses revealed several genomewide significant (GWS) associations 

with PTSD visible at the case-control level, and numerous GWS associations with 

various dimensions of symptom severity (which included more subjects and more 

information per subject, and therefore were better powered than the analysis based on 

diagnosis). When combined with imputed expression results and enrichment analyses, 

these results help to illuminate the neurobiology of PTSD and, importantly, begin to 

uncover new avenues for therapeutic development.  

 

Derived from the uniquely informative US Veterans Affairs MVP (Gaziano et al., 2016), 

our case-control sample was phenotyped using a validated algorithm applied to EHR 

data with exemplary diagnostic properties (Harrington et al., 2019; Radhakrishnan et al., 
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2019), enabling us to analyze data from over 250,000 genotyped veterans (including 

nearly 50,000 PTSD cases). Moreover, we were able to examine simultaneously 

genomewide associations with several other PTSD phenotypes reflecting various 

aspects of symptom type and severity, respectively. These data highlight the 

tremendous scientific value of EHR-based biobanks and automated phenotyping for 

genomic research (Chen et al., 2018; Smoller, 2018), and even more so, the value of 

collecting relevant self-report data such as the PCL. Biobanks have specific subject and 

ascertainment characteristics; the nature of the MVP makes it uniquely suitable for study 

of PTSD, a disorder that occurs at increased rates in military veterans. 

 

This is the first study to directly compare heritability of binary (diagnostic) and continuous 

(symptom-based, including symptom subsets) phenotypes for PTSD. We found that both 

were significantly heritable, though the continuous (total symptom) trait was the most 

heritable, and therefore the most informative with regard to biological inference. 

Importantly, partitioned heritability analyses of that trait indicated preferential expression 

of SNPs in frontal (BA9) and anterior cingulate cortex (BA24), consistent with prevailing 

neural circuit theories of PTSD pathophysiology (Shalev et al., 2017) that emphasize 

function of these regions and their connections with limbic cortex  in the regulation of 

emotion and extinction of fear memories (Dunsmoor et al., 2015; Phelps and Hofmann, 

2019).  

 

Several genes were repeatedly implicated across the various conceptualizations of the 

PTSD phenotype. MAD1L1 (“mitotic arrest deficient 1 like 1”) was GWS associated with 

PTSD in the algorithmic case-control comparison, with all three symptom severity 

dimensions (hyperarousal, reexperiencing [previously seen and now remaining GWS in 

this larger sample [(Gelernter et al., 2019)] and avoidance) and also with total symptom 

severity in the quantitative trait analyses including the gene-based analysis. MAD1L1, 

widely expressed in all tissues and thought to play a role in cell cycle control, has 

emerged as being GWS associated with at least two other major mental disorders, 

schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics, 2014) and 

bipolar disorder (Stahl et al., 2019) — both of which traits were excluded among 

participants in this study but have strong genetic correlations with PTSD in MVP and 

other cohorts (Nievergelt et al., 2018). These observations suggest that MAD1L1 may be 
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a general risk factor for psychopathology, possibly contributing to the p factor thought to 

underlie many serious mental disorders (Selzam et al., 2018). Alternatively, it could 

contribute to some of the symptoms or clusters of symptoms that these disorders can 

have in common. These hypotheses should be directly tested in future studies that focus 

on cross-disorder psychopathology. 

 

Several other genes were discovered as being associated with PTSD and, remarkably, 

replicated in the largest available (but still much smaller than our study sample) PTSD-

informative dataset, the updated PGC-PTSD GWAS (Nievergelt et al., 2018). Included 

among these were TSNARE1 (T-SNARE Domain Containing 1) and EXD3 (Exonuclease 

3’-5’ Domain Containing 3). TSNARE, involved in intracellular protein transport, has 

been associated with risk-taking (Karlsson Linner et al., 2019), which may predispose to 

PTSD through increasing the likelihood of exposure to traumatic events; interestingly, 

twin studies suggest that risk for exposure to traumatic events is partially heritable (Stein 

et al., 2002). EXD3, involved in nucleic acid binding and widely expressed throughout 

the body, has been associated with mathematical (Lee et al., 2018) and other cognitive 

abilities, which have been found in our study and others to be genetically correlated with 

PTSD and mediated by socioeconomic status (Polimanti et al., 2019). It remains to be 

determined to what extent these associations and their potential mediation processes 

reflect pleiotropic effects of EXD3 or other genes. But, for the first time in PTSD genetics 

research, we have discovered and replicated gene candidates through unbiased 

searches that can now be further examined in relation to their putative biological 

relationships to PTSD and other stress- and anxiety-related conditions. 

 

Our prior analysis of intrusive reexperiencing symptoms in MVP (Gelernter et al., 2019) 

had implicated CRHR1, and this gene was once again implicated in this expanded 

sample both through its association with the same quantitative trait in the GWAS (Table 

3), and also through its strong association with overall PTSD symptoms (PCL-total) in 

the gene-wise analysis (Supplemental Table 1).  CRHR1 is in a large LD block on 

Chr17, making it difficult to discern its association with PTSD apart from other genes in 

that LD block. We now provide additional biological evidence that CRHR1 may be 

causally related to PTSD. PrediXcan analyses pointed to heightened expression of 

CRHR1 in several brain regions (amygdala and hippocampus) often implicated as 

structurally or functionally abnormal in PTSD (Shalev et al., 2017). And, importantly, our 
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postmortem brain data directly demonstrate increased expression of CRHR1 in 

individuals with PTSD. Limitations of these data include the availability of postmortem 

tissue only in BA25, and many other caveats that go with postmortem brain analysis 

(e.g., confounds possibly caused by age, other comorbid conditions, and medications). 

These results must be extended to other brain regions (e.g., ventromedial prefrontal 

cortex, shown to be integral to fear learning and extinction (Dunsmoor et al., 2019), 

processes hypothesized to be central to PTSD onset and recovery, respectively 

(Maddox et al., 2019; Shalev et al., 2017)) and replicated in additional samples. But the 

totality of the results now associating CRHR1 with PTSD severity across GWAS, 

GWGAS, imputed expression, and postmortem analyses, in concert with the strong 

preclinical and clinical priors for involvement of CRH in stress-related disorders 

(Chrousos and Zoumakis, 2017), position CRHR1 antagonists as strong therapeutic 

candidates for PTSD and related conditions. Whereas a placebo-controlled trial of a 

CRHR1 antagonist in 128 women with PTSD produced unimpressive results (Dunlop et 

al., 2017), our findings (albeit predominantly in men) suggest that there are potential 

unfulfilled opportunities with CRHR1 antagonists for PTSD that should be further 

explored. When such studies are performed, consideration should be given to looking at 

individual variation in CRHR1, including epigenetic variation (Pape et al., 2018), as a 

source of differential antagonist efficacy, in keeping with the march toward precision 

psychiatry (Stein and Smoller, 2018). 

 

Our observation of the high rg among the PCL sub-domains warrants additional 

reflection. When traits have high phenotypic correlations (rp) it is virtually always the 

case that they have high rg (Sodini et al., 2018). Therefore, it may be somewhat 

unreasonable to expect that different levels of observation or measurement of traits that 

are highly phenotypically correlated will yield new insights into genetic risk (and, hence, 

neurobiology). The high rg between PTSD symptom subdomains, which do not include 

overlapping items, supports the coherence of PTSD as a diagnostic construct from a 

biological perspective.  Nevertheless, we did see evidence of certain SNPs being 

associated with risk for some PTSD sub-domains but not others, suggesting that there is 

further merit to looking at these sub-phenotypes as a tool for understanding disorder 

biology. This approach is consistent with expectations for sets of symptoms that, 

although they appear disjointed, tend to occur together and can be used to arrive at 

diagnoses that have predictive value. It is also possible that SNPs that are subdomain-
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specific in this dataset may not remain so as sample sizes increase and new findings 

emerge for each trait; but we would still expect that different, or differential, patterns for 

each trait will be maintained.  It will be important to go beyond documentation of genetic 

correlation between PTSD and other traits and do the work needed to determine which 

of these relationships are causal and in which direction. Methodologies for such 

analyses have been developed (e.g., Mendelian Randomization (Emdin et al., 2017) and 

latent causal variable (LCV) modeling (O'Connor and Price, 2018)), and we intend to 

apply these techniques to the large MVP dataset to further elucidate causal risk factors 

for PTSD and related conditions.  

 

PTSD is frequently associated with other mental health problems such as major 

depressive disorder (Stander et al., 2014), nicotine (Kearns et al., 2018) and alcohol 

(Vujanovic et al., 2019) abuse, and suicidality (Nock et al., 2009; Ramsawh et al., 2014) 

and with other adverse health sequelae such as obesity (Kubzansky et al., 2014) 

cardiovascular disease (Koenen et al., 2016), dementia (Cohen et al., 2013), type 2 

diabetes (Roberts et al., 2015) and other immune-related disorders such as rheumatoid 

arthritis (O'Donovan et al., 2014) and hypothyroidism (Jung et al., 2018). Our PheWAS 

yielded a significant association between hypothyroidism in MVP with rs542933551 (in 

PLEKHM1).  Whereas prior epidemiological work has established a phenotypic 

association between stress-related disorders and subsequent autoimmune diseases, 

including hypothyroidism (Song et al., 2018), our results are the first, to the best of our 

knowledge, to identify a significant genetic association between hypothyroidism and 

PTSD. A phenome-wide genetic correlation analysis of thyroid disorders showed that 

hypothyroidism is genetically correlated with several behavioral traits including fatigue, 

anxiety, depression, loneliness, and mood swings (Ravera et al., 2018). It remains to be 

determined whether these associations are causal, and whether any therapeutic 

implications — for hypothyroidism, PTSD, or other psychiatric disorders — can be drawn 

from these observations. CMap indicates that PLEKHM1 has several drug re-purposing 

candidates (dopamine receptor antagonists, acetylcholine receptor antagonists, and 

angiotensin receptor antagonists) that could be further investigated in this respect. 

 

With further consideration to drug repurposing opportunities, the possible utility of a 

dopamine receptor antagonist is intriguing given our prior findings of an association of 

PTSD re-experiencing symptoms with midbrain medium spiny neurons (Gelernter et al., 
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2019) which express D1, D2, or both receptors, in conjunction with clinical findings that 

dopamine (D2) receptor antagonists may benefit some patients with PTSD (Villarreal et 

al., 2016).  On the other hand, a growing body of preclinical evidence points to a 

possible role for dopamine augmentation in fear extinction (Kalisch et al., 2019; Luo et 

al., 2018; McCullough et al., 2018), which might imply that drugs that increase dopamine 

signaling may have therapeutic potential; these data are supported by our preliminary 

results showing benefits of methylphenidate for PTSD (McAllister et al., 2016). 

Interindividual variation may also be relevant in determining treatment response. There 

is evidence that repeated stress exposure disrupts D1 signaling in the prefrontal cortex 

(Shinohara et al., 2018). Given the complexities of dopamine signaling (different receptor 

subtypes, brain regional and cell-type-specific differences in dopaminergic regulation, 

temporal-specific effects during learning) (Bamford et al., 2018), additional study of 

these agents is needed to determine their place in PTSD therapeutics.  

 

Our findings also suggest consideration of several other drug classes as therapeutic 

candidates for PTSD.  For example, acetylcholine receptor antagonists could be 

considered given the convergence of (1) the PheWAS association via TRAIP with 

Chronic Obstructive Pulmonary Disease (COPD; which can be treated with muscarinic 

receptor antagonists (Ismaila et al., 2015)), and (2) their association in cMAP  with 

PLEKHM1.  Angiotensin receptor antagonists, also identified as drug candidates through 

cMAP, have a strong preclinical rationale for use in PTSD (Marvar et al., 2014; Shekhar, 

2014) and are, in fact, currently undergoing testing in a randomized placebo-controlled 

trial of losartan for PTSD (ClinicalTrials.gov Identifier: NCT02709018P).  

 

Our study has numerous limitations and caveats. Whereas we have elected to prioritize 

post-GWAS analyses based on the largest and most genetically informative PTSD trait 

available to us — PCL total score, which is reflective of past-month overall symptom 

severity — it is not currently known whether genetic risk for PTSD differs by trauma type 

(e.g., combat exposure vs. civilian trauma exposure) or timing (e.g., childhood 

maltreatment vs. adult assault). Studies of even larger sample size (which MVP will 

attain in the coming years) and greater granularity with regard to types and chronology 

of trauma exposure, will be needed to address these questions. Another limitation is our 

reliance on the European ancestry sample, which reflects both a relative paucity of 

African and other ancestry individuals (despite this study having the largest African 
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ancestry sample in any PTSD study to date) as well as limitations in the tools available 

(e.g., LDSC) to conduct post-GWAS analyses in non-European ancestry samples. We 

must also acknowledge that the drug repurposing propositions, while hypothesis-

generating and intriguing, are just that. They are one piece of information that would 

increase interest in testing the proposed drug classes in patients with PTSD; they must 

be buttressed by additional preclinical models and complementary informatic 

approaches (Le-Niculescu et al., 2019) supporting their use, as well as serious 

consideration of their safety in this population. Lastly, we remind the reader that the 

present analyses rested solely on GWAS, and with a rather sparse genotyping array, 

thereby limiting inquiry to common genetic variants; whole genome sequencing is 

currently underway on a subset of this cohort with the role of identifying rare variants. 

Epigenetic factors may play a role in a disorder such as PTSD, which has traumatic 

stress as its precursor (Daskalakis et al., 2018). Many other functional genomics tools 

can and should be brought to bear on the study of PTSD, expanding the scope of inquiry 

to encompass a holistic, integrative functional genomic analysis (Li et al., 2018) of this 

common, serious, and yet still poorly understood neuropsychiatric disorder.  

. 
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SUMMARY OF METHODS 
 

-- EXPERIMENTAL MODEL AND SUBJECT DETAILS 

 Subjects: All subjects are enrollees in the VA Million Veteran Program (MVP) 

(Gaziano et al., 2016). Active users of the VHA healthcare system learn of MVP via an 

invitational mailing and/or through MVP staff while receiving clinical care with informed 

consent and HIPAA authorization as the only inclusion criteria. As of July 2019, more 

than 750,000 veterans have enrolled in the program; for the current analyses, genotype 

data were available from approximately 375,000 participants.  Individuals with EHR 

diagnoses of schizophrenia or bipolar disorder were excluded from participation in this 

study of PTSD. Research involving MVP is approved by the VA Central IRB; the current 

project was also approved by VA IRBs in Boston, San Diego, and West Haven. 

PTSD Case-Control (Binary) Electronic Health Record Derived Phenotype: 

Details on the derivation and psychometric properties of this phenotype are included in 

our recent publication (Harrington et al., 2019). In brief, we used manual chart review (n 

= 500) as the gold standard.  For both the algorithm and chart review, three 

classifications were possible: likely PTSD, possible PTSD, no PTSD.  We used Lasso 

regression with cross-validation first to select statistically significant predictors of PTSD 

from the electronic health record (EHR) and then to generate a predicted probability 

score of being a PTSD case for every participant in the study population. Probability 

scores ranged from 0-1.00. Comparing the performance of our probabilistic approach 

(Lasso algorithm) to a rule-based approach (ICD algorithm), the Lasso algorithm showed 

modestly higher overall percent agreement with chart review compared to the ICD 

algorithm (80% vs. 75%), higher sensitivity (.95 vs. .84), and higher overall accuracy 

(AUC = .95 vs. 90).  For purposes of the case-control binary EHR-derived phenotype 

used here, we applied a 0.7 probability cut point to the Lasso results to determine final 

PTSD case and control status; we also selected a threshold score of 30 on the PCL from 

the MVP survey to minimize false negative classifications (e.g., due to an absence of 

PTSD screening information in the EHR). This final algorithm had a 0.96 sensitivity, 0.98 

specificity, 0.91 positive predictive value, and 0.99 negative predictive value for PTSD 

classification in the trans-ancestral sample as determined by chart review.  

PTSD Symptom Severity (Quantitative Trait) Sub-phenotypes: The second 

optional questionnaire, the MVP Lifestyle Survey, includes the PTSD Symptom Checklist 
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(PCL; DSM-IV version) (Blanchard et al., 1996) which asks respondents to report how 

much they have been bothered in the past month by symptoms in response to “stressful 

life experiences. The PCL has 17 items, each scored on a 5-point severity scale (1 = 

“Not at All” though 5 = “Extremely”). The re-experiencing (REX) symptom domain is 

covered by 5 items (score range 5-25), the avoidance (AVOID) domain by 7 items (score 

range 5-35), and the hyperarousal (HYPER) domain by 5 items (score range 5-25), 

yielding an overall severity score (TOTAL) for the 17 items (score range 17-85). PCL 

items and their distributions in EAs and AAs are shown in Table 1. After accounting for 

missing phenotype data, the final sample size for TOTAL was 186,689 in the EUR 

sample and 25,318 in the AFR sample. 

 

 -- Genotyping, Imputation and Quality Control: Genotyping, imputation, and 

quality control within MVP has been previously described (Gaziano et al., 2016).  Briefly, 

samples were genotyped using a 723,305-SNP Affymetrix Axiom biobank array, 

customized for MVP. Imputation was performed with minimac3 (Das et al., 2016) using 

data from the 1000 Genomes project.  For post-imputation QC, SNPs with imputation 

INFO scores of < 0.3 or minor allele frequencies (MAF) below 0.01 were removed from 

analysis.  For the first tranche of data, 22,183 SNPs were selected through linkage 

disequilibrium (LD) pruning using PLINK (Chang et al., 2015; Purcell et al., 2007) and 

then Eigensoft (Price et al., 2006) was used to conduct principal component analysis on 

343,286 MVP samples and 2,504 1000 Genomes samples (Genomes Project et al., 

2015). The reference population groups in the 1000 Genomes samples were used to 

define EUR (n=241,541) and AFR (n=61,796) groups used in these analyses.  Similar 

methods were used in the second tranche of data, which contained 108,416 new MVP 

samples and the same 2,504 1000 Genomes samples.  In Tranche 2, 80,694 

participants were defined as EUR and 20,584 were defined as AFR. In this manuscript, 

we report results as the meta-analysis of Tranche 1 and 2 data, either for EUR and AFR 

separately, or as a trans-ancestral meta-analysis. 

 

-- QUANTIFICATION AND STATISTICAL ANALYSIS 

Association Analyses.  GWAS analysis was carried out by logistic (for the two binary 

traits) or linear (for the quantitative traits) regression for each ancestry group and 

tranche using PLINK 2.0 on dosage data, covarying for age, sex, and the first 10 PCs.  

Meta-analysis was performed using METAL.   
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LD Score Regression (LDSC) and SNP-based Heritability. We used LD score 

regression (LDSC) through LD Hub (Zheng et al., 2017) to estimate SNP-based 

heritability, and to assess genetic correlation of PTSD binary algorithmic diagnosis and 

total PTSD symptoms severity with other traits in LD Hub.  LDSC results for 232 traits 

were extracted from the data at LDHub v2.0 (http://ldsc.broadinstitute.org/ldhub/). 

 
Conditional Analysis for Major Depression and other Psychiatric Disorders.  
Considering the extensive comorbidity between major depression and PTSD (Koenen et 

al., 2008) we conducted conditional analysis with mtCOJO (Zhu et al., 2018) using 

GCTA software with the MVP PCL-total symptom severity summary statistics as the 

primary analysis and the PGC MDD2 (excluding 23andMe due to data unavailability) 

(Wray et al., 2018) summary statistics to condition the analysis for depression. Additional 

summary statistics for autism spectrum disorder, anorexia nervosa, anxiety (case-

control), alcohol dependence, schizophrenia, bipolar disorder, and attention deficit 

hyperactivity disorder were obtained from https://www.med.unc.edu/pgc/results-and-

downloads/. 

 
Gene-based Tests.  Summary statistics from the GWAS were loaded into Functional 

Mapping and Annotation of Genome-Wide Association Studies (FUMA GWAS) (de 

Leeuw et al., 2015) to test for gene-level associations using Multi-Marker Analysis of 

GenoMic Annotation (MAGMA) (Watanabe et al., 2017). Input SNPs were mapped to 

17,927 protein coding genes.  The GWS threshold for the gene-based test was therefore 

determined to be p = 0.05/17,927 = 2.79×10-6. 
 
Polygenic Risk Score (PRS) Analysis. Summary statistics from the MVP PTSD EHR—

derived binary algorithmic and PCL-total symptom severity analyses, respectively, were 

used as the base data for calculating PRSs (using PRSice v 1.25) (Euesden et al., 

2015).  

Postmortem Brain Analyses. Quantitative real-time PCR (qRT-PCR) was performed 

on dissected tissue from Brodmann Area 25, the subgenual prefrontal cortex (sgPFC) in 

22 subjects with PTSD (mean age, 46 +/- 11.7 years, 11 females) and 22 matched 

controls (mean age, 47.8 +/- 11.7 years, 11 females).  At the time of death 15 of 22 

subjects with PTSD were on an antidepressant and 13 of 22 control subjects were on an 
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over the counter medication.  The average postmortem interval (PMI) was 16.1 hours in 

the PTSD cohort and 18.8 hours for the controls.  There were no significant differences 

between the PTSD and control samples in age, PMI, pH, or RNA integrity number.   

qRT-PCR was performed using primers designed to detect the transcript of 

CRHR1.  mRNA was isolated from the sgPFC using the RNEasy Plus Mini Kit (Qiagen, 

Venlo, Netherlands); 1 ug of mRNA was reverse-transcribed into cDNA using the iScript 

cDNA Synthesis kit (Bio-Rad, Hercules, CA).  RNA was hydrolyzed and resuspended in 

nuclease free water.  Gene specific primers for CRHR1(Fwd: 

TGGATGTTCATCTGCATTGG; Rev: GGCCCTGGTAGATGTAGTCG) and the control 

gene GAPDH (Fwd: ACCCAGAAGACTGTGGATGG; Rev: 

GAGGCAGGGATGATGTTCTG) were designed using Primer 3 v.0.4.0  freeware 

(http://bioinfo.ut.ee/primer3-0.4.0/) and tested for efficiency and specificity by serial 

dilution and melt curve analysis.  Sybr Green mix (Bio-Rad, Hercules, CA) was used to 

amplify cDNA.  Fold regulation was calculated by using the –delta delta Ct (2-DDCt) 

method.  The 2-DDCt analysis calculates relative gene expression levels between two 

samples by using the threshold cycles calculated by increasing fluorescent signal of the 

amplicon during PCR. 

 For the postmortem gene expression analysis, differences in transcriptional 

changes between PTSD and controls were evaluated using Graphpad Prism v7 

(Graphpad Software, San Diego, CA) with fold changes calculated using the 2-DDCt 

method.  Mann Whitney U test followed by Bonferroni correction for multiple 

comparisons were used to assess statistical differences in the fold regulation calculated. 

 

PrediXcan-S Methods.  To perform transcriptome wide association analysis, 

PrediXcan-S (also known as MetaXcan) (Barbeira et al., 2018) was used to impute gene 

expression based on the GWAS summary statistics (meta-analysis of tranche 1 and 2 

EAs) of PCL-17 Total with the reference gene expression data of 50 tissues from GTEx 

V7. Gene-expression association with PTSD PCL-17 Total was performed for each 

tissue (13 of which are brain tissues) individually.  

 
Phenome-Wide Association Study (PheWAS). To identify pleiotropic effects of 

variants that were significantly associated with PCL-sum score in Europeans, we tested 

associations between the top 15 loci (Table 4) and every other available phenotype, i.e., 

a phenome-wide association study (PheWAS) in the MVP sample for each variant. 
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Binary phenotypes were constructed from manually curated groups of ICD-9 codes (or 

phecodes), as defined by Denny and colleagues (Denny et al., 2013; Denny et al., 

2010). Following the approach of another PheWAS conducted within the MVP (Cai et al., 

2018), veterans were defined as a case if they had ≥2 phecodes, very rare phenotypes 

(prevalence ≤ 0.1%) were excluded, and any relatives greater than 3rd degree (φ ≥ 1/16) 

were excluded (Manichaikul et al., 2010). A logistic regression was used to measure and 

test the association between each individual variant with each phenotype. All models 

were adjusted for age, sex, 20 principal components (PC) to account for population 

stratification (Cook and Morris, 2016), follow-up time in (log of) months, and (log of) total 

number of ICD-9 codes as a proxy for healthcare utilization. Association p-values were 

Bonferroni-corrected to control familywise error rate (FWER) at 5% within each 

PheWAS; associations with p-values ≤ 0.05/(1335 phenotypes) = 3.75X10-5 were 

considered significant. 

 

Drug Repositioning Analysis. CMap (https://clue.io/cmap) provides expression 

similarity scores for a specific expression profile with other drug-induced transcriptional 

profiles, including consensus transcriptional signatures of 83 drug classes, i.e., 

transcriptional profiles induced by 2,837 drugs grouped into 83 drug classes. Expression 

similarity is evaluated by means of scores that vary from -100 to 100, with -100 the most 

extreme opposite expression profile and 100 the most extreme similar expression profile.  
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